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Abstract 

Background Lysine glutarylation (Kglu) is one of the most important Post‑translational modifications (PTMs), which 
plays significant roles in various cellular functions, including metabolism, mitochondrial processes, and transla‑
tion. Therefore, accurate identification of the Kglu site is important for elucidating protein molecular function. Due 
to the time‑consuming and expensive limitations of traditional biological experiments, computational‑based Kglu site 
prediction research is gaining more and more attention.

Results In this paper, we proposed GBDT_KgluSite, a novel Kglu site prediction model based on GBDT and appropri‑
ate feature combinations, which achieved satisfactory performance. Specifically, seven features including sequence‑
based features, physicochemical property‑based features, structural‑based features, and evolutionary‑derived features 
were used to characterize proteins. NearMiss‑3 and Elastic Net were applied to address data imbalance and feature 
redundancy issues, respectively. The experimental results show that GBDT_KgluSite has good robustness and gener‑
alization ability, with accuracy and AUC values of 93.73%, and 98.14% on five‑fold cross‑validation as well as 90.11%, 
and 96.75% on the independent test dataset, respectively.

Conclusion GBDT_KgluSite is an effective computational method for identifying Kglu sites in protein sequences. It 
has good stability and generalization ability and could be useful for the identification of new Kglu sites in the future. 
The relevant code and dataset are available at https:// github. com/ flyin sky6/ GBDT_ KgluS ite.
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Background
Protein post-translational modification (PTM) is cru-
cial in controlling the biological function of proteins and 
the molecular foundation for protein dynamic reactions 
and interactions, at the same time, it is also an impor-
tant target for the regulation of cellular signaling net-
works. Lysine glutarylation (Kglu) was first reported 
by Tan et al. in 2014 [1], which refers to the process of 
covalently binding glutaryl groups (such as glutaryl-CoA 
and other donors) to lysine residues of substrate proteins 
under the catalysis of enzymes. So far, lysine acetyltrans-
ferase p300 and KAT2A (lysine acetyltransferase 2A) 
have also been reported to perform glutaryl-transferase 
function, while SIRT5 and SIRT7 are responsible for cat-
alyzing the deglutarylation process. The Kglu modifica-
tion changes the positive charge in lysine to a negative 
charge, which affects protein conformation and pro-
tein–protein interactions. Kglu has important regulatory 
effects on nucleosome assembly, chromatin structure, 
gene expression, DNA damage repair, cell cycle, mito-
chondrial function, and metabolic processes [2–4]. The 
disorder of Kglu modification is closely associated with 
many metabolic diseases, such as type 1 glutaric aci-
duria, diabetes, cancer, and neurodegenerative diseases 
[1, 5]. Therefore, accurate identification of Kglu sites is 
crucial for mastering the biological principles of proteins 
and exploring the molecular mechanisms of related dis-
eases. Although traditional experimental methods have 
laid a good data foundation for the accumulation of Kglu 
data, their time-consuming and laborious shortcom-
ings still cannot meet the needs of scientific develop-
ment. Computational-based approaches for predicting 
PTM sites in proteins have drawn more attention as high 
throughput sequencing and machine learning(ML) have 
advanced [6].

Till now, over 10 computational-based approaches 
have been proposed to identify Kglu sites. For instance, 
amino acid factors(AAF), binary encoding (BE), and the 
composition of k-spaced amino acid pairs (CKSAAP) 
were both utilized to encode Kglu sites in Glut_Pred 
[7] and PUL-GLU [8], the difference between them is 
that they adopted different methods to solve the cat-
egory imbalance problem. Position-Specific Propensity 
Matrix (PSPM) and Support Vector Machine(SVM) 
were used to support iGlu-Lys [9]. MDD_Glutar [10] 
considered the intrinsic dependence between sub-
strate sites, grouped the data using maximal depend-
ence decomposition (MDD), and constructed based on 
amino acid composition (AAC) and SVM. BiPepGlut 
[11] used sequential bi-peptide-based Position Specific 
Scoring Matrix (PSSM) feature for feature extraction, 
and Extra_tree for classification. RFGlutarySite [12] 
utilized 14 feature encoding methods with eXtreme 

Gradient Boosting (XGBoost) for feature selection and 
finally adopted Random Forest (RF) to construct the 
classifier. In addition to using different feature encod-
ing techniques, iGlu_AdaBoost [13] and DEXGB_Glu 
[14] both take category imbalanced concerns into 
account. Some DL-based Kglu prediction models were 
proposed as deep learning (DL) advanced. For instance, 
iGluK-Deep [15] was proposed based on deep neural 
networks and Chou’s Pseudo Amino Acid Composi-
tion (PseAAC). ProtTrans-Glutar [16] incorporated 
the XGBoost and pre-trained features by Transformer. 
DeepDN_iGlu [17] was proposed by employing binary 
encoding as feature representation, using DenseNet 
as the classification model, and utilizing the focal loss 
function to address the imbalance issue. Deepro-Glu 
[18], as the latest Kglu prediction model, used the com-
bination of pre-trained features obtained by ProtBert 
as well as four other manual features and introduced 
the attention mechanism in the MLP model. Details of 
these studies are summarized in Table 1.

Although the above research on Kglu prediction 
have made active explorations in feature representa-
tion, feature selection, and model design, they still leave 
considerable room for improvement in terms of predic-
tion performance. In this paper, we proposed a novel 
predictor named GBDT_KgluSite, which combined 
information on protein sequence, structure, physi-
ochemistry, and evolution. Gradient Boosting Deci-
sion Tree (GBDT) was adopted for classification after 
NearMiss-3 and Elastic Net assisted in balancing the 
data and selecting the best features. The schematic dia-
gram is shown in Fig.  1. The entire procedure may be 
divided into six steps, where the balancing strategy and 
training strategy are only used for training data.

Results
Sequence analysis
To determine whether the flanking sequence of Kglu 
sites might exhibit different patterns, the frequency of 
each amino acid around lysine in the positive and nega-
tive datasets was analyzed using a two-sample logo 
with t-test (p ≤ 0.05) [19]. Lysine (K) is highly enriched 
at several locations, including 2, 7, 8, 10, 22–24, 26, and 
33 close to the Kglu sites, as shown in Fig.  2. Of fact, 
some amino acids are much more abundant than oth-
ers, such as leucine (L), aspartic acid (D), and glutamic 
acid (E). On the other hand, certain locations down-
stream of the central Kglu sites are deficient in phenyla-
lanine Phe (F), asparagine Asn (N), proline Pro (P), and 
methionine Met (M). This suggests that Kglu sites can 
be effectively distinguished using feature representa-
tion based on sequence information.
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Performance of GBDT_KgluSite model
To determine the optimal parameters of the model 
and avoid overfitting, grid search, and five-fold 

cross-validation were performed on the training data-
set. Considering that the dataset is small and the fea-
ture dimensions are high, we only perform grid search 

Table 1 The cutting‑edge ML‑based Kglu prediction methods

Tool features extraction/selection balanced/classification algorithm Performance parameters AUC (%) Acc 
(%)

GlutPred [7] AAF + BE + CKSAAP
mRMR + IFS

Bias SVM ten‑fold cross‑validation 78.06% 74.90%

iGlu_Lys [9] PSPM SVM ten‑fold cross‑validation 89.44% 88.38%

MDD_Glutar [10] ACC SVM five‑fold cross‑validation 63.74% 61.60%

BiPepGlut [11] bi‑peptide‑based PSSM Extra‑Trees ten‑fold cross‑validation — 74.58%

PUL‑GLU [8] AAF + BE + CKSAAP Positive‑unlabeled Learning/
SVM

ten‑fold cross‑validation 85.30% 81.50%

RFGlutarySite [12] PseAAC + CT + SE + RE + IG + CTD + AAC + DC + TC +  
Autocorrelation、BE + AAindex + AAF + CKSAAP/Xgboost

Random Forest ten‑fold cross‑validation 81.00% 72.30%

DEXGB_Glu [14] AAindex, + ASA + SS + PSSM、RC、AC Borderline‑SMOTE/Xgboost ten‑fold cross‑validation — 87.09%

iGlu_AdaBoost [13] 188D + CKSAAP + EAAC SMOTE‑Tomek /Adaboost ten‑fold cross‑validation 89.00% 79.98%

iGluK‑Deep [15] PseAAC FCN — — 94.30%

ProtTrans‑Glutar [16] CTDD + EAAC + ProT5‑XL‑UniRef50 RUS/XGBoost ten‑fold cross‑validation 70.75% 65.67%

DeepDN_iGlu [17] BE focal loss/DenseNet ten‑fold cross‑validation 77.25% 66.00%

Deepro‑Glu [18] BE + DDE + BLOSUM62 + AAindex + ProtBert Attention + MLP ten‑fold cross‑validation 98.80% 96.30%

Fig. 1 The GBDT_KgluSite schematic (The green arrows represent the independent test set’s processing flow, and the blue arrows represent 
the training set’s training flow. The ideal selection is denoted by the red pentagram.)

Fig. 2 The Two‑Sample Logo maps between positive and negative sequences
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for the three important parameters of GBDT, n_estima-
tors, max_depth, and learning rate, and take the default 
values for the other parameters. Specifically, the train-
ing dataset was divided into five parts during each grid 
search, four of which were trained and one was tested in 
turn, and the average of the five results was finally used 
as the basis for comparison. The best model performance 
was finally obtained when the max_depth of GBDT was 
set to 6, the n_estimators was set to 200, and the learn-
ing rate was set to 1. Table  2 shows the results of five-
fold cross-validation tests on the training dataset. As can 
be seen in Table  2 that the average values for Acc, Sen, 
Pre, F1, MCC, and AUC are 93.73%, 90.94%, 96.59%, 
93.68%, 87.63%, and 98.14%, respectively. Additionally, 
their standard deviations are 1.14%, 1.39%, 0.97%, 1.16%, 
2.25%, and 0.47%, which demonstrates the robustness of 
GBDT_KgluSite to some extent.

Independent test data was utilized to verify the gen-
eralization of the GBDT_KgluSite, the results are shown 
in Table 3. Table 3 demonstrates GBDT_KgluSite’s good 
generalization capabilities, with AUC values up to 96.75% 
and Sen values up to 95.06%.

The effectiveness of different feature representation
To verify the effectiveness of feature combination, we 
replaced the feature combination part of the GBDT_
KgluSite model with each single feature respectively, kept 
the rest of the model unchanged, and obtained the pre-
diction results of each single feature on the independent 
test data. Figure 3 displays the performance comparison 
among them.

As can be seen from Fig. 3, the AUC value represented 
by each feature is greater than 55%, indicating the effec-
tiveness of the selected feature in predicting the Kglu 
position. Among them, EAAC features perform best, 

with an AUC value of 68.48%, while structural features 
have the lowest AUC value, with only 55.93% (Table S1). 
Structural characteristics are obtained through computa-
tional models rather than experimental validation, which 
may be the reason for its poor performance.

The influence of feature selection techniques
In this paper, the feature combination we utilized is 
2895 dimension, which may result in overfitting as well 
as slowing down model training. Hence, it’s necessary 
to find a suitable feature selection method to solve this 
problem. In this paper, Elastic Net was used to select 
appropriate features, which combines the advantages of 
lasso and ridge regression by adding L1 and L2 penalty 
terms to the linear regression. The model performance 
following feature selection by Elastic Net with various 
alpha values is shown in Fig. 4 and Table S2. The model 
operates most effectively when the Alpha value is set 
to 0.000001, with the AUC value rising to 96.75%. The 
Elastic Net’s feature selection yields a total of 2656 fea-
tures, the makeup of which is depicted in Fig. 5. As can 
be observed from Fig. 5, EAAC, BE, and CKSAAP were 
accordingly the top three features.

Additionally, we also compared the Elastic Net with 
several other top-notch feature selection techniques, 
including Lasso regression, Ridge regression, Extra tree, 
Random Forest(RF), and Recursive Feature Elimination 
(RFE) [20], the results are displayed in Fig.  6 and Table 
S3. Figure  6 demonstrates that Elastic Net achieves the 
highest AUC value, even though it only outperforms the 
second-ranked RFE by 1.69%. This not only represents 
Elastic Net’s best performance in the aforementioned 
feature selection algorithm, but it also shows that the 
features employed in this paper can effectively convey 
different information.

Table 2 Performance of GBDT_KgluSite on training dataset with five‑fold cross‑validation

Testing Set Acc(%) Sen(%) Pre(%) F1(%) MCC AUC(%)

1 94.92 92.27 97.66 94.89 89.98 98.71

2 92.09 88.95 95.27 92.00 84.39 97.42

3 93.22 90.61 95.91 93.18 86.59 98.11

4 93.79 90.61 97.04 93.71 87.78 98.11

5 94.63 92.27 97.09 94.62 89.39 98.33

Mean ± SD 93.73 ± 1.14 90.94 ± 1.39 96.59 ± 0.97 93.68 ± 1.16 87.63 ± 2.25 98.14 ± 0.47

Table 3 Performance of GBDT_KgluSite on independent test dataset

Testing data Acc(%) Sen(%) Pre(%) F1(%) MCC AUC(%)

1 90.11 95.06 85.08 89.79 80.73 96.75
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The influence of down‑sampling techniques
Since the initial training dataset contains 530 posi-
tive samples and 3277 non-positive samples, which is 
imbalanced, there is a potential risk of directly train-
ing it to obtain the model, so it is necessary to construct 
a balanced training dataset with a suitable resampling 
technique. The resampling technique, which can be sub-
divided into over-sampling, down-sampling, and hybrid 
methods [21], is used to balance the proportion of positive 
and negative samples. Down-sampling is the frequently 
technique used in PTM field since positive samples in 
protein PTM data are experimentally proven and reliable 
datasets, however, negative samples may contain uniden-
tified modification sites. To compare the effectiveness of 

Fig. 3 The performance comparison of different signal feature representation and feature combination

Fig. 4 Performance of Elastic Net with different alpha values

Fig. 5 Proportional distribution of each feature after selection 
by Elastic Net
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different down-sampling methods, we kept the remaining 
modules of GBDT_KgluSite unchanged, and only changed 
the down-sampling technique module to obtain multi-
ple models and compare the results of each model in the 
independent test data. Finally, the NearMiss-3 was chosen 
due to its superior performance when compared to the 
other five down-sampling methods, including Random 
under Sample (RUS), ClusterCentroids, OneSideSelec-
tion, NearMiss-1 and NearMiss-2 on the independent test 
data (Table 4). They were all implemented in the Python 
3.7 imbalance-learn package (version 0.8.0).

As shown in Table 4, the performance of OnesideSelec-
tion is the lowest among these imbalance methods, prob-
ably because the data obtained by most of the methods 
can reach a balanced state, except for the ratio of data 
produced by the OnesideSelection method, which is still 
imbalanced (2863:530). While the NearMiss-3 method 
yields the highest overall model performance, outper-
forming the other methods in aomost most all metrics, 
with only slightly lower Pre values. Therefore, NearMiss-3 
was selected as the imbalance strategy in this paper.

Performance of different model classifiers
To demonstrate the effectiveness of the GBDT algo-
rithm proposed in GBDT_KgluSite, we kept the rest 
of the model unchanged and replaced the GBDT algo-
rithm with SVM [22], RF [23], KNN(K-Nearest Neigh-
bors), XGBoost [24], Adaboost(Adaptive Boosting) 
[25], CNN(Convolutional Neural Network) [26] and 
LSTM(Long Short Term Memory) [27], respectively. 
Figure 7 and Table S4 show the performance compari-
sons between the seven models and GBDT_KgluSite on 
the independent test data. As shown in Fig.  7, ensem-
ble approaches generally outperformed other models 
in terms of overall performance. While deep learn-
ing models represented by LSTMs and CNNs perform 
poorly, this may be due to the fact that no suitable 
network structure has been built. The Acc, Sen, Pre, 
F1, MCC, and AUC for the GBDT_KgluSite outscored 
the second-ranked model Adaboost by 10.73%, 15.39%, 
4.93%, 9.91%, 22.00, and 5.87%, respectively. As a 
whole, GBDT_ KgluSite shows better predictive perfor-
mance across these ML models.

Fig. 6 Comparison of AUC values with different feature selection algorithms

Table 4 Performance of various down‑sampling methods on independent test dataset

To facilitate understanding, the highest value in each column is shown in bold. where the N and P in the Samples column brackets means negative and positive, 
respectively

Model Samples (N/P) Acc (%) Sen (%) Pre (%) F1 (%) MCC AUC (%)

ClusterCentroids 530/530 84.75 81.77 87.57 84.57 69.68 92.55

RUS 530/530 84.18 81.22 86.98 84.00 68.55 92.18

OneSideSelection 2863/530 82.20 80.66 83.91 82.25 64.47 90.21

NearMiss‑1 530/530 83.62 80.11 86.83 83.33 67.48 93.11

NearMiss‑2 530/530 85.31 83.43 87.28 85.31 70.71 92.00

NearMiss‑3 530/530 90.11 95.06 85.08 89.79 80.73 96.75
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Comparisons with state‑of‑the‑art methods
In the past few decades, several Kglu prediction mod-
els have been proposed, however, many of the relevant 
websites are inaccessible or the source code is difficult 
to reproduce. Hence, we compared GBDT_KgluSite 
with four available models on the independent test data 
(Table  5 and Fig.  8), namely GlutPred [7], iGlu_Lys [8], 
BiPepGlut [11], and DeepDN_iGlu [17].

As shown in Table  5 and Fig.  8, GBDT_Kglusite far 
outperforms other methods in all metrics, especially 
MCC and AUC values, which were 24.86% and 15.86% 
higher than the second-ranked model, iGlu_Lys. This 
may due to insufficient features they used, such as Glut_
Pred only incorporated three different types of amino 

acid sequence information (AAF, BE, and CKSAAP), 
while iGlu_ Lys only considered PSPM that represents 
sequence and special position information for amino acid 
pairs, BiPepGlu employed only PSSM, which indicated 
evolutionary information, and DeepDN_iGlu only con-
sidered the binary encoding.

Discussion
We proposed GBDT_KgluSite, a novel Kglu site predic-
tion model based on GBDT that achieved better pre-
diction performance than that of previously established 
state-of-the-art models. Specifically, seven feature rep-
resentation methods, including BE, BLOSUM62, EAAC, 
CKSAAP, CTDC, PSSM, and secondary structural 

Fig. 7 The ROC of different classifiers on the independent test dataset

Table 5 Performance of GBDT_KgluSite and other methods on the independent test dataset

To facilitate understanding, the highest value in each column is shown in bold

Model Acc (%) Sen (%) Pre (%) F1 (%) MCC AUC (%)

GluPred [7] 70.00 85.71 63.16 72.73 43.44 70.98

iGlu_Lys [9] 81.74 79.31 57.50 66.67 55.87 80.89

BiPepGlu [11] 71.43 55.17 41.03 47.06 28.65 65.73

DeepDN_iGlu [17] 66.67 61.88 69.57 65.50 33.68 70.34

GBDT_KgluSite 90.11 95.06 85.08 89.79 80.73 96.75
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information, were used to convert protein sequences into 
digital information firstly. The dataset-imbalance issue 
was addressed by the NearMiss-3, and redundant infor-
mation in the features was filtered out by Elastic Net.

The experimental results show that GBDT_KgluSite 
has good robustness and generalization ability, with 
accuracy and AUC values of 93.73%, and 98.14% on five-
fold cross-validation as well as 90.11%, and 96.75% on 
the independent test dataset, respectively. Meantime, we 
evaluated the efficacy of several feature selection algo-
rithms, dataset-balancing techniques, and ML models 
through ablation experiments. The ablation experiment 
results indicate that the effective feature fusion of the 
above seven features and the application of GBDT make 
major contributions to the excellent performance of the 
GBDT_KgluSite, whereas feature selection methods and 
imbalanced handling strategy have auxiliary effects on 
improving model performance. Meanwhile, the ablation 
experiments further confirm the good results of Elastic 
Net and NearMiss-3 in terms of feature selection and 
imbalanced data processing effects.

Unfortunately, we also attempted to predict Kglu sites 
for other species by GBDT_ KgluSite, but the results were 
not ideal, thus this portion of the work was not presented 

in the paper. We speculate that this may be caused by 
the different distribution of amino acids of amino acid at 
Kglu sites in different species.

Conclusions
In conclusion, we proposed the GBDT_KgluSite model 
for Kglu site prediction and demonstrated the combina-
tion of seven features with Elastic Net using GBDT has 
good stability and generality, which may help experimen-
tal scientists accelerate the discovery process of the Kglu 
sites in the protein. However, The GBDT_KgluSite model 
also has some shortcomings that need to be addressed, 
such as insufficient sample size, reliance on third-party 
libraries for feature representation (PSI-BLAST, PSRSM), 
failure to consider global features, and the unreliability of 
negative samples.

Therefore, we will conduct further research in the fol-
lowing directions to obtain more efficient and robust 
models. One direction would be to account for is to pay 
attention to the latest developments in Kglu site research 
and update the available dataset timely, as there are still 
few experimental validation data of Kglu compared to 
other PTM data, which restricts the performance of 
computational-based prediction methods to some extent. 

Fig. 8 Radar plots of the performance comparison of different models in the independent test dataset
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Also, the imbalance of datasets and the unreliability of 
negative datasets are two bottlenecks that constrain the 
development of this field. Although they can be amelio-
rated to some extent by existing imbalance strategies, they 
cannot solve the underlying problems. Therefore, we will 
try to introduce contrastive learning technique in the field 
of PTM, which does not rely on negative samples and has 
been applied with satisfactory results in the field of drug-
target interactions [28]. Additionally, we will work on cre-
ating more appropriate and general feature representation 
methods, such as global feature representation that take 
protein–protein interaction information into account, as 
well as pre-training methods based on Natural Language 
Processing (NLP), such as Transformer or Large Language 
Model (LLM). Finally, developing an interactive website is 
our future work that needs to be completed.

As more Kglu site are experimentally validated and new 
feature representation method is proposed, data-driven 
computational methods, such as our model, will become 
even more effective and make significant contributions to 
the field of PTM research.

Methods
Data collection and pre‑processing
The dataset was retrieved from the Protein Lysine Modi-
fication Database (PLMD) [29], which includes Mus mus-
culus and M. tuberculosis Kglu proteins collected from 
two previous studies [1, 4]. We initially obtained 715 Kglu 
sites from 211 proteins from the PLMD database, and 
then used CD-hit to remove similar sequences with 30% 
sequence identity to obtain 208 non-redundant proteins, 
of which 707 Kglu sites were used as positive samples and 
4,369 non-Kglu sites were used as non-positive samples.

The proteins were then transformed into Kglu-centered 
peptide sequences according to Chou’s PseAAC [30], the 
details are as illustrated below:

where K stands for the’Lysine’ amino acid and’A’ for the 
amino acid residues surrounding K,  enotes the ε th amino 
acid on the right side of K and A−n denotes the left one. 
Generally, n and ε take the same value to obtain a peptide 
of length 2n + 1 with K as the center point. In this paper, 
each peptide segment’s length was set at 33, and the place-
holder residue "X" was employed to fill in the gaps.

Finally, the 707 Kglu peptides and 4369 non-Kglu pep-
tides were divided into two groups: 25% were used as the 

P = A−n . . .A−2A−1KA1A2 . . .Aε

independent test dataset and 75% as the training dataset 
(Table S5). However, the training dataset obtained here is 
imbalanced, consisting of 530 positive samples and 3277 
non-positive samples. Therefore, it is necessary to use 
down-sampling techniques to balance the training data-
set. The detail of the independent test dataset and the 
final training data set is displayed in Table 6. The dataset is 
available at https:// github. com/ flyin sky6/ GBDT_ KgluS ite.

Feature representation
The performance of the model depends on an effec-
tive feature representation. In this paper, seven feature 
representations were extracted for the benchmark data 
sets, namely Binary encoding (BE), Enhanced Amino 
Acid Composition (EAAC), the Compositon of K-Spaced 
Amino Acid Pairs (CKSAAP), the Composition of 
Composition,Transition, and Distribution (CTDC), Block 
Substitution Matrix 62 (BLOSUM62), structural feature, 
and Position-Specific Scoring Matrix (PSSM). These 
features belong to four categories respectively, and the 
details are as follows.

Sequence based‑features
Binary encoding
In this paper, we employed binary encoding (BE) to 
transform each peptide residue into one-hot code of 
length 22 (including 20 common amino acids and seleno-
cysteine ’U’, and pseudo-residue ’X’). Take the "ACDEF-
GHIKLMNPQRSTVWYUX" as an example, the letter 
A, C, and X are represented as 10000000000000000000, 
010000000000000000, and 00000000000000000001, 
respectively. Thus, we can use a BE feature vector with 
a length of 726 to represent the 33-amino acid peptide 
fragment used in this paper.

EAAC 
The EAAC encoding was created first by fixed-length 
sliding windows that move from the N- to C-terminus of 
each peptide, and then the frequency of every amino acid 
in the window was calculated using Equation:

f (t,win) =
N (t,win)

N (win)
, t ∈ {A,C ,D, . . . ,Y },win ∈ {window1,window2, . . . ,window17}

Table 6 Details of training data and independent test dataset

Datasets All Positive Negative

Training dataset 1060 530 530

Independent test dataset 1269 177 1092

https://github.com/flyinsky6/GBDT_KgluSite
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where N (t, win) is the amount of amino acid type t pre-
sent in the sliding window win and N (win) is the size of 
the sliding window. The parameters are set to the default 
value of 5, resulting in a feature length of 581 for EAAC 
features, which are retrieved using iLearn [31].

CKSAAP
The CKSAAP coding scheme consists of k-spaced residue 
pairs (separated by k amino acids) in a peptide segment 
which has been used to predict PTM [32, 33], and extra-
cellular matrix proteins [34]. For instance, there are 484 
pairings of 22 amino acid combinations (i.e., AA, AC, …, 
XX). As a result, the CKSAAP descriptor can be defined 
as follows when K takes a particular value:

where  Ntotal is the total amount of k-space residue pairs in 
the fragment,  NAA is the number of amino acid pairs AA 
in the fragment, and so on. In this paper, we chose K = 0 
to obtain a 484-dimensional CKSAAP feature vector.

Physicochemical property‑based feature
CTDC
The amino acid distribution patterns of a certain struc-
tural or physicochemical attribute in a protein or peptide 
sequence are represented by Composition, Transition, 
and Distribution (CTD) features. Hence, CTDC means 
the composition feature. 13 types of physicochemi-
cal properties have been previously used for computing 
these features, such as hydrophobicity, and solvent acces-
sibility [35]. Taking the hydrophobicity attribute as an 
example, all amino acids are divided into three groups: 
polar, neutral, and hydrophobic. The CTDC can be deter-
mined as follows:

where N  is the sequence length, N (r) is the amount of 
amino acid type r.

Structure‑based feature
The term "secondary structure" describes the particular 
conformation that results from the coiling or folding of 
the polypeptide backbone atoms along a particular axis, 
or the spatial arrangement of the backbone atoms of the 
peptide chain. It has one irregular secondary structure 
type, the coil region, along with two regular second-
ary structure states, the -helix (H), and -strand (E) (C). 
Structural information has been applied to several types 
of PTM prediction, including succinylation [36], ubiqui-
tination [37], and malonylation [38]. However, as far as 

{
NAA

Ntotal
,
NAC

Ntotal
, . . . ,

NXX

Ntotal
}

C(r) =
N (r)

N
, r ∈ {polar, neutral, hydrophobic}

we are aware, it has not yet been used for Kglu’s predic-
tion. Although models such as Alphabold2 accelerate the 
growth of the field of protein structure, they are still una-
ble to predict some overly long proteins. In this paper, we 
decided to employ PSRSM [39], which is rated as the best 
secondary structure predictor of protein [40] and can 
collect the secondary structure information of all pro-
teins. The structural information’s four letters, "C," "H," 
"O," and "X," can be represented by two binary numbers. 
Finally, each peptide fragment has a secondary structure 
of 66 dimensions.

Evolutionary‑derived information
PSSM
The PSSM is a matrix of L*20 (L stands for the length of 
protein amino acids, and 20 is the type of amino acids), 
and it was obtained by PSI-BLAST [41] after two itera-
tions of sequence similarity search in the non-redundant 
(NR) database. The PSSM contains information on the 
conservativeness of amino acids because the element Pij 
in the matrix indicates the probability that the amino acid 
at position i of the sequence mutates into the jth amino 
acid during the evolutionary process. Positive values rep-
resent higher probabilities, whereas negative values rep-
resent lower probabilities.

The PSSM is a matrix of L*20 (L represents the length 
of protein amino acids, and 20 corresponds to the type 
of amino acids) obtained by two iterations of sequence 
similarity search in the non-redundant (NR) database by 
PSI-BLAST [41]. The element Pij in the matrix indicates 
the probability that the amino acid at position i of the 
sequence mutates into the jth amino acid during the evo-
lutionary process, and if the value is positive, it indicates 
a higher probability, and vice versa, it indicates a lower 
probability, so the PSSM contains information on the 
conservativeness of amino acids. PSSM has been success-
fully applied in several fields of bioinformatics, includ-
ing protein–protein interaction prediction [42], protein 
structure prediction [43], DNA–protein binding [44], 
and protein post-translational modification site predic-
tion [14, 45, 46].

BLOSUM62
As the most used amino acid substitution matrix and 
the default matrix for comparing protein sequences 
in BLAST, BLOSUM62 (Blocks Substitution Matrix) 
is a scoring matrix for amino acid substitutions used 
in bioinformatics when comparing sequences [47]. 
They observed and measured the protein families in 
highly conservative sequences (the identity between 
sequences is greater than a predetermined threshold) 
from the BLOCKS database to sort out the probability 
of amino acid substitution, and then used the logarithm 
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to determine the score in the matrix. Among them, the 
BLOSUM62 matrix is obtained with an identity greater 
than or equal to 62%.

Feature normalization
The seven features included in this paper span a variety of 
value ranges. for instance, structural features all take the 
value 0 or 1, whereas the PSSM feature’s value ranges from 
-15 to 13. MinMaxScaler method from the scikit-learn pro-
cessing package (version 1.0.2) was used to equalize the 
feature value ranges per column because the large disparity 
has a significant impact on the model’s performance.

Feature selection
High feature dimensions make the model more complex 
and raise the chance of overfitting. A crucial method for 
separating the useful features from the original char-
acteristics and enhancing the efficiency of the learning 
algorithm is feature selection [20]. In this paper, Elastic 
Net was used for feature selection because it combines 
the advantages of Lasso and Ridge methods, with good 
stability and sparsity. The dataset’s feature dimension was 
decreased from 2895 to 2656 after Elastic Net was used.

Balancing method
The initial positive and negative sample ratio is greater 
than 1:6, which is indicative of an imbalanced data set, and 
may impacts model performance if used directly. There-
fore, it is necessary to select an appropriate balanced data 
set method. The data set balance method in this paper is 
NearMiss-3. The primary concept of NearMiss is to estab-
lish a set of rules to separate the sample corresponding 
to the tiny class sample from the majority sample, which 
alleviates the problem of information loss to some extent. 
NearMiss is separated into NearMiss-1, NearMiss-2, and 
NearMiss-3 based on several rules. NearMiss-1 sampling 
rules for selecting the nearest K minority class samples’ 
average distance to the nearest majority class samples. 
NearMiss-2 sampling rules for selecting the majority class 
samples that are closest to the average distance of the far-
thest K minority class samples. To make sure that each 
niche sample is surrounded by mass samples, NearMiss-3 
selects the K closest mass samples for each niche sample 

[48]. After numerous ablation experiments, it was discov-
ered that NearMiss-3 performed better than other down-
sampling strategies, hence it is utilized in this paper as 
down-sampling strategy.

GBDT
GBDT, also referred to as MART (Multiple Additive Regres-
sion Tree), is an additive model based on the boosting strat-
egy in which CART(Classification And Regression  Tree) 
is used as the base classifier, and the forward distribution 
algorithm is adopted for greedy learning during training, 
and the CART tree is learned at each iteration using gradi-
ent descent to fit the residuals of the prior t-1 tree at each 
iteration to fit the residuals between the predicted results of 
the previous t-1 trees and the real values of the training sam-
ples, and finally accumulate the results of all trees as the final 
result [49]. In GBDT, numerous nonlinear transformations 
have powerful expressive capabilities and typically don’t call 
for intricate feature engineering and feature transformation.

Prediction assessment
Since predicting Kglu modification sites is a binary clas-
sification problem, we used the five traditional evaluation 
indicators of accuracy (Acc), sensitivity (Sen), precision 
(Pre), Matthew’s correlation coefficient (MCC), and F1 
score which are obtained from the confusion matrix (Fig. 9) 
[50] to assessment the performance of the model.

The details of the five evaluation indicators description 
are as follows:

(1)Acc =
TP+ TN

TP+ FP+ TN + FN

(2)Sen =
TP

TP+ FN

(3)Pre =
TP

TP + FP

(4)F1 =
2× Pre × Sen

Pre + Sen

Fig. 9 The confusion Matrix of binary Classification
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Accuracy is the proportion of all correctly predicted 
samples to the total sample;

Precision is the proportion of true positive samples 
among the samples that are predicted to be true; Recall 
is the proportion of positive samples that are predicted 
to be true; F1 score is the sum of precision and recall, 
which is closer to the smaller of the two quantities; 
MCC is essentially a correlation coefficient between the 
actual label and the predicted label [50].

The receiver operating characteristic (ROC) curve 
and the area under the ROC curve are also used to 
illustrate model performance. Among them, the ROC 
curve is shown on a graph with sensitivity as the verti-
cal axis and 1-specificity as the horizontal axis, by vari-
ous thresholds. The area below the ROC curve defined 
by the coordinate axis is known as the AUC. A more 
effective algorithm has a higher AUC value [51].
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