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Abstract 

Background The ongoing evolution of the Next Generation Sequencing (NGS) technologies has led to the pro-
duction of genomic data on a massive scale. While tools for genomic data integration and analysis are becoming 
increasingly available, the conceptual and analytical complexities still represent a great challenge in many biological 
contexts.

Results To address this issue, we describe a six-steps tutorial for the best practices in genomic data integration, con-
sisting of (1) designing a data matrix; (2) formulating a specific biological question toward data description, selection 
and prediction; (3) selecting a tool adapted to the targeted questions; (4) preprocessing of the data; (5) conducting 
preliminary analysis, and finally (6) executing genomic data integration.

Conclusion The tutorial has been tested and demonstrated on publicly available genomic data generated from pop-
lar (Populus L.), a woody plant model. We also developed a new graphical output for the unsupervised multi-block 
analysis, cimDiablo_v2, available at https:// forge mia. inra. fr/ umr- gdec/ omics- integ ration- on- poplar, and allowing 
the selection of master drivers in genomic data variation and interplay.

Keywords Omics, Integration, System, Biology

Background
In recent years, the steady development of Next Gen-
eration Sequencing (NGS) and other high-through-
put technologies has led to the massive production of 
genomic-derived data such as genome (DNA-seq), tran-
scriptome (mRNA-seq), methylome (BS-seq), Trans-
posase-Accessible Chromatin (ATAC-seq), etc. Such data 
allow to investigate, with an unprecedented precision 
and scale, the structure and evolution of genomes and 
their functioning in relation to phenotypes. While differ-
ent types of genome-derived data (DNA variation, gene 

transcription, DNA-methylation, etc.) provide informa-
tion on specific aspects of a biological system, they are 
ultimately interconnected and their combination likely 
contains information that cannot be accessed from indi-
vidual data analysis. The  added-value of genomic data 
integration (i.e. the combination of the data prior to the 
analysis, instead of analyzing each dataset separately and 
then combining the results) is illustrated in the literature 
in reducing the complexity of multiple datasets into a sin-
gle dataset, considering that a combination of datasets 
can contain information missing in the individual data-
sets [1–4]. Multi-omics data integration is increasingly 
being used in human [5], animals [6], and microbes [7]. 
Data integration is also being extensively used in plant 
genomic research, emerging as a promising tool in green 
systems biology, precision plant breeding, and other bio-
technological applications [8].

Genome-derived data, and omics data in general, are 
heterogeneous (quantitative, such as percentages or 
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counts, and qualitative, such as groups or classes) and 
produced in very large volumes, making data integra-
tion challenging. Analytical tools currently available for 
genomic data integration can be categorized on several 
levels. First, they differ in the statistical and mathematical 
framework, based on, e.g., dimension reduction, proba-
bilistic models, or networks [9–12]. The integration 
procedures can be implemented at early, intermediate 
or late stages of data analysis; they can also be element 
or pathway-based, supervised or unsupervised, etc. [13, 
14, 8]. Only a few are adaptable to large sets of biologi-
cal features (species, individuals, tissues, genes, etc.) and 
genome-derived data such as genome, transcriptome, 
and methylome [15, 16]. Finally, the available tools can be 
categorized on the basis of the study objectives, e.g. refer-
enced hereafter as description, selection and prediction 
[17–20]. In addition to the various approaches of data 
integration, it should also be recognized that data pre-
processing and preliminary tests are essential for a suc-
cessful implementation of data integration.

In combination with ever-increasing amounts of NGS-
based genomic data available through public databases, 
data integration methods and approaches have the poten-
tial to transform our understanding of genome organi-
zation and gene regulation. To facilitate this progress, 
we propose a tutorial of best practices for genomic data 
integration, explained step-by-step and demonstrated on 
publicly available plant genome-derived data (from pop-
lar [21]). The tutorial (Fig. 1) is structured in 6 consecu-
tive steps that clarify the logical order of the procedures 
and allow to reach relevant conclusions, as illustrated 
using real datasets and exemplary research questions. It 
consists of (i) designing the adequate data matrix; (ii) for-
mulating the targeted biological question; (iii) providing 
list of tools and methods for genomic data integration; 
(iv) data preprocessing, with considerations regarding 
missing values, outliers, normalization and batch effects; 
(v) conducting preliminary analysis where descriptive sta-
tistics and single omics analysis are necessary to properly 
understand the data structure and prevent misinterpreta-
tion; and finally (vi) performing genomic data integration 
with mixOmics on an illustrative case example.

Results
Genomic data matrix (Step #1)
When assessing genome-derived data from various 
experiments on a single individual, a group of individu-
als of a given species, or even on individuals from dif-
ferent species, one may want to gain better insight into 
the genomic variations and interplay of genes in the 
experimental design (for example, times series on a tissue 
exposed to a stress) used for data collection. Classically, 
omics data matrices consist of ‘individuals’ or ‘samples’ 

(biological units) arranged in lines for which available 
omic data (‘variables’) are listed in columns. However, 
genome-derived data, can be formatted as a matrix of 
genes considered here as the ’biological units’, with genes 
arranged in lines and gene-related variables (e.g., diver-
sity, expression, methylation, etc.) in columns (Fig.  1A). 
Such matrix can contain data for a single individual, mul-
tiple individuals of the same species (in additional col-
umns), or even individuals from different species when 
comparing conserved genes. For the purpose of genomic 
data integration described here, we will consider genes 
as ’biological units’ in lines and genome-derived data 
(expression, methylation, etc.) as ’variables’ in columns. 
From such matrix, we propose a tutorial of the best prac-
tices dedicated to such genomic data integration follow-
ing relevant steps of (i) the design of the data matrix, 
(ii) the identification of the biological questions, (iii) the 
choice of tools and methods for data integration, (iv) 
the data preprocessing, (v) the preliminary analysis with 
descriptive statistics and finally (vi) the genomics data 
integration.

In order to illustrate the use of such matrix in data 
integration procedures, we exploited public omics data 
obtained from poplar (described in [22] and [21]). The 
data represent transcription and cytosine methylation 
levels (considering the three CG, CHG and CHH con-
texts) for all annotated genes (considering promoter and 
gene-body) from ten natural poplar (Populus nigra) pop-
ulations originating from Europe [21]. Overall, the inves-
tigated matrix consists of 70 columns (one transcriptome 
and six methylome columns referred to as ‘variables’ for 
each of the ten populations) and 42 950 lines (for anno-
tated genes referred to as ’biological units’) (Fig. 2A). This 
matrix will be used in the next steps of this tutorial.

Targeted scientific questions (Step #2)
Based on published literature, genomic data are typically 
integrated to answer biological questions in three general 
categories: (1) description of the major interplay between 
variables (i.e. genomics data) or samples (i.e. genes), for 
example how DNA methylation affects  gene expression 
at the whole genome level?; (2) selection of ’biological 
units’ (i.e. genes) considered as biomarkers for a specific 
genomic/phenotypic response; for example groups of 
genes with contrasting methylation and expression pat-
terns, or (3) variables prediction from genomic data, for 
example, which combination of omic variables known 
in one individual or species can predict the genomic 
behaviors of such genes in other individual or species? 
considering that if we have a proven association of vari-
ables in a group of individuals, then one variable can be 
inferred from the other in additional individuals. Overall, 
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Fig. 1 Tutorial for genomic data integration. The tutorial of best practices presents the different steps to conduct multi-omics integrations: A, 
step 1 - Constructing the genomic data matrix. B, step 2 - Defining a clear and precise question of interest where biological questions concern 
describing omics interactions and interplay, selecting biomarkers specific to a trait, or predicting phenotypes from omics; C, step 3 - Selecting 
the tool, by considering tools’ specificities such as their coding language, the accessibility or not to their source code, the quality of their 
documentation and frequency of their updates, their methods’ main concepts and data requirements (see Table 1); D, step 4 - Preprocessing 
data, especially to remove or impute missing values, identify then remove outliers or reduce their impact, normalize data, correct batch effects; E, 
step 5 - Pre-analyzing data, by first importing data in the expected format with the right dimensions and types, then analyzing them by variable 
(univariate analysis) and dataset (multivariate analysis) to reveal major insights. F, step 6 - Genomic data integration for data description, selection 
and prediction.



Page 4 of 15Mardoc et al. BMC Genomics           (2024) 25:66 

specifying the targeted biological question impacts the 
next steps of the genomic data integration (Fig. 1B).

In the use case on poplar, we demonstrate the use of 
the data integration tutorial by addressing all the ques-
tions above within the description-selection-prediction 
continuum. At the whole genome level, the objective is 
to unravel the general interplay between methylome and 
transcriptome data, i.e. whether DNA methylation has an 
impact on gene expression. At the gene level, the objec-
tive is to identify groups of genes showing contrasted 
profiles for both transcriptome and methylome data and 
then investigate their biological functions.

Tool and method selection (Step #3)
Many tools for omics data integration have already been 
developed and described in published literature, and new 
methods keep emerging regularly. Table  1 reports 13 of 
the most cited tools available in R, a free software envi-
ronment for statistical computing and graphics, provid-
ing lots of packages, especially in statistics and machine 
learning (Supplementary Table 1). Table 1 can help users 
to choose the most suitable tool for their particular data 
matrix and targeted scientific question. The selection 
process depends on the tools’ characteristics, capabilities, 
methods involved, and acceptable types of data (Fig. 1C). 
Among these tools, mixOmics can address all the scien-
tific questions in genomic data integration referenced to 

as data description, selection and prediction from both 
quantitative and qualitative data.

In the use case on poplar, we chose mixOmics, an open-
source tool developed in the R programming language 
for omic data integration purposes. mixOmics contains 
several functionalities based on dimension reduction 
methods to explore one dataset or integrate two or more 
datasets, depending on the biological questions and data 
types available. The dimension reduction methods aim to 
extract the main sources of variation from datasets that 
are usually very large (i.e., have potentially thousands of 
rows and/or columns). This tool is associated with an 
active forum (https:// mixom ics- users. disco urse. group) 
and a documented website (http:// mixom ics. org/) that 
are available to help throughout the whole analysis, from 
the choice of the integrative and graphical functions to 
the interpretation of outputs. Moreover, mixOmics con-
tains many functions to also analyze the data, which are 
generally derived from Principal Component Analysis 
(PCA) and Projection to Latent Structures (PLS) regres-
sion methods. These methods aim to factorize initial 
datasets/matrices (into: Components x Loadings + Resid-
uals) to reduce datasets’ dimensions while retaining the 
components with the main information from the initial 
omic variables. mixOmics also allows to display results 
with many graphical functions. “Sample plots” display 
observations (i.e. referred to as individuals or samples in 

(See figure on next page.)
Fig. 2 Case study of genomic (expression and methylation) data integration from 10 poplar populations. A Genomic data matrix with 42 950 
poplar genes in lines and 70 associated variables in columns (expression and methylation for 10 populations, color code in the legend at the left). 
Omics variables are gene expression and DNA methylation data produced for 10 populations of poplars, as presented at the bottom left legend 
of the figure. Methylation data were produced for 3 contexts of methylation (CG, CHG and CHH) on two gene features (gene-body or promoter). 
B Correlation matrix of the 60 methylomics and 10 transcriptomics log-transformed variables. This figure represents Spearman’s correlation 
between each pair of omics variables. A high positive correlation between variables is represented by a deep blue point, a high negative correlation 
by a deep red point. No point means no correlation between variables. On the diagonal, correlations are by definition maximum and equals to one 
(i.e. correlated to themselves). The matrix’ variables are arranged (see color code in the legend at the right) using a hierarchical clustering with AOE 
(angular order of the eigenvectors) order. C Loading plot of omics log-transformed, centered and scaled variables on the two first components 
of the PCA. Omics variable are plotted on PCA’s two first principal components. For each component, the percentage of initial variance explained 
by this component is indicated (see color code in the legend at the left). D cimDiablo_v2’s result on ’non-denoised’ data. Left panel: Heatmap 
of omics integration. Each row corresponds to one gene and each column to one omics variable. Data were centered and scaled, then a cutoff 
was applied in [-2,2]. According to the heatmap’s color code, blue corresponds to very low and red to very high methylated/expressed genes. Rows 
and columns’ dendrograms are computed by hierarchical clusterings with the Euclidean distance and Ward method to cluster together genes 
and omics variables sharing similar insights. Right panel: Boxplots of k cluster groups. Using the rows dendrogram, genes were divided into four 
groups. For each group, the average value by population for each omics variable (methylation and gene expression) is represented. E cimDiablo_
v2’s result on ’denoised’ data. Data were first centered and scaled, then ’denoised’, centered and scaled a second time, before a final cutoff in [-2, 2]. F 
Comparison between ’non-denoised’ and ’denoised’ data for gene expression. Top panel: Boxplot of gene expression before and after the ’denoising’ 
step. Red for ’non-denoised’ data and blue for ’denoised’ data. Bottom panel: MA-plot (Bland–Altman plot, where M represents the log ratio 
and A the mean average) of gene expression between ’denoised’ and ’non-denoised’ data for one of the poplar population (Adour). The x axis 
represents the average expression level while the y axis the log2 fold changes. Red for significant differences above |1| and black for no obvious 
differences. G Extraction of genes with extreme values (candidates) for all omics variables before and after the ’denoising’ step. Left panel: Venn 
diagram of extracted genes before and after ’denoising’. Right panel: Heatmaps of genes with extreme values for ’non-denoised’ and ’denoised’ 
data. Gene lists are plotted using hierarchical clustering with Euclidean distance and Ward method. H Illustration of the Gene ontology enrichment 
analysis for genes with extreme values showing low expression and high methylation levels (143) after the ’denoising’ step. Gene ontology 
enrichment has been performed using PlantGenIe (https:// plant genie. org) with Populus trichocarpa v3.1 as background.

https://mixomics-users.discourse.group
http://mixomics.org/
https://plantgenie.org
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the current study), while “variable plots” display omics 
variables (i.e. genomic data in the current study).

Data preprocessing (Step #4)
Genomic data matrix must be preprocessed to take into 
account, when necessary, missing values, outliers, nor-
malization and batch effects (Fig.  1D). Missing values 
can be handled by deletion (deleting each row or each 
column containing missing values or defining a threshold 
proportion of missing data over which columns-rows are 

deleted) or replacement (by 0, by the minimum of the val-
ues, by the average of other values, the median or a quan-
tile and ultimately, by imputation), as summarized in [23]. 
Outliers, defined as an unusual value compared to the 
rest of the dataset (either due to error, or due to unique 
behavior of an investigated individual for a specific vari-
able), can be (1) deleted from the dataset if considered as 
errors, (2) separated but not excluded if they represent an 
interesting behavior of the biological system (one analy-
sis can focus on the outlier values, and another one on 

Fig. 2 (See legend on previous page.)
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the rest of the data), or (3) transformed (normalized) in 
order to keep the outliers in the data matrix but reduce 
their effect in the analysis. If the user decides to reduce 
the outliers’ effects, one solution is to use the logarithmic 
normalization of the variable. This transformation has 
a minor impact on low values but strongly reduces high 
values, while retaining the rank (relative order) of data 
points. However, log-transformation is not applicable to 
zero values, in which case errors are returned. To over-
come this problem, a constant (and relatively small) value 
is usually added to all zeros, e.g. (+1) as we did in the case 
study. The appropriate increment applied to zeros prior 
to the log-transformation needs to be carefully consid-
ered with the biological meaning/interpretation of such 
transformation. In the case study, we choose +1 for log2 
transformation of the transcriptomic data, because we 
consider that genes with TPM (Transcripts Per Million) 
≤ 1 are not expressed and replacing zeros with +1 would 
therefore not affect the results. However, data transfor-
mations also change the scale of the variables, making it 
more difficult to interpret the new values. Generally, data 
normalization methods consist of transforming raw data, 
e.g. in order to obtain values that follow a Gaussian distri-
bution to be used with parametric tests, or to center and/
or scale heterogenous variables facilitating their com-
parison [24]. Data normality (i.e. a match with the Gauss-
ian distribution also called normal distribution) can be 
tested for instance with Shapiro tests or QQ-plots [25]. 
Normalizations, as all other data transformations, should 
always be considered with regards to the effect on the 
interpretability of the results (e.g. does a normalization 
procedure that changes positive values to negative ones 
affect the subsequent computational steps or result inter-
pretation?). Finally, batch effects are effects caused by a 
non-biological factor during any step of data production 
(including the preparation of biological material), unde-
sirably biasing sub-groups of data [26]. They are gener-
ally identified during preliminary data analysis and can 
be corrected by functions such as ComBat (from R pack-
age sva, https:// rdrr. io/ bioc/ sva/ man/ ComBat. html) and 
removeBatchEffect (from R package limma, https:// rdrr. 
io/ bioc/ limma/ man/ remov eBatc hEffe ct. html).

In the illustrative case study, the data needed preproc-
essing due to the presence of missing values (i), and outli-
ers (ii). In order to reduce the missingness (i), only genes 
with at least one expression and one methylation value 
were considered. Hence, from the 42 950 genes annotated 
in the poplar genome (v3.1), we kept 31 040 genes (72%). 
Secondly, we fixed the missing value cut-off to 10%, 
allowing only 10% of missing values for the whole data-
set, further trimming the gene set to 28 267 (67% of the 
annotated genes). In addition, we created another dataset 
where no missing value was allowed for the investigated 

variables (genomics data), consisting of 24  962 genes 
(58% of the annotated genes). The outlier issue (ii) was 
addressed with a logarithm function, which reduced 
the impact of extreme values (Supplementary Fig.  1). 
In the case of the methylation variable (Supplementary 
Fig. 1A), promoter methylation remained to be strongly 
impacted by a few genes with extreme values, even after 
the log-transformation. Methylation on gene-bodies is 
more variable, with few values approaching zero (i.e. no 
methylation). Gene-body methylation is higher in the 
CG-context compared to the other sequence contexts, 
with a large group of highly methylated genes. Regarding 
transcription (Supplementary Fig. 1B), genes are divided 
in two groups, non-expressed vs. highly expressed genes.

Preliminary data analysis (Step #5)
This step consists of clarifying variable types, data 
dimension, and associations between rows (’biological 
units’, i.e. genes) or columns (‘variables’, i.e. genomic data) 
of each dataset (Fig. 1E). On a single dataset level, useful 
methods for such preliminary analysis are (1) the Princi-
pal Component Analysis (PCA) allowing to extract the 
major information signal contained in the dataset, (2) the 
correlation matrix to highlight strongly associated pairs 
of variables, and (3) clustering methods such as the hier-
archical clustering or the K-means algorithms to identify 
the most similar pairs of individuals or variables.

In our case example, the preliminary data step con-
sisted of displaying the matrix of correlations (Fig.  2B) 
between each pair of variables (columns). Most variables 
were strongly correlated among the ten individuals (rep-
resenting different populations) of poplar, indicating little 
variation between populations, especially for transcrip-
tion and gene-body methylation in the CG context. Much 
weaker correlation was observed between individuals 
for promoter methylation; nonetheless, a cluster analysis 
consistently grouped all individuals in blocks of differ-
ent variables. Weak correlations were observed between 
some omics blocks (i.e. between expression and gene-
body methylation, or between promoter methylation 
and gene-body methylation). Another way to rank the 
genomic effects was highlighted with the PCA (Fig. 2C). 
Typically, a ’score plot’ is used to display samples (‘bio-
logical units’, here genes) on the first couple of principal 
components, in order to identify clusters of samples and 
possible outliers (standard PCA plots). Here, we used a 
’loading plot’ to map variables on these components, in 
order to identify how omics variables are clustered. On 
the first principal component, data are divided in two 
groups, methylation vs. expression. On the second com-
ponent, data are divided in two other groups, promoter 
methylation vs. gene-body methylation and expression. 
Overall, such preliminary data analysis revealed that the 

https://rdrr.io/bioc/sva/man/ComBat.html
https://rdrr.io/bioc/limma/man/removeBatchEffect.html
https://rdrr.io/bioc/limma/man/removeBatchEffect.html
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contribution of the omic variables to the variation in the 
dataset follows this order, from the highest to the lowest 
effects, (1) the type of omics (expression vs. methylation), 
(2) the methylated compartment of genes (promoters vs. 
gene-bodies) and (3) the methylation contexts (CG vs. 
CHG and CHH), and finally (4) the different populations 
(individuals). Moreover, it revealed that gene-body meth-
ylation is more variable than promoter methylation, espe-
cially in the CG context. No general association between 
gene methylation and expression has been observed with 
this analysis at the whole genome level.

Genomic data integration (Step #6)
In addition to pairwise genomic data comparison [22], 
multiscale genomic data integration aims at charac-
terizing hidden and potentially complex interactions 
between different omics data in order to provide a bet-
ter comprehensive understanding of cellular and bio-
logical processes (Fig.  1F). The PLS regression function 
in mixOmics, allowing to compute a linear combination 
of omics variables to extract a smaller number of ‘com-
ponents’ retaining data variability, is generally recom-
mended for two omics datasets analyzed (see description 
in Step #3). Since our methylation data is more complex 
and was described into six variables (two gene partitions 
- promoters and gene-bodies - and three sequence con-
texts - CG, CHG, CHH), we opted for ‘block.pls’, a gen-
eralization of the PLS for more than two datasets (called 
‘blocks’). This choice was directly made based on the 
insights gained from the previous preliminary analysis, 
particularly the different strength of association between 
gene expression and the various methylation subtypes. 
We used the block.pls function in its ‘regression’ mode, 
with methylation as explicative data and expression as 
explicated data, to focus on the impact of DNA meth-
ylation on gene expression. First, a ‘design matrix’ needs 
to be set up, considering the data being integrated. The 
‘design matrix’ contains weights between all pairs of 
blocks with values multiplying each covariance between 
two blocks: a higher value for interactions between pairs 
of blocks (i.e. values multiplying covariance between two 
blocks), where a high value is assigned for interactions 
of high interest, and a low value is assigned for interac-
tions of low interest [27]. In the use case on polar, the 
chosen weights are 0 for each block with itself, 1 for each 
methylome block with the transcriptomics block and 0.1 
for each pair of methylome blocks. These weighting val-
ues were specifically chosen to focus on the interactions 
between methylome and transcriptome data, but also to 
take into account the interactions between the different 
methylome blocks/contexts or gene compartments. Such 
interactions are well-represented on a clustered heatmap, 
similar to the output of the graphical function cimDiablo 

from mixOmics (for multi-blocks PLS regressions). How-
ever, this function is currently applicable only for the dis-
criminant methods block.plsda and block.splsda, and not 
for the non-discriminant methods block.pls and block.
spls.

To overcome this limitation, here we developed in 
the current study cimDiablo_v2, a new function based 
on cimDiablo from mixOmics for non-discriminant 
block.pls and block.spls objects, which could take into 
account a ‘denoising’  step, and is publicly available at 
https:// forge mia. inra. fr/ umr- gdec/ omics- integ ration- 
on- poplar. The ‘denoising’ step uses the components 
and loadings’ matrices from block.(s)pls. The compo-
nents are computed to keep the essential information 
from the initial data, mainly the variability conserved 
across omics variables. Therefore, the variability that is 
specific to one row (e.g. sample, individual, gene etc.) 
or one column (omics variable), referred to as ‘noise’, 
is extracted from the matrix of components and placed 
into a matrix of residuals, cimDiablo_v2. The ‘denois-
ing’ step displays the data without the residuals (i.e. 
noise), corresponding to the matrix product of the com-
ponents and loadings matrices, referred to as ‘denoised’ 
matrix. Most of cimDiablo_v2 parameters are the same 
as for cimDiablo, with only a few specific to cimDiablo_
v2. These correspond to the binary parameters to apply 
for data transformations: ‘denoise’ (to ‘denoise’ data as 
described above), ‘scale2’ (to center and scale data after 
the ‘denoising’ step) and ‘cutoff ’ (to set all values higher 
than 2 to 2 and all values lower than -2 to -2).

We ran cimDiablo_v2 on the poplar data with and 
without the ‘denoising’ step (Fig. 2D, Fig. 2E, Supplemen-
tary Fig. 2). The graphical function of cimDiablo_v2 (like 
cimDiablo) allows to display a heatmap where hierarchi-
cal clustering reveals the interactions between rows (i.e. 
genes) and between columns (i.e. variables) and the heat-
map of rows-columns interactions. Without the ‘denois-
ing’ step, the overall picture resulted in clustering of 
samples by omics variables (promoter methylation, gene-
body methylation and gene expression), Fig.  2D. Gene-
bodies appeared to be clearly more methylated than 
promoter regions especially in the CG context, confirm-
ing our previous results in the preliminary analysis (step 
#5). More marked methylation differences between pop-
ulations were observed for non-CG contexts, especially 
for the CHH context which drives more methylation dif-
ferences between populations. We then split the dendro-
gram into 4 groups (or clusters) of genes (rows) defining 
different typologies of genes in their methylation-expres-
sion regulation (Fig.  2D), delivering the following gene 
categories, (1) high expression level and low methylation 
levels for promoters and gene-body in the three methyla-
tion contexts (2) low expression level, low CG gene-body 

https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar
https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar
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methylation and moderate non-CG gene-body and pro-
moter methylation levels (3) high methylation levels and 
moderate to low expression levels, and finally (4) high 
expression and CG gene-body methylation with moder-
ate methylation in other features and contexts.

In order to focus on the general trends or ‘master’ 
genomics regulators-drivers (i.e. genes that are regulated 
though expression-methylation, or omics in general, 
interplay) in all populations, we used the ‘denoising’ step 
aiming at removing the variability that is specific to one 
row, variable or population (Fig. 2E). After the ‘denoising’ 
process, there is less variation between genomic variables 
per gene. At the whole genome level, this ‘smoothed’ 
effect of the ‘denoising’ step on the clustering heat map 
(Fig.  2E) can help identifying general trends or master 
regulators-drivers, i.e. genes with expression-methylation 
interplay shared between any investigated individuals, 
development stage, etc. At the gene level, it also allows to 
identify only genes with extreme omic profiles. To assess 
the impact of the ‘denoising’ step, we compare the ‘non-
denoised’ and ‘denoised’ data (Supplementary Fig.  3). 
Interestingly, the two ‘denoised’ and ‘non-denoised’ data-
sets look quite similar, especially for expression data 
suggesting that only a few values have been changed. To 
precisely quantify those changes, we display MA plots 
to assess differences between the ‘denoised’ and ‘non-
denoised’ data. Only a few genes show expression dif-
ferences after the denoising step (Fig.  2F). However, for 
methylation data, more differences are observed after 
the ‘denoising’ step as more marked variability was ini-
tially reported between the populations, especially for 
promoter and non-CG gene-body methylation (Supple-
mentary Fig.  4). Overall, we recommend the use of the 
‘denoising’ step to assess both genome-wide and gene 
level interplays between genomics data in order to iden-
tify general trends as well as master regulators-drivers, or 
in a broader sense, to remove the variance between bio-
logical replicates in experimental setups.

In order to identify genes where the omic pattern is 
indicative of an association between DNA methyla-
tion and gene expression, we used the ‘denoised’ matrix 
containing no missing value (24  962 genes). Interest-
ingly, only few genes (143) showed a contrasting pattern 
between expression and all methylation variables simul-
taneously, i.e. highly methylated and lowly expressed 
genes in all studied populations (Fig.  2G). Comparison 
between ‘non-denoised’ and ‘denoised’ datasets revealed 
that all highly methylated and lowly expressed genes 
identified before ‘denoising’ (90 genes) are found after the 
‘denoising’ procedure, suggesting that ‘denoising’ does 
not lead to signal loss. However, 53 additional genes were 
specifically identified only in the ‘denoised’ data, sug-
gesting that the procedure improves sensitivity of signal 

detection. This outcome aligns with expectations for a 
procedure that removes signals appearing only once (in a 
single omic variable or population). Gene Ontology (GO) 
analysis on the identified set of highly methylated and 
lowly expressed genes revealed enrichment in functions 
related to involvement in carbohydrate, cell cycle, phos-
phorus and metabolic processes (Fig. 2H). Among these 
genes, we identified Di19 (Drought induced 19) that 
enhance drought tolerance in transgenic poplar plants 
[28]. First identified in Arabidopsis, Di19 has been char-
acterized as a new type of transcription factor, directly 
up-regulating the expression of  PR1, PR2 and  PR5  in 
response to drought stress [29]. The results of our inte-
grated omic analysis may suggest that the expression 
of Di19 in poplar trees could be associated with DNA 
methylation, suggesting a possible epigenetic regulation 
of this gene that can be explored in future studies to be 
potentially exploited in breeding schemes especially in 
response to drought stress.

Discussion
The constant development in sequencing methods and 
strategies, as well as reduction in cost, allows access in 
the public domain to genomic data from many plant spe-
cies. How to make proper use of these data to unravel 
plant genome organization and regulation in different 
environmental contexts remains a key question for both 
fundamental and applied research, especially in char-
acterizing genomic makers of crop adaptation to con-
straints to be exploited in breeding schemes. A tutorial of 
best practices when conducting genomic data integration 
has been proposed from a specific data matrix consist-
ing on genes (rows) and genomic variables (columns) in 
order to unravel the genomic interplay of genes of sev-
eral individuals of given species or individual from dis-
tinct species. The proposed tutorial applied here on the 
integration of genomic data can also be applied on any 
omics data taking into account non genome-derived data 
(i.e. proteome, metabolome, phenotype…) with individu-
als (i.e. accession) instead of genes, in lines. The tutorial 
has been illustrated on a case example from methylation 
and expression data obtained from 10 poplar popula-
tions from Europe to reveal genomic interplay (between 
expression and methylation) at the whole genome and 
gene levels. The proposed tutorial is divided in 6 steps: 
data matrix design, biological question, tools selec-
tion, data preprocessing, preliminary analysis and finally 
genomic data integration.

Regarding the targeted biological question, genomic 
data integration is generally conducted for the (1) 
description of the major interplay between variables, (2) 
selection of genes considered as biomarkers, (3) predic-
tion of some variables from genomic data. Regarding the 
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first type of questions, one may be interested in global 
interplay between the omics data, for example correla-
tions between genomic variables. When addressing the 
second type of questions, specific groups of genes show-
ing similar or contrasted behaviors on one or several 
variables are selected. For example, users can look for 
genes from which genomic variation control a specific 
phenotype (resistance to a disease or temperature stress). 
Finally, regarding the third type of questions, pheno-
type prediction from omics data consists in transferring 
knowledge of omics-phenotypes interactions across indi-
viduals (plant varieties, animal species, etc.). Hence, it 
has been used in medicine to predict diseases evolution 
from cohorts [30], or in agronomy to predict yield (grain) 
production in cereals [31].

Regarding the tools available to conduct omics data 
integration, scientific articles already offered reviews or 
benchmarks of omics data integrative tools and methods 
to help choosing the best integrative approach. Here, we 
report from eight review articles [11, 13, 18–20, 32–34], 
13 most cited tools in R programming (Table 1), although 
popular tools such as t-SNE [35] or UMAP [36], usable 
for non-linear dimension reduction, were not cited by 
these articles. The 13 tools rely on distinct methods 
to consider with caution depending on the biological 
question addressed, (1) descriptive and inferential sta-
tistics, (2) dimension reduction, (3) network and/or (4) 
similarity-based approaches. The descriptive statistical 
approaches [37] use mathematical means such as the 
mean, median, variance, standard deviation and graph-
ics such as boxplots to describe the data. Statistic tests 
are part of the inferential statistics [38] aiming to validate 
or not a hypothesis on data’s probabilistic distribution. 
Bayesian approaches [39] also belong to the inferential 
statistics and assume, before data analysis, that these 
data follow a chosen probabilistic distribution called the 
prior, then compute the posterior distribution by fitting 
the prior to the data. Regarding dimension reduction 
methods [12, 40], they aim to extract the largest part of 
the information contained in the data and store it in new 
data with lower number of dimensions. Once the omics 
integration tools (13 proposed) and associated methods 
(6 described) have been selected based on the methodo-
logical principles previously described, data need to be 
treated prior integration.

Regarding the data preprocessing prior to integra-
tion, four major steps have been identified, concerning 
missing values, outliers, normalization-transformation 
and the batch effects. To help to conduct data preproc-
essing, some algorithms have been developed for test-
ing and comparing different methods, for instance 
with the R packages missMethods (https:// rdrr. io/ cran/ 
missM ethods/), outliers (https:// rdrr. io/ cran/ outli ers/), 

bestNormalize (https:// rdrr. io/ cran/ bestN ormal ize/) and 
bapred (https:// rdrr. io/ cran/ bapred/), overall allowing to 
manage the four preprocessing steps.

The preliminary analysis consists of conducting a 
descriptive investigation of the data in order to avoid mis-
interpretation of the results based on basic graphics to 
clarify variables’ types, data dimension, basic associations 
between rows (samples) or columns (variables) of each 
dataset, etc. Knowing variables’ ranges and distributions 
is very useful for data preprocessing. Indeed, users must 
decide whether values should be centered and/or scaled 
according to data ranges and distributions. Common 
methods are to look for minimum, median, mean and 
maximum values, or to derive graphs such as boxplots or 
histograms, when possible. Outliers are in general explic-
itly detected and visible by boxplots representation or in 
histograms when there is enough data. Before data inte-
gration, preliminary analysis of each dataset separately 
is strongly recommended in order to avoid mis- or over-
interpretation of the results.

Other workflows from the scientific literature are 
usually divided in three steps: omics data, data pre-
processing, simple and integrative analysis [17, 34, 41]. 
Compromises have been done in this study to offer a 
tutorial of best practices with enough information to 
integrate genomic datasets. Omics integrative methods 
for more specific purposes are presented in reviews and 
benchmark articles [10, 12, 16, 17, 42–47]. Moreover, 
some steps of the data preprocessing (redundancy, het-
erogeneity, etc.) are not presented here, but available for 
example in [33]. Many benchmark articles [18, 19, 32, 34] 
also discuss concrete effects of omics integration tools on 
the same datasets. From our knowledge, only [27] pre-
sents a workflow starting from the biological question of 
interest, that we consider should be the starting point of 
any workflow for conducting omic data integration. This 
workflow also has the advantage to be cyclic, as multi-
omics integration naturally lead to new questions and 
then additional analysis. In complement to the previous 
articles, we provide here a step-by-step procedure allow-
ing to conduct genomic data integration that we made 
publicly available at https:// forge mia. inra. fr/ umr- gdec/ 
omics- integ ration- on- poplar.

Methylome and transcriptomics data from poplar have 
been integrated following the proposed tutorial to assess 
the impact of DNA methylation on gene expression, and 
to identify candidate genes with contrasted profiles across 
methylome and transcriptomics data. We developed a 
new function ‘cimDiablo_v2’ allowing the possibility to 
‘denoise’ data to maximize the identification of ‘real’ or 
‘strong’ omics interplay where managing noise in omics 
data is still a challenge [48, 49], especially to remove 
exclusively variability with no biological meaning. Our 

https://rdrr.io/cran/missMethods/
https://rdrr.io/cran/missMethods/
https://rdrr.io/cran/outliers/
https://rdrr.io/cran/bestNormalize/
https://rdrr.io/cran/bapred/
https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar
https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar
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proposed method does not focus on removing biological 
meaningless information, but more precisely on remov-
ing isolated variability, i.e. gene variability specific to 
one omics variable, while keeping gene variability shared 
across omic variables or individuals. The case exam-
ple has permitted to obtain several results with (1) the 
highest effect that structure the investigated omics data 
being the data type (transcriptomics vs. methylomics), 
then the gene feature (gene-bodies vs. promoters), the 
methylation context (CG vs. CHG vs. CHH methylation), 
and finally the population (10 populations from western 
Europe); (2) there is more variability on methylation on 
gene-bodies than promoters, especially the CG methyla-
tion; (3) there is no general trend between gene methyla-
tion and expression at the whole genome level; and (4) 
genes with contrasted expression-methylation profiles 
across omics variables are involved in carbohydrate, cell 
cycle, phosphorus and metabolic process and key func-
tions involved in response to stresses, an important trait 
for the adaptation of perennial species (poplar) to dif-
ferent geographical environments. Overall, the use case 
illustrates the power of genomic data integration to iden-
tify genes driving key traits through specific genomic 
(expression-methylation) interplay that can be precisely 
identified, prior their exploitation in crop management 
and breeding schemes.

Conclusion
We propose a step-by-step tutorial for genomic (i.e. 
DNA-based) data integration illustrated on a case exam-
ple on poplar plant consisting in  (1) designing a data 
matrix, (2) defining a specific biological question, (3) 
selecting the appropriate tools, (4) performing data pre-
processing, (5) conducting preliminary analysis, and (6) 
performing multi-omics integration. In addition, we 
developed cimDiablo_v2, a new function based on cim-
Diablo from mixOmics for non-discriminant block.pls 
and block.spls objects available at https:// forge mia. inra. 
fr/ umr- gdec/ omics- integ ration- on- poplar and exploit-
able on any type of omics data.

Materials and method
Genomic data analyzed
Genome - Genomic data analyzed here have been 
retrieved from [21] and [22] for DNA methylation and 
gene expression respectively. The samples used here are 
initially from [21] where authors analyzed a collection of 
241 genotypes of P. nigra populations using RNA-seq in 
order to assess gene expression. Recently, [22] retrieved 
a subset of 10 populations (i.e. 20 genotypes) from [21] 
on the same tree individuals and the same sampling time. 
This subset of 10 populations were analyzed using WGBS 
(methylome), together with the transcriptome data from 

[21] in order to assess the role of epigenetic regulation 
in driving tree species evolution and adaptation. Methy-
lome  - DNA methylation analysis was done in [22] on 
the same sample powders from [21]. Briefly, for DNA 
methylation, genomic DNA was extracted using a cetyl 
trimethyl-ammonium bromide (CTAB) protocol and 
whole-genome bisulfite sequencing was performed in 
accordance with the procedure described by [50]. Reads 
from sequencing were then mapped against the poplar 
v3.1 reference genome and methylation call realized with 
BSMAP  [51] using default options, delivering 3 datasets 
for the 3 methylation contexts. The Methylkit (v1.18.0) 
and genomation (v1.32.0) R packages were used for the 
annotation of DNA methylation data in genomic regions 
(promoters and gene body). Hence, the methylome data-
set consists in three methylation contexts on two genes’ 
regions, overall producing six methylation variables 
by population. Methylome dataset is expressed as the 
number of methylated cytosines x number of methyl-
ated cytosines / number of cytosines, called rbd (read by 
density), [22]. Transcriptome -  For transcriptomic (gene 
expression) dataset, from [21], RNA-seq was carried out 
with Illumina Hiseq2000 platform. Reads were mapped 
on the Populus trichocarpa v3.0 reference genome using 
bowtie2 (v2.4.1) [52]. Raw counts were then normal-
ized by Trimmed Mean of M-values (TMM) from edgeR 
(v3.26.4) [53] as described in [21].

Genomic data integration
Genomic data matrix - The design matrix consists of 
42 950 polar genes in lines and 70 associated variables 
in columns. Defining a specific biological question - At 
the whole genome level, the objective is to unravel the 
general interplay between methylome and transcrip-
tome data, i.e. if DNA methylation has an impact on 
gene expression. At the genes level, the objective is to 
identify groups of genes showing contrasted profiles 
for both transcriptome and methylome data and then 
investigate their biological functions. Selecting appro-
priate tool - We use mixOmics for genomic data inte-
gration associated with an active forum (https:// mixom 
ics- users. disco urse. group) and a documented website 
(http:// mixom ics. org/). Performing data preprocessing 
- To deal with missing values, only genes with at least 
one expression and one methylation values and less 
than 10% of missing values for the whole dataset were 
considered. To reduce outliers’ impact, data were log-
transformed with  log2(1+x), where x represents meth-
ylation / expression values and 1 the constant number 
added when dealing with zero values. Conducting pre-
liminary analysis -  A matrix of correlations was per-
formed on preprocessed data without missing values 
using Spearman correlation and AOE (Angular Order 

https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar
https://forgemia.inra.fr/umr-gdec/omics-integration-on-poplar
https://mixomics-users.discourse.group
https://mixomics-users.discourse.group
http://mixomics.org/
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of the Eigenvectors) criteria for variables clustering. 
PCA analysis was conducted on preprocessed data with 
missing values, firstly centered and scaled, to com-
pute 2 components.  Performing multi-omics integra-
tion -  mixOmics block.pls regression was conducted 
on 6 methylation on 1 expression blocks, with a design 
matrix composed of 1 between expression and methyla-
tion, 0.1 between methylation blocks and 0 within each 
block, and finally 2 components computed by block. 
Data were first centered and scaled in block.pls, then 
several cimDiablo_v2 results were obtained depend-
ing on if data are ‘denoised’, centered and scaled a sec-
ond time and/or cut in [-2, 2]. For cimDiablo_v2 plots, 
a hierarchical clustering was used with the Euclidean 
distance and Ward method.  Master regulators-drivers 
were selected both on ‘non-denoised’ and ‘denoised’ 
data, by selecting genes with all methylation values 
higher than 1 and all expression values lower than -1. 
For the comparison of ‘non-denoised’ and ‘denoised’ 
data, log2 fold changes cut-off above |1| were applied 
using MA-plot, and a Bland-Altman plot for visual rep-
resentation of genomic data.
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