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Abstract 

Early detection of human disease is associated with improved clinical outcomes. However, many diseases are often 
detected at an advanced, symptomatic stage where patients are past efficacious treatment periods and can result 
in less favorable outcomes. Therefore, methods that can accurately detect human disease at a presymptomatic stage 
are urgently needed. Here, we introduce “frequentmers”; short sequences that are specific and recurrently observed 
in either patient or healthy control samples, but not in both. We showcase the utility of frequentmers for the detec‑
tion of liver cirrhosis using metagenomic Next Generation Sequencing data from stool samples of patients and con‑
trols. We develop classification models for the detection of liver cirrhosis and achieve an AUC score of 0.91 using ten‑
fold cross‑validation. A small subset of 200 frequentmers can achieve comparable results in detecting liver cirrhosis. 
Finally, we identify the microbial organisms in liver cirrhosis samples, which are associated with the most predictive 
frequentmer biomarkers.
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Introduction
Early detection and diagnosis of human disease is essen-
tial for enhancing patient outcomes and reducing mortal-
ity rates [1], as it enables timely efficacious intervention 
strategies. However, current modalities of detecting dis-
ease often lack the sensitivity and specificity required to 
capture presymptomatic stages of disease progression 
accurately. Therefore, there is an urgent need to establish 
novel methods that identify unique biological markers of 
disease which precede the manifestation of symptoms.

Sequencing has provided the opportunity to investi-
gate the molecular insights of disease mechanisms and 
potentially identify unique changes between healthy and 
affected individuals. Kmers, contiguous DNA subsequences 
of length k, have been successfully implemented across 
multiple research problems including in the construction 
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of genome alignments [2], for the generation of genome 
assemblies [3], in understanding evolutionary relation-
ships between species [4] and the construction of phylog-
enies [5] among other applications. Additionally, a number 
of algorithms have been developed for the faster and more 
efficient derivation of kmers and their occurrences, such 
as Jellyfish [6] and BBDuk [7]. Kmers have been previously 
used to describe new features or characteristics of an organ-
ism related to the presence or absence of a specific contigu-
ous subsequence. For example, the subset of kmers that do 
not appear in a genome are referred to as nullomers [8–10] 
and the subset of kmers that are found in a single species are 
referred to as quasi-primes [11]. Using kmer strategies, we 
may efficiently mine the human microbiome for differences 
that distinguish patients with disease from healthy individu-
als in effort to establish unique biological signatures.

Liver cirrhosis is a major health burden across coun-
tries, affecting 5.2 million people globally and causing 
1.48 million deaths in 2019 alone [12]. The proportion of 
liver cirrhosis deaths as a fraction of total deaths in the 
population has increased in the last decade, indicating 
the need for early detection and intervention, including 
lifestyle changes and treatments [13]. Metagenomic Next 
Generation Sequencing (mNGS) is a powerful tool that 
enables researchers and clinicians to identify and char-
acterize microbial pathogens, antimicrobial resistance, 
and virulence markers from various samples, which can 
facilitate early disease detection and diagnosis. In a study 
conducted by Qin et  al. [14], a cohort of 123 patients 
with liver cirrhosis and 114 healthy individuals was stud-
ied using mNGS data from stool samples [14]. Qin et al. 
trained a disease classifier using leave-one-out cross-
validation on 98 patient and 83 healthy control samples 
to identify gene markers enriched either in patients or 
controls. The computational complexity of this cross-val-
idation approach informed the decision of the authors to 
only use fifteen gene markers as features for the Support 
Vector Machine (SVM) model, achieving an AUC value 
of 0.836. Improvements in the performance of such a 
model would be required for the clinical implementation 
of mNGS for liver cirrhosis detection.

Machine learning methods have been extensively used to 
study mNGS data for signs of a variety of different diseases 
[15]. Compressed representations of the metagenome (via 
the FracMinHash algorithm [16] have been used in combi-
nation with random forests to study Inflammatory Bowel 
Disease (IBD) [17]. Long k-mers, ranging from thirty 
to thousands of base pairs long, have been also used for 
metagenomic analysis [18, 19]. Here we describe a feature 
selection approach for machine learning models based on 
short kmers, trying to capture the most succinct units of 
information unique to the patient and control cohorts. We 
refer to these short kmers as that are present in multiple 

samples from one group but completely absent from the 
other group as frequentmers, referring to the frequency 
they appear in their respective cohorts. We extracted fre-
quentmers across the mNGS dataset from the liver cirrho-
sis study, utilizing them to train a machine learning model 
that achieves an AUC of 0.91 with tenfold cross-validation. 
We demonstrated that a small number of 200 frequent-
mers can result in comparable classification accuracy. We 
also identified specific microbial species that are informa-
tive for the detection of liver cirrhosis. Frequentmers are 
transferable to other diseases and sequencing assays, rep-
resenting a novel method for biomarker development and 
for the detection of human diseases.

Results
Derivation of frequentmers
We have derived a new type of algorithm that identi-
fies highly informative and specific sequences to enable 
the early detection of human diseases (Fig. 1). First, we 
identified the set of kmer sequences that are observed 
in each patient and each control sample. Next, we cal-
culated the number of samples in which each kmer 
sequence is present. We removed sequences that are 
present in both patient and control samples, hypoth-
esizing that these sequences are less likely to reflect 
differences between the two groups, and to serve as bio-
markers. The subset of sequences that are found in mul-
tiple healthy control samples and not in patient samples 
is termed “control frequentmers” and similarly the sub-
set present in multiple patient samples and absent from 
healthy control samples is termed “patient frequent-
mers”. The aforementioned process is performed using 
ten-fold cross-validation. For each fold, 90% of the sam-
ples are used as a training set and the remaining 10% is 
used as a test set. Frequentmers are derived indepen-
dently from the training set of each fold. The mathemat-
ical formulation is provided below.

Definitions
Let us define alphabet L = {A,T ,C ,G} representing 
adenine, thymine, cytosine, and guanine respectively. 
Metagenomic Next Generation Sequencing reads can be 
represented as a nucleotide string R = t1t2t3...tz over this 
alphabet. We can then represent the entirety of an indi-
vidual’s sequenced metagenome as a collection of strings 
I = {R1,R2, ...,Rn}.

A nucleotide kmer K  is defined as a short nucle-
otide sequence of length k over alphabet L and 
can be represented as K = s1s2s3...sk . A kmer K  
is said to belong to a readR,k ∈ Ri , if and only 
i f ∃i, j ∈ {1, ..., z} : j − i = k − 1 ∧ s1s2s3...sk = tit2t3...tj  . 
Note that j − i = k − 1 implies the kmer is comprised of 
exactly k nucleotides.
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A kmer K  is said to belong to an individuals metagen-
ome I if and only if ∃i : k ∈ Ri ∧ Ri ∈ I.

The samples used for training our algorithm can further 
be subdivided into two distinct groups, mNGS sequencing 
of samples taken from healthy control samples and mNGS 
sequencing taken from individuals with liver cirrhosis. 
Let us name the two groupsH = {H1,H2,H3, ...,Hm } and 
P = {P1,P2,P3, ...,Pl} of controls and patients respectively.

A kmer K  is said to be a healthy control frequentmer of 
recurrency r if and only if:

In other words, a kmer K  is said to be a healthy con-
trol frequentmer of recurrency r if and only if this 
k-mer appears in at least r control samples and does not 
appear in any patient samples.

Similarly, a kmer K  is said to be a patient frequent-
mer of recurrency r if and only if:

(∃a1, a2, a3, ..., ar ∈ {1, ...,m} : ∀i, j ∈ {1, ..., r}ai �= aj∧K ∈ Hai)∧(∀o ∈ {1, ..., l} : K /∈ Po)

∃a1, a2, a3, ..., ar ∈ {1, ..., l} : ∀i, j ∈ {1, ..., r}ai �= aj∧K ∈ Pai)∧(∀o ∈ {1, ...,m} : K /∈ Ho)

Fig. 1 Visualization of frequenter extraction pipeline and inference. Two groups of samples are examined, the first group is composed of healthy 
control samples and serves as the control and the second group contains patient samples, for the disease that is investigated. mNGS data are 
analyzed to determine the number of kmers found in each sample and subsequently the kmers unique to only one group (healthy controls 
or patients) are identified. Frequentmers represent the recurrent kmers found only in patient samples or only in healthy control samples, but never 
in both. Frequentmers that are found in multiple samples of only one group are used as features to train a machine learning algorithm to perform 
binary classification on unseen data
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In other words, a kmer K  is said to be a patient fre-
quentmer of recurrency r if and only if this kmer 
appears in at least r patient samples and does not 
appear in any control samples.

A disproportionate number of liver cirrhosis‑specific kmers 
is detected
We implemented our algorithm in metagenomic Next 
Generation Sequencing (mNGS) data derived from fecal 
samples of liver cirrhosis patients and healthy controls 
[14]. In total, we examined 123 patients with liver cir-
rhosis and 114 matched healthy controls. We extracted 
every sixteen base-pair (bp) kmer found in each sample 
and split samples in ten groups or folds, with the propor-
tion of cases over the total samples in each fold being 
maintained. The choice of kmer length was informed 
from previous studies in which we found that the perfor-
mance of the kmer-based models increased as a function 
of kmer length up to sixteen bp length [20]. For each fold, 
we examined which subset of the total kmers detected 
constituted frequentmers, using the number of samples 
in which each kmer was found as the recurrency thresh-
old (see Methods). Thus, we estimated the number of 
healthy control and patient frequentmers as a function of 
the recurrence among liver cirrhosis patients and healthy 
controls, respectively.

First, we find that the number of frequentmers recov-
ered decreases as a function of the recurrency thresh-
old used (Supplementary Fig.  1a-c). We also find that 
as the recurrency threshold for the number of samples 
a frequentmer is present in increases, there is a larger 
proportion of the total frequentmers being patient fre-
quentmers relative to control frequentmers (Fig.  2a-b; 
Supplementary Fig.  2; Pearson correlation: r = 0.975, 
p-value < e-9). Specifically, we observe that for the recur-
rency threshold of five samples, there is 8.92-fold more 
patient than healthy control frequentmers, whereas at 
recurrence of twenty samples there is 306.5-fold more 
patient than healthy control frequentmers (Fig. 2b; bino-
mial test, p-value = 0), indicating an imbalance between 
the number of healthy control and patient frequentmers 
identified. These differences likely stem from changes 
in the microbiome of liver cirrhosis patients, which are 
observed recurrently across multiple liver cirrhosis 
patients and which are not normally observed in healthy 
microbiomes.

Next, we examined what proportion of frequentmers 
observed in the training cohort was also identifiable in 
the test cohort. We find that the proportion of frequent-
mers observed in the test cohort is correlated with the 
recurrence threshold (Fig.  2c; Supplementary Fig.  3; 
Pearson correlation: r = 0.964, p-value < 2.03e-9). We also 
observe that for recurrence threshold of fifteen samples, 

86% of frequentmers are recovered, with the proportion 
of frequentmers that is recovered leveling off around this 
recurrence threshold (Fig.  2c). Importantly, the number 
of patient frequentmers detected in the test set is sig-
nificantly larger in samples from liver cirrhosis patients 
relative to healthy controls across the recurrency thresh-
olds examined (Fig.  2d; Mann–Whitney U, p-value = 0). 
Additionally, we find that healthy control frequentmers 
from the training set are 6.49-fold more likely to be 
found in healthy control samples in the test set (Fig. 2e; 
Mann–Whitney U, p-value < 0.00016). Similarly, liver cir-
rhosis frequentmers derived in the training set are 9.04-
fold more likely to be found in liver cirrhosis samples in 
the test set (Fig. 2e; Mann–Whitney U, p-value < 9.1e-5), 
providing further support for efficacy of our methodol-
ogy. Therefore, we find that across the ten folds that were 
independently evaluated, there are frequentmers that are 
consistently detected and that are either liver-cirrhosis 
specific or only derived from healthy control samples.

Identification of kmers associated with HBV infection 
and high alcoholic consumption
Liver cirrhosis is linked to both high alcohol intake and 
HBV infection [21]. For liver cirrhosis, we investigated 
if there were differences in the samples that are Hepati-
tis B virus (HBV) positive, regarding the frequentmers 
detected.

Among the liver cirrhosis frequentmers of recurrency 
fifteen, we find that 55,789 are specific to liver cirrhosis 
patients that are HBV positive and are completely absent 
from HBV negative patients, for recurrency (Fig. 3a; Sup-
plementary Fig. 3). Similarly, we examined samples from 
alcohol-related liver cirrhosis patients and observed that 
5,004 are specific to them for recurrency threshold of five 
(Fig.  3b; Supplementary Fig.  4). The recurrency thresh-
old of five and fifteen were selected as they represent an 
approximately equal proportion of the total number of 
samples that are alcohol-related and HBV positive, which 
are 34 and 99 respectively. Therefore, we conclude that 
we can detect healthy control frequentmers, general liver 
cirrhosis frequentmers and frequentmers that reflect 
viral exposure (HBV) and lifestyle (alcohol consump-
tion) differences. We find that the majority of frequent-
mers originate primarily from HBV positive samples, 
which is to be expected as they constitute the majority 
of our patient samples. However, there are differences in 
the distribution of frequentmers, with some tending to 
be found more in either HBV positive or alcohol-related 
samples (Fig. 3c).

We examined the number of frequentmers of recur-
rency fifteen shared in HBV positive patients relative to 
patients that were HBV negative and observed that the 
two groups were dissimilar in their frequentmer profile 
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(Mann–Whitney U, p-value < 0.0143). Similar results 
were observed for samples that were derived from high 
alcohol intake patients relative to other patients (Mann–
Whitney U, p-value < 3.49e-6). We conclude that differ-
ences in the exposures of samples are reflected in their 
frequentmer profile.

Principal component analysis reflects differences 
in frequenter profiles
Next, we examined if liver cirrhosis and healthy 
control samples are linearly separable. A principal 

component analysis (PCA) was used to examine the 
information that healthy control and liver cirrhosis 
frequentmers can capture to separate samples from 
the two groups. We observe that a large fraction of 
the variance can be explained by the first twenty prin-
cipal components (PCs), with the first PC alone cap-
turing 22.89% of the variance (Fig.  4a). Additionally, 
we observe that the first three PCs can separate the 
liver cirrhosis and control samples (Fig.  4b-c). These 
findings provide evidence that frequentmers can cap-
ture differences in the mNGS profile of liver cirrhosis 
patients and healthy controls.

Fig. 2 Characterization of frequentmers associated with liver cirrhosis. A The number of liver cirrhosis frequentmers and healthy control 
frequentmers identified as a function of the number of samples in which they were detected (recurrency). B Stacked barplot showing 
the proportion of the total frequentmers being patient and healthy control frequentmers. C Bar plot displaying the frequency with which 
frequentmers identified in the training set are observed in the test set, for recurrency thresholds 5–20. Results shown represent the mean 
across the ten folds. D Number of frequentmers detected in the test set for healthy control and liver cirrhosis frequentmers for recurrency threshold 
of fifteen across folds. Results shown represent the mean across the ten folds. E Number of healthy frequentmers in the training set also detected 
in the test set of healthy control and patient samples (left). Number of liver cirrhosis frequentmers in the training set also detected in the test set 
of healthy control and patient samples (right). Frequentmers of the recurrency threshold of fifteen samples were used
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A predictive model based on frequentmers can accurately 
detect liver cirrhosis
The early detection of liver cirrhosis is critical for inter-
vention and improved clinical outcomes of patients [22]. 
We therefore developed machine learning classification 
models to examine if frequentments can accurately pre-
dict liver cirrhosis patients from healthy controls. The 
first model we examined was a logistic regression model, 
which has inherent advantages such as interpretability 
and determinism. We examined the performance of the 
model using multiple recurrency thresholds for the num-
ber of samples in which each frequentmer was found in 
the training set. We observed that when increasing the 
sample recurrency threshold, the performance of the 
model increased (Supplementary Fig.  6), which is likely 
due to removing features that were less informative. We 
also report that the logistic model has an AUC of 0.91 for 
recurrency threshold of fifteen samples (Fig. 5a-b), indi-
cating that it can accurately detect liver cirrhosis. The 
performance of our model was superior to that obtained 

from the original article [14]. We also find that the top 
features are liver cirrhosis frequentmers (Supplementary 
Figs.  7 and 8). From the 1,000 most informative coeffi-
cients (as measured by absolute coefficient score) of the 
logistic regression model 993 were liver cirrhosis fre-
quentmers, which was significantly more than expected 
by chance (Binomial test, p-value < 1.4e-07; Fig. 5c, Sup-
plementary Fig.  7). As a result, we conclude that our 
feature selection is largely reflected in what the logistic 
regression model learns and is primarily based on liver 
cirrhosis frequentmers.

To examine non-linear patterns between frequent-
mers we also implemented an XGBoost classification 
model. Extreme Gradient Boosting is a classification 
framework based on training a sequence of decision 
trees and utilizing their combined predictions to make 
the final classification [23]. We observe that across 
the different sample recurrency thresholds the model 
performs comparably to the logistic regression model 
(Supplementary Fig.  9, Fig.  5d). At low recurrency 

Fig. 3 Characterization of liver cirrhosis frequentmers in relationship to HBV infection and alcohol consumption. A Histogram displaying 
the number of frequentmers and the corresponding percentage of HBV‑positive patient samples they were detected. B Histogram displaying 
the number of frequentmers and the corresponding percentage of alcohol samples in which they were detected. C Frequentmer distribution 
in samples that are HBV‑positive (n = 99), have high alcohol intake (n = 34), are both HBV‑positive and have high alcohol intake (n = 23) or are 
not associated with either (n = 13)
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thresholds, for which the number of features is 
extremely large and the noise in the system increases, 
XGBoost outperforms logistic regression (Supplemen-
tary Fig.  6, Supplementary Fig.  9). However, for a fre-
quentmer recurrency threshold of fifteen samples we 
obtained an AUC score of 0.90, suggesting that the 
ensemble model did not perform better than the logis-
tic regression model. We conclude that the model that 
is based on linear relationships is sufficient to capture 
the majority of the variance and therefore, due its clear 

advantage in explainability over the XGBoost model, is 
our preferred method.

Additionally, we were interested to find if we can per-
form similarly in detecting liver cirrhosis using only a 
small fraction of the frequentmers. We therefore investi-
gated how the number of frequentments used in the clas-
sification model influenced the performance. To achieve 
this we identified the most informative features from the 
training set of each fold in the logistic regression using 
the absolute value of each logistic regression coefficient 

Fig. 4 A Proportion of variance explained by the first twenty principal components. Mean score of the explained variance ratio across the ten folds 
is shown. Error bars show standard deviation. Line plot indicates the cumulative explained variance across the twenty first principal components. 
B‑C Scatter plot displaying the separation of patient and control samples by the first three principal components. Results shown for B. PC1 
versus PC2 and C. PC1 versus PC3

Fig. 5 Machine learning based liver cirrhosis detection. A ROC curve displaying the AUC for the logistic regression model for recurrency threshold 
of fifteen. B Confusion matrix showing the percentage of samples that were correctly and incorrectly classified as liver cirrhosis patients or healthy 
controls, for recurrency threshold of fifteen. C Logistic regression classification coefficients. D ROC curve displaying the AUC for the XGBoost 
classification model, for recurrency threshold of fifteen. E AUC score relative to number of top frequentmers used for logistic regression. Gray lines 
display the confidence intervals from the ten folds. The blue line shows the mean AUC score across the ten folds

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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for each frequentmer (Fig.  5c) and re-trained the logis-
tic regression model for the same samples in the train-
ing set. We then tested the performance of our model. 
This process was repeated, examining between 25 and 
1,000 frequentmers. We observe that even with roughly 
200 frequentmers we achieve comparable performance 
to the original model that used all frequentmers (Fig. 5a, 
e). These results indicate that with a small number of 
frequentmers we can be used to generate a classification 
model that can accurately detect liver cirrhosis.

Identification of microbial species driving the classification 
models
Utilizing the coefficients of the logistic regression per-
formed at recurrency threshold fifteen, which corre-
sponded to the best performing model, we identified the 
100 frequentmers with the highest positive regression 
coefficient and the 100 frequentmers with the lowest 
negative regression coefficient averaged over all ten folds. 
Within this group, the 100 frequentmers with a positive 
coefficient were patient frequentmers and the 100 fre-
quentmers with a negative coefficient were healthy con-
trol frequentmers.

We then extracted the sequencing reads from which 
those frequentmers originated, identifying a total of 
41,944 reads. On average, these frequentmers were pre-
sent in 210 reads (mean: 209.72, standard deviation: 
256.50), with some significant outliers skewing the vari-
ance (Fig.  6a). Patient frequentmers were found in sig-
nificantly more reads than healthy frequentmers (t-test, 
p-value < 0.00006). The distribution of samples and the 
number of patient and healthy frequentmers supports 
a clear separation between patient and control samples 
(Fig. 6b).

We further identified the microbial species from which 
the frequentmers were derived from. Interestingly, we 
find a set of bacterial species that are highly enriched 
for frequentmers (Fig.  6c-d), including Prevotella copri, 
Haemophilus parainfluenzae, Faecalibacterium praus-
nitzii and Klebsiella pneumoniae, multiple of which have 
been previously associated with liver cirrhosis [24] or 
other liver-associated diseases such as liver abscess [25], 
and Nonalcoholic Fatty Liver Disease [26]. Therefore, we 
conclude that we can identify the microbial species from 
which the frequentmers were derived, showcasing the 
interpretability of our approach.

Discussion
In this work, we describe the development of a method 
that enables the identification of kmer sequences that are 
specific to patient and healthy control samples, which we 
term patient and healthy control frequentmers, respec-
tively. We show that frequentmers can be used as disease 

detection biomarkers, by demonstrating their utility 
for the detection of liver cirrhosis using mNGS data, in 
which we outperform previously published models and 
achieve an AUC score of 0.91 [14].

The integration of other biomarkers, clinical informa-
tion and risk factors can result in further improvements 
of our models for the early detection of human disease. 
Furthermore, a major strength of our method is the 
interpretability of our logistic regression model and we 
provide evidence that we can directly infer the micro-
bial species from which the frequentmers are derived 
from. We show that the majority of high importance fre-
quentmers originate from microorganisms known to be 
associated with liver cirrhosis, such as Prevotella copri, 
Faecalibacterium prausnitzii and Klebsiella pneumoniae, 
multiple of which have been previously associated with 
liver cirrhosis [24, 27, 28]. These results demonstrate 
the ability of the method to discover new associations 
between microbial species in the gut microbiome and 
disease. Investigation of the biological function of these 
microbial species and their roles in liver damage and cir-
rhosis are of particular interest for future work. There-
fore, frequentmers can provide insights into microbial 
changes specific to the development of liver cirrhosis 
which could result in mechanistic insights for the role of 
the microbiome in this disease.

Examination of fecal samples using mNGS data is a 
non-invasive procedure that can be used for the early 
detection of liver fibrosis, before the manifestation of 
symptoms associated with liver cirrhosis. A small set of 
frequentmers suffices to achieve high predictive power in 
detecting liver cirrhosis (Fig. 5e), which is another impor-
tant advantage of our method. As a result, the detection 
of a small set of frequentmers could enable novel diag-
nostics based on short DNA sequences from mNGS data. 
For instance, CRISPR-based detection tools could be 
used to target frequentmers in detection assays [29] or 
sequencing-based approaches such as adaptive sampling 
(also known as selective sequencing), which can enrich 
for specific sequences [30], can be applied to reduce 
detection costs.

A number of human diseases are associated with 
changes in the human microbiome, including cancer [31] 
neurodegenerative diseases [32], metabolic diseases [33], 
autoimmune disorders [34, 35] and various infections 
[36–38]. Therefore, machine learning models based on 
frequentmers could be applicable towards the detection 
of multiple other diseases as well as for pathogen detec-
tion. Furthermore, our methodology can be transferred 
across different experimental assays beyond mNGS, and 
it will be of interest to investigate its utility for cfDNA 
and cfRNA based diagnostics. The origin of the biologi-
cal material can also vary and in future work it will be 
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Fig. 6 Frequentmer containing reads. Top and bottom 100 most informative frequentmers based on logistic regression with recurrency threshold 
fifteen. A The corresponding number of reads originated from. B Their distribution across patient and healthy control samples. C Taxonomic 
assignment for the top frequentmer reads across microbial organisms. D Krona RSF plot showing the identified microbial species abundance



Page 11 of 13Mouratidis et al. BMC Genomics          (2023) 24:768  

of interest to develop frequentmer based classification 
models for urine, saliva and blood samples.

In summary, we provide a novel methodology for the 
derivation of disease detection biomarkers and show-
case their utility in the detection of liver cirrhosis from 
mNGS data obtained from fecal samples. A limitation 
of this study is its application to the single liver cirrho-
sis mNGS group. Future work could provide validation of 
this method in different experimental studies and across 
additional diseases. Analyzing additional datasets and 
expanding our findings in a multi-disease detection assay 
that is based on disease-specific frequentmers, could 
enable clinical screening applications.

Methods
Retrieval and preprocessing of mNGS data
mNGS data from fecal samples of 123 liver cirrhosis 
patient samples and 114 healthy control samples were 
derived from [14]. Across all samples, sequencing reads 
were examined as single-end. For samples with multiple 
sequencing runs, the sequencing reads across the runs 
were merged.

Train‑test split
In order to properly validate our results given our limited 
number of samples we performed ten-fold cross-valida-
tion. To that effect, we created ten different folds assign-
ing 90% of the samples to the training and 10% in the test 
sets. Each fold consisted of liver cirrhosis patients and 
healthy control samples.

Identification of kmers in each sample
For each sample, kmers of sixteen bp length were 
extracted using the Jellyfish package [6]. If a kmer 
appeared only once in a sample it was discarded from 
downstream sequencing analysis as a potential sequenc-
ing error.

Derivation of frequentmers
We defined two groups, the first consisted of only healthy 
control samples and the second consisted only of liver 
cirrhosis patient samples. Frequentmers of recurrency r 
were defined as kmers that appeared in a minimum of r 
samples of the same group and were absent from every 
sample of the other group. To avoid over-fitting, the 
extraction of frequentmers was performed for each fold 
separately.

Identification of HBV or high alcohol consumption 
associated frequentmers was performed by analyzing the 
frequentmers present in HBV-positive samples or sam-
ples of individuals with high alcohol consumption.

To measure if the frequentmer profile between patient 
samples that were HBV positive or had high alcoholic 

intake differed from other patient samples we estimated 
the jaccard index based on the number of shared fre-
quentmers between patient samples and examined the 
jaccard index distribution across all pairs in the two 
groups using paired t-tests.

Frequentmer analysis
Recurrency thresholds of zero, three, five, ten and fifteen 
samples were examined. Analyses were performed inde-
pendently for each recurrency threshold. For each recur-
rency threshold, results were averaged across the ten 
folds.

Majority voting, if it was found in more healthy control 
samples or more liver cirrhosis samples in the test set, 
was used to classify frequentmers found in the test set 
and calculate Mann–Whitney U statistic.

Principal component analysis
To examine if frequentmers can linearly separate the liver 
cirrhosis patient samples from the healthy control sam-
ples we implemented principal Component Analysis with 
90 components. However, the majority of the variance is 
captured by the first 20 components. The first three prin-
cipal components were used to visually inspect the sepa-
ration of the patient and the control samples. Principal 
Component Analysis was performed with the scikit-learn 
package [39].

Classification models
Logistic regression was performed using healthy con-
trol and liver cirrhosis frequentmers as features with 
the scikit-learn package, using the parameters: penalty: 
Ridge (L2), max_iter: 2000 and C (the inverse regulariza-
tion strength): 0.01. For each frequentmer, the coefficient 
score was derived and distribution histograms were gen-
erated for healthy control and liver cirrhosis frequent-
mers separately. The XGB-boost classification model was 
generated using the package from https:// github. com/ 
dmlc/ xgboo st with the parameters: max_depth = 11, 
gamma = 0.3, eta = 0.2, alpha = 6 [23].

To examine how the number of frequentmers used to 
train the logistic regression model affected the perfor-
mance of the model, we used the absolute value of the 
logistic regression coefficients in the training set to re-
train a model with the same sample split into training 
and test sets. The number of features examined ranged 
between 25 and 1,000 and performance was measured 
with the AUC score of each model. This process was 
repeated separately for each fold from which we derived 
the mean AUC score and confidence intervals across the 
ten folds.

https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost
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Kraken2 taxonomic classification [40] using the stand-
ard reference database was performed for the reads 
containing the frequentmers with the highest and low-
est coefficients from the logistic regression model. The 
standard reference database was built using adjusted 
parameters –kmer-len 16 –minimizer-len 15 –mini-
mizer-spaces 3. An alluvial plot/sankey diagram was 
generated using Pavian [41]. Using the taxonomy labels 
generated from Kraken2, Bracken was performed to 
produce estimates of species- and genus- level abun-
dance of each species [42]. The KrakenTools suite was 
used to calculate statistics and format the output from 
Bracken for visualization with Krona [43]. Krona was 
used to generate an RSF display that visualizes the 
Bracken output of the species- and genus- level relative 
abundance.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864‑ 023‑ 09861‑w.

Additional file 1: Supplementary Figure 1. Number of frequentmers 
detected as a function of the recurrency threshold. Recurrency thresholds 
of five to twenty samples were examined. Results shown for: A. healthy 
control and liver cirrhosis frequentmers, B. healthy control frequentmers, 
C. liver cirrhosis frequentmers. Supplementary Figure 2. As the recur‑
rency threshold increases a larger proportion of frequentmers are patient 
frequentmers. Frequentmer ratio was defined as the ratio of patient 
frequentmers over healthy control and patient frequentmers. Values are 
averaged over ten folds. 99th percentile confidence intervals are shown. 
Supplementary Figure 3. Number of frequentmers observed in the test 
set. Sample recurrency of: A. 5, B. 10, C. 15, D. 20. Pink color represents 
healthy control frequentmers and purple represents liver cirrhosis fre‑
quentmers. All comparisons were statistically significant (Mann‑Whitney U 
tests, p‑value<0.0001). Supplementary Figure 4. The subset of frequent‑
mers that are only found in HBV‑positive patients. Recurrency threshold of: 
A: 5, B. 10, C. 15, D. 20 samples. Supplementary Figure 5. The subset of 
frequentmers that are only found in patients that had high alcohol intake.  
Recurrency threshold of: A: 5, B. 10, C. 15, D. 20 samples. Supplementary 
Figure 6. Logistic regression classification model ROC curve of liver cirrho‑
sis and healthy control samples. Sample recurrency of A: 5, B. 10, C. 15, D. 
20. Blue line represents the mean score, green lines represent the different 
folds and the gray area represents confidence intervals. Supplementary 
Figure 7. Histogram displaying the logistic regression coefficients. Sample 
recurrency of: A: 5, B. 10, C. 15, D. 20. Supplementary Figure 8. Ranked 
most important features by absolute coefficient score. A. Number of 
most important healthy control and patient frequentmers. B. Frequent‑
mer ratio for most important healthy control and patient frequentmers. 
Frequentmer ratio is defined as the number of patient frequentmers over 
total frequentmers detected. Results shown for recurrency of fifteen. Sup‑
plementary Figure 9. XGBoost classification model ROC curve of liver 
cirrhosis and healthy control samples. Sample recurrency of A: 5bp, B. 10, 
C. 15, D. 20. Blue line represents the mean score, green lines represent the 
different folds and the gray area represents confidence intervals.
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