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Abstract
Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are sensitive to 
the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient RNA contamination 
may differ between samples obtained from patients and healthy controls. Current ambient RNA correction 
methods were not developed specifically for single-cell differential gene expression (sc-DGE) analyses and might 
therefore not sufficiently correct for ambient RNA-derived signals. Here, we show that ambient RNA levels are 
highly sample-specific. We found that without ambient RNA correction, sc-DGE analyses erroneously identify 
transcripts originating from ambient RNA as cell type-specific disease-associated genes. We therefore developed 
a computationally lean and intuitive correction method, Fast Correction for Ambient RNA (FastCAR), optimized 
for sc-DGE analysis of scRNA-Seq datasets generated by droplet-based methods including the 10XGenomics 
Chromium platform. FastCAR uses the profile of transcripts observed in libraries that likely represent empty droplets 
to determine the level of ambient RNA in each individual sample, and then corrects for these ambient RNA 
gene expression values. FastCAR can be applied as part of the data pre-processing and QC in sc-DGE workflows 
comparing scRNA-Seq data in a health versus disease experimental design. We compared FastCAR with two 
methods previously developed to remove ambient RNA, SoupX and CellBender. All three methods identified 
additional genes in sc-DGE analyses that were not identified in the absence of ambient RNA correction. However, 
we show that FastCAR performs better at correcting gene expression values attributed to ambient RNA, resulting in 
a lower frequency of false-positive observations. Moreover, the use of FastCAR in a sc-DGE workflow increases the 
cell-type specificity of sc-DGE analyses across disease conditions.
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Introduction
Single cell RNA sequencing (scRNA-Seq) is revolutioniz-
ing basic and translational biomedical research. The abil-
ity to quantify RNA expression in individual cells with 
high throughput enables quantification of cell type com-
position of complex tissue samples and characterization 
of their transcriptional phenotypes, or cell states, in great 
detail [1]. The use of scRNA-Seq to compare healthy and 
diseased tissue samples can reveal differences in cell type 
proportions and identify unique, disease-associated cell 
types, cell states, cell-cell interactions or cell-state tran-
sitions, all of which can be used to chart the pathogen-
esis of disease at unprecedented level [2]. In such efforts, 
scRNA-seq can be applied to perform cell type-specific 
(or single-cell) differential gene expression (sc-DGE) 
analyses between healthy and diseased tissue samples.

We previously published a comparison of the cellu-
lar landscape in airway wall samples between healthy 
controls and patients with asthma [3]. While compar-
ing cell-type composition is relatively straightforward, 
we observed that sc-DGE analyses between healthy and 
diseased tissue samples frequently yielded identifica-
tion of differentially expressed genes in cell types that 
were unlikely to express these genes, indicating that the 
observed gene expression probably originated from the 
ambient RNA. This despite having corrected for ambient 
RNA using SoupX [4].

Ambient RNA is cell-free mRNA that is released dur-
ing preparation of single-cell suspensions for scRNA-Seq 
analysis and is one of the features that limits sc-DGE 
analyses, next to sparsity of data and the presence of 
doublets [5, 6]. Sc-DGE analysis methods that take 
into account the sparsity of data or use pseudo-bulk 
approaches per cell type are being developed [7]. Dou-
blets can be transcriptionally identified and removed 
from the dataset during pre-processing of scRNA-Seq 
data [6]. The ambient RNA present in the cell suspension 
will be captured by all beads during cell partitioning in 
droplet-based scRNA-Seq methods, irrespective of the 
presence or absence (‘empty’ droplets) of a cell. Conse-
quently, cell-type specific mRNA released into the ambi-
ent RNA will also be detected at low levels in cell types 
that do not express this gene natively.

The composition of ambient RNA depends on the cell 
type composition and processing of the tissue, and is 
therefore highly sample-specific. When comparing gene 
expression profiles across cell types within a single sam-
ple, transcripts of ambient RNA will be shared and will 
not be identified as differentially expressed genes. In con-
trast, when comparing gene expression profiles in a cell-
type specific fashion between different samples belonging 
to an experimental or disease condition, the ambient 
RNA composition might be different across the con-
trast used in the DGE analysis. In such a case, transcripts 

identified as differentially expressed genes may be 
derived from either cellular RNA or from contaminating 
ambient RNA, leading to false-positive results in the lat-
ter case. Therefore, a new, stringent method for ambient 
RNA correction that allows sc-DGE studies comparing 
healthy to diseased tissue samples is urgently needed.

Here, we characterized the contamination by ambient 
RNA in sc-DGE analyses and present a novel method 
‘FastCAR’ (Fast Correction for Ambient RNA) to quickly 
identify and correct for ambient RNA in droplet-based 
scRNA-Seq data. We provide a rationale for selection of 
the genes that should be corrected on the basis of the 
data retained within the gene expression matrix, with-
out the need for prior knowledge on the expected cell-
type specific gene expression patterns. Furthermore 
we compare its performance to the other ambient RNA 
correction methods SoupX and CellBender-remove-
background which were either not thorough enough or 
computationally prohibitive [8]. The use of FastCAR as 
part of the scRNA-seq data pre-processing workflow 
allows for more accurate sc-DGE analyses between dis-
ease conditions or other experimental groups.

Materials and methods
scRNA-seq datasets
Bronchial biopsies from healthy controls and asthma 
patients
To test FastCAR, we used our previously published [3] 
scRNA-Seq dataset obtained from bronchial biopsies of 
six asthma patients and six healthy controls. Here, we 
used the same cells as in our previous study [3], how-
ever using an updated cell-type annotation to better 
reflect our current understanding of the data. Mapping 
and counting was performed using 10x Genomics Cell 
Ranger 3.1.0 with the GRCh38 genome reference and 
gene annotation from Ensembl release 93 to generate 
new count matrices for these barcodes, and without the 
ambient RNA correction using SoupX that was applied in 
the original dataset [3].

PBMCs from healthy donors and COVID-19 patients
As another disease/control dataset we used PBMCs 
from seven healthy donors and seven hospital admitted 
COVID-19 patients [9]. These were processed on the 
SeqWell [10] platform.

Differential gene expression analyses
To perform the differential expression analyses we used 
R package EdgeR [11] using the likelihood ratio test on 
pseudo-bulk per cell type, using the disease condition as 
the contrast between groups. The aggregate pseudo-bulk 
count matrices were generated per sample and cell type 
using the ‘PseudobulkExpression’ function of Seurat 4.02 
[12] in R version 4.1.2.
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Ambient RNA removal by ‘SoupX’ [4]
We applied SoupX using the suggested settings by the 
autoest function of the original tutorial starting from the 
count matrices. The cell selection step was not applied as 
we used only the libraries that were selected as live, high-
quality cells in our previous publication [3]. For the clus-
ter annotations we used the updated cell labels reflecting 
our current understanding of gene expression in different 
cell types.

Ambient RNA removal by ‘CellBender remove background’ [8]
To perform the ambient RNA correction using Cell-
Bender remove background we used the default recom-
mended settings (fpr 0.01, epochs 150). The cell selection 
was not applied as we used only the libraries that were 
selected as live, high-quality cells in our previous publica-
tion [3].

Results
In order to develop a method that can be used to cor-
rect for ambient RNA in a sc-DGE analysis, we took 
advantage of a previously reported data set in which we 
reported the changes in the cellular landscape of the air-
way wall in patients with asthma compared to healthy 
controls [3]. After updating the cell labels to better reflect 
current understanding (Fig.  1A) we found that tran-
scripts of several highly cell type-specific genes were 
also observed in other cell types, which are known not to 
express these genes, albeit at much lower levels than the 
actual expressing cell type (Fig.  1B). These included for 
example, SCGB3A1, expressed in secretory cells [13, 14], 
IGKC from B cells [15, 16] and HBB, originating from 
erythrocytes [16, 17] which while not identified as dis-
tinct cell types in the data would have been present in the 
biopsy. Moreover, these genes were all identified as being 
significantly differentially expressed between asthma 
patients and healthy controls. We hypothesized that such 
‘ectopic’ DE gene expression patterns could be attributed 
to differences in ambient RNA that were not fully cor-
rected for.

This ambient RNA is sample-specific which leads to 
samples where the total ambient RNA (summed UMI in 
libraries with = < 100 UMI) of a gene is higher to also have 
relatively higher presence of that gene in non-expressing 
cells compared to other samples (Fig. 1C). This sample-
specific profile of gene ‘expression’ is what is used to 
correct for this ambient RNA and make sc-DGE more 
accurate.

FastCAR algorithm
FastCAR determines the ambient RNA profile to correct 
the cell expression for on a gene by gene basis. The user 
provides a threshold for the number of Unique Molecu-
lar Identifiers (UMI) per sequencing library (thE), every 

library (j) with that number of UMIs or fewer is used to 
generate the ambient RNA profile. For every gene (g), the 
fraction of these selected libraries containing any UMIs 
of that gene (frC) is determined, as well as the highest 
number of UMIs of that gene occurring in a single library 
(gMax). If frC exceeds the user provided allowable frac-
tion of ambient affected cells (frAA), the UMI counts for 
that gene in each cell is reduced by gMax. If this results 
in negative counts, the number of counts of that gene in 
the cell is set to 0.

	
gMaxg = max

(
counts

[
,
∑

j < thE
])

	
frC =

∑
counts

[
g > 0,

∑
j < thE

]
/ n (j)

DGE methods for scRNA-seq data use a cut-off for the 
minimum number of cells that need to be expressing a 
gene in a sample and cluster before it is considered for 
testing, frAA can be set based on this by choosing a frac-
tion that matches this cut-off. thE can be set by default 
to 100 UMI but more informed choices lead to better 
results as explained in the workflow example shown in 
Fig. 2 and explained in the results.

FastCAR: methodology and setting thresholds
We developed a method named FastCAR for optimized 
correction of ambient RNA levels to allow more effec-
tive sc-DGE analysis in studies comparing healthy and 
diseased samples and similar experimental designs. 
FastCAR uses the absolute number of UMIs from the 
ambient-RNA containing libraries to profile the gene 
expression pattern and levels present in ambient RNA 
and perform a correction for these levels in all libraries 
that are identified as live, single cells.

As stated earlier, there are two variables to consider 
when running FastCAR. Firstly, the minimum allowable 
fraction of libraries that contains ambient RNA of each 
gene. (frAA). Secondly, the maximum UMI-per-library 
threshold at which libraries are considered to only con-
tain ambient RNA(thE).

The minimum allowable fraction of cells affected by the 
ambient RNA that needs to be corrected for depends on 
the method of sc-DGE analysis that will be performed. 
Most sc-DGE methods apply a threshold for the mini-
mum fraction of cells per cluster that need to express a 
gene to accept it as a DE gene. Therefore, all genes that 
are found to be present in a lower proportion of the 
ambient RNA libraries (at the chosen empty library 
threshold) will not be identified in the sc-DGE method, 
and therefore do not need to be corrected for. The default 
setting for this contamination chance parameter is 0.005; 
any genes present in less than 5 out of each 1000 ambi-
ent RNA libraries are ignored. This limits the total profile 
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of ambient RNA that needs to be corrected for quite 
significantly.

The threshold for what is considered an empty library is 
often arbitrarily set at 100 UMIs/library8. We have estab-
lished a workflow (Fig.  2) that illustrates a method to 
facilitate choosing an appropriate threshold using known 
cell labels and expected cell type-specific genes. If a ref-
erence is available for the tissue then transfer learning 

with for instance scArches [18] can provide these labels. 
Methods to assist in setting these thresholds without cell 
labels are described on the GitHub page.

The next step is to profile the level of RNA that will be 
removed if the threshold for an empty library is increased. 
The higher the threshold, the higher the number of 
counts that are removed of each gene as can be seen in 
the heatmap. Whether the correction level of genes is 

Fig. 1  Ambient RNA is sample specific: (A) UMAP of the associated data (B) Violin plots of the mRNA levels of selected cell type markers found in the 
ambient RNA in selected cell types. (C) Heatmaps of the scaled log10 aggregate pseudo bulk expression of selected genes in samples from the bronchial 
biopsy dataset in selected cell types and the ambient [nUMI < = 100] libraries
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Fig. 2  Workflow to select appropriate settings and apply FastCAR to a scRNA-seq dataset
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adequate can be gauged by comparing the number of 
counts that will be removed at a threshold, to the level of 
expression in cells that are expected to express them, and 
the levels at which it is present in non-expressing cells as 
shown in the violin plot. A proper threshold will help to 
mostly remove transcripts of genes likely to affect DGE 
analysis while otherwise removing as little transcripts/
signals as possible. As such the recommended threshold 
is one where the number of removed counts per cell is 
around the actual level observed in non-expressing cells. 
In Fig. 2 (panel 2) the B cell-specific gene IGKC is used 
as an example to choose a threshold for libraries with 
ambient RNA. At such an empty library threshold of 125 
UMIs, the IGKC counts in the ambient RNA is set at 69 
counts. With this ambient RNA correction, the (ambient) 
IGKC level in the non-expressing libraries will be mostly 
corrected for while expression levels of IGKC in the B 
cells remains high (Fig. 2, panel 2).

In general, a higher threshold will result in more genes 
being selected for correction and a more extensive 
removal of ambient RNA-derived transcripts. However, 
such a threshold will also lower the expression values 
of commonly expressed genes including the mitochon-
drial genes and could overcorrect genes that are highly 
expressed in some cell types but lowly expressed in oth-
ers, completely removing the measured expression in the 
latter. If the threshold is set to levels over about 500, lowly 
expressing but live cells such as T cells may be included 
in the “ambient” profile, this could raise gMax for those 
genes and overcorrect the expression such that none will 
remain in these cell types.

After the threshold has been set FastCAR can be 
applied to all samples and the resulting count matrices 
can be used in downstream analyses.

Effect of FastCAR correction on sc-DGE results
We profiled the ambient RNA of our bronchial biopsy 
dataset using a threshold of 150 UMIs/library for ambi-
ent RNA and minimal allowable affected fraction of 
0.005. Many of the genes identified to be part of the 
ambient RNA using these settings were found to be dif-
ferentially expressed in more than two cell types between 
asthma and control. After applying FastCAR and correct-
ing the expression of these genes, we found that many 
of the previously significant DGE results were no longer 
observed (Fig. 3A).

In total, across all cell types, 372 out of 5067 identi-
fied DGE lost significance in the sc-DGE analysis in one 
or more cell types after FastCAR correction (Table  1). 
Next to that, 214 genes were identified as differentially 
expressed only after correction.

Comparison of FastCAR to other methods
Next, we compared FastCAR to other available ambient 
RNA correction methods, CellBender [8] and SoupX [4] 
(Fig. 3B).

When comparing the total number of significant DGE 
results across all cell types of genes that were corrected 
for by FastCAR in at least one of the samples we observe 
that these are most reduced by FastCAR (Table 2).

There are also differences that FastCAR may not cor-
rect for, therefore we compared the total number of 
significant sc-DE genes and the effects on the different 
ambient RNA correction methods (Table  2). We found 
large differences between the results before and after the 
various corrections. CellBender showed the least overlap 
between the corrected and uncorrected datasets but also 
large number of new DEGs and one DEG which effect is 
inverted after correction.

To determine the difference in correction between 
methods for individual genes we plotted the expression 
of IGKC and SCGB1A1 without correction and after 
applying the different corrections. method (supplemen-
tary Fig. 2A/B) For both of these genes the ambient RNA 
is more completely removed by FastCAR than the other 
methods.

Comparison to other methods
We next asked whether correcting for ambient RNA by 
FastCAR could negatively affect downstream processing 
of the data, such as clustering. To this end, we compared 
the clusters identified in our bronchial biopsy dataset 
by Seurat both before and after ambient RNA correc-
tion. Identical settings and cells were used in both clus-
tering efforts, normalization and scaling was performed 
using SCTransform while regressing out the percentage 
mitochondrial RNA, and the first ten principal compo-
nents were used for the clustering at resolution 0.1. The 
libraries with fewer than 150 UMIs were used to profile 
the ambient RNA. Gene expression levels were corrected 
for maximal expression in the empty droplets if they had 
a minimal allowable fraction size higher than 0.005. We 
used the Jaccard index to compare whether the cells clus-
ter similarly before and after ambient RNA correction 
and found that clustering and cell type identification is 
not strongly affected by the presence of ambient RNA as 
shown in supplementary Fig.  1. The main changes that 
occur after ambient RNA correction are observed in 
clusters identified along a differentiation trajectory lack-
ing discrete cell type transitions, such as the basal and 
secretory cells of the airway epithelium where the cells 
are relatively arbitrarily split into separate clusters.

To validate whether FastCAR also works on other data-
sets and platforms we used the CoVID-19/healthy control 
PBMC dataset from Wilk et al. [9](Fig. 3C), here too we 
observed differentially expressed genes that might result 
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from ambient RNA have smaller effect sizes and are often 
no longer significant after correction with FastCAR.

FastCAR is an effective method to correct for ambient 
RNA that is most likely to affect DGE analyses between 
groups within cell types in scRNA-seq studies, applicable 
to multiple droplet-based methods and compatible with 
downstream analyses.

Discussion
We have developed FastCAR (Fast Correction for Ambi-
ent RNA), a computational method that provides an 
unbiased way to identify and correct for the ambient 
RNA likely to affect DGE analyses on a per-sample basis 
that is intuitive and easy-to-use. FastCAR identifies the 
genes in the ambient RNA and applies a threshold for 
filtering that can be adapted to the settings of the DGE 
analyses, effectively removing the ambient RNA from the 
DE gene results. We show that this method effectively 
removes ambient RNA, but still retains a large propor-
tion (~ 92%) of the DE genes observed prior to ambient 
RNA removal.

When comparing the results of DGE analysis before 
and after ambient RNA correction using FastCAR to the 
other methods we tested, there is a striking difference in 
the number of genes affected by correction procedures. 
Because FastCAR is made to only adjust for the expres-
sion of genes likely to affect DGE analyses, it corrects 
only a small subset of genes which leaves most results 

Table 1  Total number of sc-DGE results with different 
corrections and the comparison to the uncorrected results

Uncorrected FastCAR CellBender SoupX
Total significant 5067 4909 5355 5040
Overlap 
uncorrected

5067 4695 2762 4787

n removed after 
correction

372 2305 280

New after 
correction

214 2593 253

Direction switch 
after correction

0 1 0

Fig. 3  Effect of applying FastCAR and comparison to other methods. (A) Log2 fold change of selected significant DE genes between asthma and control 
in bronchial biopsies before and after being corrected for by FastCAR. (B) Log2 fold change of selected significant DE genes between asthma and control 
in bronchial biopsies before and after being corrected for by FastCAR, SoupX and Cellbender. (C) Log2 fold change of selected significant DE before and 
after being corrected for by FastCAR for genes that were corrected for in at least one sample and found to be differentially expressed in PBMCs between 
COVID-19 patients and healthy controls
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are identical to the uncorrected results. Both SoupX 
and CellBender adjust for the expression of many genes 
which results in large differences in the number and iden-
tity of the differentially expressed genes before and after 
ambient RNA correction. While both CellBender and 
FastCAR apply linear transformation of the data dur-
ing correction, SoupX also applies a normalization that 
might interfere with certain downstream analyses. In the 
absence of a gold standard to compare the results of the 
DGE analyses and the low sample numbers in the dataset 
we used for testing, it is not possible now to determine 
with certainty which of these methods is optimal for the 
identification of DE genes that reflect the biological truth. 
However, using well-established cell type-specific genes 
like IGKC and SCGB1A1, we could show that the per-
formance for ambient RNA removal of these genes with 
FastCAR is superior compared to CellBender and SoupX. 
Other genes that FastCAR identifies and corrects for are 
also more thoroughly corrected for meaning that apply-
ing the other methods would still result on falsely iden-
tifying genes as differentially expressed that result from 
ambient RNA.

Impact and possible uses
DGE analyses between healthy and control or other 
experimental groups in specific sub-populations of cells 
is a promising use of single cell data that may have large 
impact on our understanding of how the in-situ behav-
iour of cells of the same type differs between groups. Cor-
recting for the presence of ambient RNA will be vital to 
finding meaningful results in these analyses and FastCAR 
is an effective method to do so. We developed FastCAR 

as part of a workflow for sc-DGE analysis, and therefore 
propose to use FastCAR for this specific application. We 
did not compare performance of FastCAR or any of the 
other ambient RNA correction methods for any other 
downstream applications.

FastCAR can be run on a per-sample basis as part of 
the pre-processing pipeline used for scRNA-seq data and 
does not require a specific computational infrastructure.

FastCAR can also be used to merely report the mRNA 
profile of the ambient RNA fraction on a per-samples 
basis, which can then be used to interpret results from 
the sc-DGE analysis performed without ambient RNA 
correction.

Limitations
Because of the large variability in cells and processing 
there is no perfect threshold to use to profile the ambi-
ent RNA, or a method to determine with certainty what 
this threshold should be for a specific sample. This neces-
sitates the use of arbitrary thresholds or user-defined 
thresholds. The FastCAR R package includes functions 
that help the user set these thresholds and allows for pro-
filing the ambient RNA without performing the correc-
tion to facilitate choosing these thresholds.

A reasonable concern is whether removing the highest 
expression found in the ambient RNA is not too strict. 
We analysed the cell-type specific gene expression com-
pared to the ambient expression levels and found these to 
be an order of magnitude higher. Consequently, the cell-
type specific expression levels are well retained even for 
the genes that are highly expressed in the ambient RNA. 
Moreover, the FastCAR correction does not strongly 
affect clustering of the cells. This is not unexpected as the 
ambient RNA is a low and ubiquitous signal that has an 
equal chance of affecting each cell in a sample.

The correction method works under the assumption 
that cell containing libraries are equally likely to contain 
ambient RNA and that mRNA from lysed cells is the only 
meaningful source of transcripts that are not expressed 
in the measured cell. Other possible sources of such tran-
scripts are barcode switching, where spontaneous errors 
in the cell barcodes cause transcripts to be assigned to 
the wrong cell. This may also be partially responsible for 
some of the signal [8]. FastCAR does not take such pos-
sibilities into account as it aims to remove just the genes 
most likely to affect DGE analyses, which is unlikely to 
occur as barcode switching is equally likely to affect each 
barcode.

While there are datasets of mixed human/murine cells 
that can be used to benchmark ambient RNA correc-
tion methods that strive for precise removal for ambient 
RNA, these datasets don’t have test/control groups with 
possible effects on ambient RNA and resulting DEGs. In 
conclusion, to perform cell type-specific DGE analyses 

Table 2  Number of times that genes corrected for by FastCAR in 
at least one sample were significantly differentially expressed in 
cell types before correction and after applying different ambient 
RNA corrections

uncorrected FastCAR CellBender SoupX
Secretory 49 47 47 49
Submucosal 20 14 45 18
Ciliated 40 46 39 34
Basal 36 38 42 39
Mucous Ciliated 161 154 167 161
T cells 21 13 7 18
Endothelium 29 21 22 20
Fibroblasts 13 6 10 12
DCs 16 11 15 12
Ionocytes 12 21 28 13
B cells 19 9 27 15
Monocytes 15 17 11 13
Macrophages 20 23 13 24
Cycling 23 15 13 22
Smooth muscle 5 4 4 4
Mast Cells 19 13 9 19
Total 498 452 499 473



Page 9 of 10Berg et al. BMC Genomics          (2023) 24:722 

between groups there needs to be some correction to 
account for the sample-specific ambient RNA. FastCAR 
is a resource efficient method of thoroughly correct-
ing the expression of genes most likely to be affected by 
ambient RNA. While other tools are available for general 
ambient RNA correction, FastCAR is more thorough in 
its correction than the other tested methods for genes it 
identifies as likely to affect sc-DGE.
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(accession no. GSE150728).
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