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Abstract 

Background Mapping expression quantitative trait loci (eQTLs) in skeletal muscle tissue in pigs is crucial for under‑
standing the relationship between genetic variation and phenotypic expression of carcass traits in meat animals. 
Therefore, the primary objective of this study was to evaluate the impact of different sets of single nucleotide 
polymorphisms (SNP), including scenarios removing SNPs pruned for linkage disequilibrium (LD) and SNPs derived 
from SNP chip arrays and RNA‑seq data from liver, brain, and skeletal muscle tissues, on the identification of eQTLs 
in the Longissimus lumborum tissue, associated with carcass and body composition traits in Large White pigs. The SNPs 
identified from muscle mRNA were combined with SNPs identified in the brain and liver tissue transcriptomes, as well 
as SNPs from the GGP Porcine 50 K SNP chip array. Cis‑ and trans‑eQTLs were identified based on the skeletal muscle 
gene expression level, followed by functional genomic analyses and statistical associations with carcass and body 
composition traits in Large White pigs.

Results The number of cis‑ and trans‑eQTLs identified across different sets of SNPs (scenarios) ranged from 261 
to 2,539 and from 29 to 13,721, respectively. Furthermore, 6,180 genes were modulated by eQTLs in at least one 
of the scenarios evaluated. The eQTLs identified were not significantly associated with carcass and body composition 
traits but were significantly enriched for many traits in the “Meat and Carcass” type QTL. The scenarios with the highest 
number of cis‑ (n = 304) and trans‑ (n = 5,993) modulated genes were the unpruned and LD‑pruned SNP set scenarios 
identified from the muscle transcriptome. These genes include 84 transcription factor coding genes.

Conclusions After LD pruning, the set of SNPs identified based on the transcriptome of the skeletal muscle tis‑
sue of pigs resulted in the highest number of genes modulated by eQTLs. Most eQTLs are of the trans type and are 
associated with genes influencing complex traits in pigs, such as transcription factors and enhancers. Furthermore, 
the incorporation of SNPs from other genomic regions to the set of SNPs identified in the porcine skeletal muscle 
transcriptome contributed to the identification of eQTLs that had not been identified based on the porcine skeletal 
muscle transcriptome alone.
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Background
 Developing effective breeding strategies and genetic 
improvement programs are paramount for improving 
the long-term sustainability of livestock production. In 
this context, there is a need to determine the impact of 
genomic variants on gene expression and phenotypic 
variability related to production and environmental effi-
ciency traits, such as feed efficiency, carcass yield, live 
weight, and body composition [1]. Genome-wide associa-
tion studies (GWAS) based on single nucleotide polymor-
phism (SNP) information and traits related to production 
efficiency and meat quality traits have been extensively 
explored in recent years [2, 3]. These studies have con-
tributed to the understanding of the genetic architecture 
of complex traits in pigs, but most studies were primar-
ily done based on SNPs located in intronic and intergenic 
regions. Therefore, the use of SNPs obtained from tran-
scriptome sequencing could provide additional informa-
tion about the SNPs located in transcribed regions of the 
genome, which have a greater likelihood of being more 
functionally relevant with greater influence on the phe-
notypic expression of complex traits [4–6].

Genetic markers (e.g., SNPs) located within coding 
regions of the genome are more likely to change the level 
of global gene expression in the most diverse tissues of 
living organisms. For example, a missense variant could 
result in the alteration of a codon that encodes a certain 
amino acid and, consequently, lead to changes in protein 
synthesis and in the functionality of these proteins in var-
ious tissues and physiological processes of organisms [7, 
8]. When a SNP is in the promoter region of a gene or 3 
prime untranslated region (3’UTR), it can alter the level 
of gene expression and affect post-transcriptional regula-
tions [7]. Thus, these variants may result in phenotypic 
differences (e.g., carcass trait, body composition) among 
individuals in a population.

Due to the reduced genetic variability in livestock 
populations, SNPs located throughout the genome are in 
moderate to high linkage disequilibrium (LD) [9–11] and, 
therefore, could have similar effects on a given trait. So, it 
is a common practice to perform SNP or tag-SNP prun-
ing based on LD thresholds to eliminate SNPs capturing 
similar quantitative trait loci (QTL) effects in GWAS, in 
which only one representative SNP of each LD block is 
maintained to reduce the total number of statistical tests 
performed [7, 12–15]. Not performing LD pruning could 
result in more false positives and decrease the statistical 
power of the analyses [16–18]. The SNPs from the tran-
scriptome could be in greater proximity and, therefore, 
in greater LD among themselves. Thus, the level of LD 
among the studied variants is an important element to 
be considered in expression QTL (eQTL) identification 

studies based on transcriptome sequencing data [17, 19, 
20].

The integration of SNPs from transcriptome sequenc-
ing data from different tissues (e.g., skeletal muscle, liver, 
brain) with other data sources such as SNP chip arrays 
(e.g., GGP-50  K genotyping) can provide complemen-
tary information about genomic variability related to 
gene expression in specific tissues such as the skeletal 
muscle – a key tissue for pork production. The combina-
tion of SNPs obtained through sequencing of the RNA 
from different biological tissues and data sources (i.e., 
sequencing, genotyping) could enable a more accurate 
identification of eQTLs that would not be detected by 
analyzing variants from the skeletal muscle tissue alone. 
In addition to data integration, it is important to evaluate 
alternative statistical approaches, such as LD pruning and 
quality control parameters (e.g., minor allele frequency, 
genotyping call rate, and variants with extreme departure 
from the Hardy-Weinberg equilibrium expectations), 
to adjust the initial data structure and reduce potential 
biases in the results due to the presence of closely linked 
or low-quality variants [9, 12, 17, 21–24].

We hypothesize that different combinations of SNPs 
obtained from alternative biological tissues (e.g., skel-
etal muscle, liver, and brain) and data sources (GGP-50 K 
genotyping and RNA-seq) may affect the identification 
of eQTLs associated with carcass and body composition 
traits in pigs. Therefore, our primary objectives were to: 
(1) evaluate the impact of different SNP-set combinations 
(including LD pruning) derived from SNP chip arrays 
and RNA-seq data from liver, brain, and skeletal muscle 
tissues on the identification of eQTLs associated with 
carcass and body composition traits in Large White pigs; 
and, (2) investigate candidate genes and biological pro-
cesses associated with the phenotypic expression of these 
traits. The phenotypic traits evaluated in this study were 
slaughter weight (SW; in kg), cold carcass yield as a per-
centage of the slaughter weight (CCY, in %), loin eye area 
measured by ultrasound (LEA; in cm²), backfat thickness 
measured by ultrasound (BFT; in cm), and intramuscular 
fat content in percentage (IMF, in %).

Results
Phenotypes, genotypes, and scenarios
The descriptive statistics of the phenotypic traits evalu-
ated in the study are presented in Table 1 and were previ-
ously described by Almeida et al. [25].

The SNPs analyzed in this study were derived from 
RNA-seq data from brain, liver, and skeletal muscle tis-
sues from 72 pigs and from the genotyping of these same 
animals with the GeneSeek Genomic Profiler Porcine 
50 K (GGP-50 K) SNP chip array. A total of 50,697 SNPs 
were obtained from the GGP-50 K SNP chip array as well 
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as 2,650,720, 1,816,600, and 4,404,053 SNPs (before qual-
ity control) obtained from RNA-seq data of skeletal mus-
cle (Longissimus lumborum), liver (right lobe of the liver), 
and brain (a portion of the middle region of the frontal 
lobe) tissues, respectively, of the same 72 Large White 
pigs.

The quality control used for filtering out the SNPs iden-
tified from the RNA-seq data considered a Phred score 
(QUAL) equal or greater than 30 (QUAL ≥ 30) and cover-
age depth (DP) equal or greater than 10 (DP ≥ 10). Only 
bi-allelic variants from the Sus scrofa autosomal chro-
mosomes (SSC) SSC1 to SSC18 were included in further 
analyses. Thus, 1,609,081, 915,828, and 2,649,856 SNPs 
from skeletal muscle, liver, and brain tissues, respectively, 
remained in the dataset for further analyses. Additional 
quality control filters included removing SNPs with 
minor allele frequency (MAF) lower than 5%, variants 
with genotyping rate lower than 95% (more than 5% miss-
ing), and extreme departure from Hardy-Weinberg equi-
librium (HWE; p-value lower than  10−6). After that the 
quality control, 74,812, 50,932, and 117,330 SNPs from 
the skeletal muscle, liver, and brain tissues, respectively, 
and 30,872 SNPs from the GGP-50 K array from 72 ani-
mals were available for further analyses. A total of 15,090 
genes were expressed in the skeletal muscle tissue of the 
72 animals, which were normalized and represented as 
transcripts per million (TPM). The gene expression level 
was also normalized before fitting the linear models.

All the SNP datasets were combined for the identifica-
tion of cis- and trans-eQTLs in the skeletal muscle tissue. 
For that, we considered the scenario with only the SNPs 
found in the skeletal muscle transcriptome as the base 
scenario, and subsequently, added the SNPs from the 
brain and liver transcriptomes and from the 50  K SNP 
chip array. Hence, the SNPs from the RNA-seq data of the 
brain and liver tissues and the SNPs from the 50 K SNP 
chip panel were used alone or combined with the SNPs 
from the skeletal muscle, which resulted in four scenar-
ios: (S1) only the SNPs from the GGP-50  K; (S2) SNPs 
from the RNA-seq data of the skeletal muscle (baseline 

scenario); (S3) SNPs from the GGP-50 K plus the SNPs 
of the RNA-seq data of the skeletal muscle; (S4) SNPs 
from the GGP-50  K plus the SNPs of RNA-seq data of 
the skeletal muscle, liver, and brain tissues. Subsequently, 
the SNP sets from the four scenarios were LD pruned 
considering an r² threshold of 0.70, which resulted in 
four additional scenarios: (S5) SNPs from the GGP-50 K 
after LD pruning; (S6) SNPs from the RNA-seq data of 
the skeletal muscle after LD pruning; (S7) SNPs from the 
GGP-50 K plus the SNPs from the RNA-seq data of the 
skeletal muscle after LD pruning; (S8) SNPs from the 
GGP-50 K plus the SNPs from the RNA-seq data of the 
skeletal muscle, liver, and brain tissues after LD pruning. 
The number of SNPs before and after the quality control 
for all scenarios are described in Table 2. Furthermore, a 
Venn diagram illustrating the scenarios is presented in 
Additional file 1.

Identification of eQTLs across scenarios
 For the cis- and trans-eQTLs identification analyses, 
genomic windows of up to 1 Mb upstream from the begin-
ning of the regulated gene and 1 Mb downstream from the 
end of the regulated gene were considered for the cis (local) 
effect and more than 1 Mb of the regulated gene for the 
trans (distant) effect. These analyzes were performed for 
each of the eight scenarios aiming to identify eQTLs based 
on the gene expression levels in the skeletal muscle tissue. 
A False Discovery Rate (FDR) of 1% was considered for 
these analyses. The number of eQTL associations identified 
were: S1 and S5 = there were no significant cis- or trans-
eQTLs; S2: cis-eQTLs = 2,538 and trans-eQTLs = 2,752; 
S3: cis-eQTLs = 2,355 and trans-eQTLs = 1,719; S4: cis-
eQTLs = 2,256 and trans-eQTLs = 43; S6: cis-eQTLs = 291 
and trans-eQTLs = 13,721; S7: cis-eQTLs = 231 and 
trans-eQTLs = 6,754; and, S8: cis-eQTLs = 646 and trans-
eQTLs = 29, as shown in Fig. 1.

The number of unique eQTLs (considering a single 
SNP count) identified in scenarios S2, S3, and S4 ranged 
from 2,066 to 2,247 for cis-eQTLs and 43 to 379 for 

Table 1 Descriptive statistics of the traits included in the association studies, which were partially described by Almeida et al. [24]

SW (kg) Slaughter weight in kg, CCY (%) Cold carcass yield as a percentage of the slaughter weight, LEA (cm²) Ultrasound-based loin eye area measured between 
the  10th and  11th ribs, BFT (cm) Backfat thickness measured by ultrasound at the  10th rib, IMF (%) Intramuscular fat content in percentage, N Number of records, CV 
(%) Coefficient of variation, SD Phenotypic standard deviation

TRAIT N Mean Minimum Maximum CV SD

SW (kg) 72 132.7 107.0 160.0 8.24 10.93

CCY (%) 72 69.9 66.4 73.0 1.76 1.23

LEA  (cm2) 72 44.3 23.4 57.2 11.69 5.17

BFT (cm) 72 14.7 9.9 23.1 17.21 2.53

IMF (%) 72 2.6 0.2 8.4 52.26 1.23
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trans-eQTLs. In the scenarios with LD pruning (S6, S7, 
and S8), the number of unique cis-eQTLs ranged from 
223 to 612 while the number of trans-eQTLs ranged 
from 29 to 403. In scenarios S2, S3, and S4, the number 
of genes regulated by cis- and trans-eQTLs ranged from 
159 to 304 and from 8 to 1,965, respectively. The num-
ber of genes regulated by cis- and trans-eQTLs in sce-
narios S6, S7, and S8 ranged from 109 to 185 and from 6 
to 5,993, respectively. Table 3 shows the overlap between 
the significant cis- and trans-eQTLs.

The cis- and trans-eQTLs of scenarios S3 and S7 over-
lapped by 94 to 100% with scenarios S2 and S6. Further-
more, a small number of trans-eQTLs were located on 
the same chromosome as the modulated gene (S2 = 24, 
S3 = 15, S4 = 3, S6 = 19, S7 = 13 and S8 = 2). The results of 
the cis- and trans-eQTLs for all scenarios are presented 
in Additional file 2. Figure 2a-d illustrate the eQTLs dis-
tribution across the autosomal chromosomes for cis- and 
trans-eQTLs for scenarios S2, S4, S6, and S8, respectively. 

The diagonal line formed refers to the cis-eQTLs distri-
bution, and the vertical points refer to the trans-eQTLs. 
The Y-axis represents the gene order in relation to chro-
mosome position in the pig reference genome, and the 
X-axis represents the SNP order in relation to chromo-
some position in the pig genome.

Association of eQTLs with carcass and body 
composition traits
A total of 2,547, 2,107, 576, and 641 eQTLs (cis- and 
trans-eQTLs) were identified for the scenarios S2, S4, 
S6, and S8, respectively. These eQTLs were subse-
quently used for the association analyses with SW, CCY, 
LEA, BFT, and IMF. The effects of initial body weight 
(28.44 ± 2.95  kg) and treatment [basal diet with 1.5% 
degummed soybean oil, basal diet with 3% soybean oil, 
basal diet with 3% canola oil and basal diet with 3% fish 
oil from crooked sardines (Cetengraulis edentulus)] were 
adjusted as continuous covariate and categorical fixed 

Table 2 Number of single nucleotide polymorphisms (SNPs) before and after the quality control for each of the scenarios evaluated

GGP-50K SNPs from the GeneSeek Genomic Porcine 50K medium density genotyping array, LD Linkage disequilibrium, RNA-seq RNA sequencing, S1-S8 Scenarios 1 to 
8. The percentage of RNA-seq and GGP-50K SNPs represents the proportion of SNPs from the pig transcriptome and from the GGP-50K in scenarios S4, S6, S7, and S8

Dataset Number of SNPs 
(before quality 
control)

Number of SNPs after the 
quality control and prior to LD 
pruning

Number of SNPs 
after LD pruning

SNPs from the GGP‑50 K SNP chip array 50,697 30,872 (S1) 9,210 (S5)

SNPs from the RNA‑seq data of the skeletal muscle 2,591,269 74,812 (S2) 18,933 (S6)

SNPs from the GGP‑50 K SNP chip array plus the SNPs from the RNA‑
seq data of the skeletal muscle

2,701,417 104,699 (S3) 30,037 (S7)

Percentage of SNPs from the RNA‑seq or GGP‑50 K SNP chip array, respectively 71% | 29% 64% | 36%

SNPs from the GGP‑50 K SNP chip array plus the SNPs from the RNA‑
seq data of the skeletal muscle, liver, and brain tissues

6,675,049 135,996 (S4) 105,870 (S8)

Percentage of SNPs from the RNA‑seq or GGP‑50 K SNP chip array, 
respectively

78% | 22% 89% | 11%

Fig. 1 Number of eQTL associations identified for combinations of SNPs pruned and unpruned for linkage disequilibrium (LD). S2: SNPs 
from the RNA‑seq data of the skeletal muscle; S3: SNPs from the GGP‑50 K plus the SNPs from the RNA‑seq data of the skeletal muscle; S4: SNPs 
from the GGP‑50 K plus the SNPs from the RNA‑seq data of the skeletal muscle, liver, and brain tissues; S6: SNPs from the SNPs from the RNA‑seq 
data of the skeletal muscle after LD pruning; S7: SNPs from the GGP‑50 K plus the SNPs from the RNA‑seq data of the skeletal muscle after LD 
pruning; and, S8: SNPs from the GGP‑50 K plus the SNPs from the RNA‑seq data of the skeletal muscle, liver, and brain tissues after LD pruning
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effects, respectively. No significant (FDR < 0.05) or sug-
gestive (0.05 ≤ FDR < 0.10) associations were identified 
between the eQTLs identified and SW, CCY, LEA, BFT, 
and IMF for the scenarios S2, S4, S6, and S8. The genomic 
inflation factor (lambda value - λ) ranged from 0.9 to 
1.10, indicating that population structure was properly 
accounted for in the analyses. The results of the statistical 
results for the respective scenarios (S1-S8) are presented 
in Additional file 3.

eQTLs annotation
For the scenarios S2, S4, S6, and S8, a total of 2,547, 2,107, 
576, and 165 variants (cis- and trans-eQTLs) were ana-
lyzed, respectively. A total of 1,044 (41.0%), 834 (39.6%), 
390 (67.7%), and 68 (41.2%) variants were classified as 
new variants for scenarios S2, S4, S6, and S8, respectively. 
Most of these new variants are located within long non-
coding RNA (lncRNA) and protein coding genes. Fig-
ure 3a-d show the most severe predicted consequences of 
cis- and trans-eQTLs for each scenario. The Additional 
file 4 shows the complete Variant Effect Predictor (VEP) 
annotation for all cis- and trans-eQTLs.

eQTLs and QTL overlap enrichment analyses
We searched for overlapping genomic position between 
the eQTLs herein identified and QTL previously reported 
to be associated with meat and carcass quality and other 
production traits in pigs using the Genomic Annota-
tion in Livestock for positional candidate LOci (GALLO, 

[26]) R package. This R package annotates and provides 
graphical visualization of QTL enrichment analyses. The 
annotation and enrichment analyses of the eQTLs from 
each of the scenarios tested (S2, S4, S6, and S8) resulted 
in 31,023 QTL previously reported in the PigQTLdb 
database (release 47) [27], considering a window of up to 
100 kb downstream and upstream of the genomic coor-
dinates of the cis- and trans-eQTLs. The initial number 
of SNPs in a single count were 2,247 for cis-eQTLs and 
379 for trans-eQTLs in scenario S2; 2,066 of cis-eQTLs 
and 43 of trans-eQTLs in scenario S4; 223 cis-eQTLs and 
403 trans-eQTLs for scenario S6; and 612 cis-eQTLs and 
29 trans-eQTLs for scenario S8. The QTLs resulting from 
the annotation were enriched using a hypergeometric 
test to reduce potential bias in the results.

For scenarios S2, S4, S6, and S8, the traits “loin mus-
cle area”, “average backfat thickness”, and “abdominal 
fat weight” from the QTL list of the “Meat and Car-
cass” type were enriched. The traits “carcass weight 
(hot)”, “fat-cuts percentage”, “linoleic acid content”, 
“backfat above muscle dorsi”, “subcutaneous fat area”, 
and “muscle protein percentage” were also enriched 
for cis- and trans-eQTLs in scenarios S2 and S6, and 
only for cis-eQTLs in scenarios S4 and S8. The traits 
“fat weight (total)” and “polyunsaturated fatty acid 
content” were enriched for cis- and trans-eQTLs in 
S2. The traits “total body fat tissue linear” and “loin 
eye area linear” were enriched for cis-eQTLs in S6 
and trans-eQTLs in S2. Additionally, “carcass weight 

Table 3 Description of the percentage and number of cis‑ and trans‑eQTLs (expression quantitative trait loci) identified across 
scenarios represented by different set of SNPs associated with gene expression levels in the skeletal muscle of Large White pigs

eQTLs Expression quantitative trait loci, SNPs Single nucleotide polymorphisms, S2 SNPs from the RNA-seq data of the skeletal muscle, S3 SNPs from the GGP-50K 
plus the SNPs from the RNA-seq data of the skeletal muscle, S4 SNPs from the GGP-50K plus the SNPs from the RNA-seq data of the skeletal muscle, liver, and brain 
tissues; S6: SNPs from the RNA-seq data of the skeletal muscle after linkage disequilibrium (LD) pruning; S7: SNPs from the GGP-50K plus the SNPs from the RNA-seq 
data of the skeletal muscle after LD pruning, and, S8: SNPs from the GGP-50K plus the SNPs from the RNA-seq data of the skeletal muscle, liver, and brain tissues after 
LD pruning. The table diagonal represents the number of eQTLs identified, the values above the diagonal indicate the percentage of overlapping eQTLs among the 
scenarios, and the values below the diagonal represent the number of overlapping eQTLs across datasets

SCENARIO Cis-eQTLs Trans-eQTLs

S2 S3 S4 S6 S7 S8 S2 S3 S4 S6 S7 S8

Cis-eQTLs S2 2,247 100% 57% 100% 99% 59% 27% 26% 0% 18% 22% 0%

S3 2,061 2,065 56% 11% 100% 58% 25% 24% 0% 15% 19% 0%

S4 1,184 1,152 2,066 5% 4% 25% 13% 12% 5% 4% 5% 0%

S6 223 219 95 223 95% 14% 9% 10% 0% 12% 16% 0%

S7 182 183 81 174 183 13% 7% 8% 0% 9% 13% 0%

S8 361 352 156 88 82 612 2% 1% 0% 2% 3% 0%

Trans-eQTLs S2 103 96 50 34 27 7 379 100% 60% 30% 46% 69%

S3 76 71 36 29 23 4 291 291 58% 7% 36% 66%

S4 0 0 2 0 0 0 26 25 43 7% 32% 31%

S6 72 60 18 50 37 9 120 3 93 403 94% 14%

S7 58 49 13 41 34 9 121 94 3 249 264 14%

S8 0 0 0 0 0 0 20 19 9 4 4 29
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Fig. 2  Expression quantitative trait loci (eQTLs) distribution across the autosomal chromosomes for cis‑ and trans‑eQTLs for scenarios S2, S4, 
S6, and S8 represented by different set of SNPs associated with expression level of skeletal muscle of Large White pigs (Fig. 2a, b and c, and 2d, 
respectively). The blue lines separate the chromosomes, the Y‑axis represents the gene order in relation to chromosome position in the pig 
genome, and the X‑axis represents the SNP order in relation to chromosome position in the pig genome. Figure 2a. S2: SNPs from the RNA‑seq data 
of the skeletal muscle, Fig. 2b. S4: SNPs from the GGP‑50 K plus the SNPs from the RNA‑seq data of the skeletal muscle, liver, and brain tissues, Fig. 2c. 
S6: SNPs from the RNA‑seq data of the skeletal muscle after linkage disequilibrium pruning, and Fig. 2d. S8: SNPs from the GGP‑50 K plus the SNPs 
from the RNA‑seq data of the skeletal muscle, liver, and brain tissues after linkage disequilibrium pruning
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(cold)” was enriched for cis-eQTLs in S2, S4, and S8, 
and for trans-eQTLs in S6. For the “Production” QTL 
type, the traits “average daily gain” and “body weight 
(slaughter)” were enriched for cis- and trans-eQTLs in 
scenarios S2 and S6 and only for cis-eQTLs in scenar-
ios S4 and S8.

 The QTL type enriched with the SNP markers of 
the most significant eQTLs was “Meat and Carcass”, 
followed by “Health” across all scenarios. The top 10 
significant traits in the Meat and Carcass QTL type 
enrichment analyses for cis- and trans-eQTLs from 
scenario S2 are shown in Figs.  4 and 5. More details 
about the enrichment results are shown in Additional 
file 5.

Gene Ontology (GO), functional annotation, and metabolic 
pathways
The genes (counted uniquely) regulated by cis- and 
trans-eQTLs, identified in scenarios S2 (cis = 304, 
trans = 1,965), S4 (cis = 159, trans = 8), S6 (cis = 185, 
trans = 5,993), and S8 (cis = 109, trans = 6) were used for 
Gene Ontology (GO), gene annotation, and metabolic 
pathway (MP) analyses. The same gene set was used for 
functional enrichment analyses. These analyzes were 
performed to understand the biological mechanisms 
influenced by the candidate genes regulated by cis- and 
trans-eQTLs.

We first applied a filter on the annotation description 
of the genes modulated by cis- and trans-eQTLs in each 

Fig. 3  Primary consequences predicted by the Variant Effect Predictor (VEP) tool in scenarios S2 (Fig. 3a), S4 (Fig. 3b), S6 (Fig. 3c), and S8 (Fig. 3d). 
UTR: untranslated region. UTR variant: a transcript variant that is within an UTR; 3’UTR: an UTR variant of the 3’UTR; 5’UTR: an UTR variant of the 5’UTR; 
Other: variants non‑coding transcript exon, splice polypyrimidine tract, intron intergenic, intron, non‑coding transcript, splice region, synonymous, 
splice acceptor, splice polypyrimidine tract, splice region, intron, splice donor, stop lost, splice donor region, intron, splice polypyrimidine tract, 
intron, non‑coding transcript, splice region, 3’UTR, stop retained, missense, and splice region
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Fig. 4 Top 10 significant traits in Meat and Carcass QTL‑type enrichment analyzes for cis‑eQTLs identified in porcine skeletal muscle. The 
area of the bubbles represents the number of observed QTL for that class, while the color represents the p‑value scale (the darker the color, 
the more significant the p‑values). Additionally, the X‑axis shows the richness factor for each QTL, representing the ratio of the number of QTL 
and the expected number of that QTL

Fig. 5 Top 10 significant traits in Meat and Carcass QTL‑type enrichment analyzes for trans‑eQTLs identified in the porcine skeletal muscle 
transcriptome. The area of the bubbles represents the number of observed QTL for that class while the colors represent the p‑value scale (the darker 
the color, the more significant are the p‑values). Additionally, the X‑axis shows the richness factor for each QTL, representing the ratio of the number 
of QTLs and the expected number of that QTL
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of the scenarios evaluated before investigating eQTLs 
associated with possible gene regulation mechanisms. 
We used key terms such as transcription factors, inhibi-
tors, co-regulators, chromatin modelers and remodelers, 
histone acetylators, modifiers, RNA binding, repressors, 
and other genes related to gene regulation. Furthermore, 
we also annotated the genes harboring the identified 
eQTLs. More details of the gene annotation of the regu-
lated genes found in scenarios S2 to S8 are presented in 
Additional file 6.

The most significant metabolic pathway in S2, con-
sidering the genes regulated in cis-eQTLs type was 
“Chemical carcinogenesis” (ssc05204). No GO terms 
were enriched for this gene set. For the genes regulated 
in trans-eQTLs class in S2, the most enriched GO terms 
were the biological process (BP) “Small GTPase-medi-
ated signal transduction” (GO:0007264), the molecu-
lar function (MF) “calcium ion binding” (GO:0005509), 
and the cellular component (CC) “cell leading edge” 
(GO:0031252), and the most significant metabolic path-
way was “Adherens junction” (ssc04520). For S4, only 
two metabolic pathways were enriched, the first and 
most significant was “Drug metabolism” (ssc00982) con-
sidering the genes regulated in cis, with no GO terms 
enriched for the trans regulated genes. For genes regu-
lated by trans-eQTLs, there was no significant MP, CC, 
BP, or MF. For S6, four metabolic pathways were enriched 
and the most significant was “Ovarian steroidogenesis” 
(ssc04913) in cis action. On the other hand, in trans, the 
most enriched GO terms for the S6 scenario were the BP 
“circulatory system development” (GO:0072359), the CC 
“extrinsic membrane component” (GO:0019898), and the 
MF “identical protein binding” (GO:0042802), and the 
MP “Proteoglycans in cancer” (ssc05205). There were no 

significant GO terms or MP for S8. The most enriched 
GO terms and MP are shown in Table  4 and further 
details of the enrichment analyses for the GO domains 
of BP, MF, CC, and MP are presented in the Additional 
file 5.

Comparing up to 100 GO terms and the most enriched 
MP between S2 and S6 trans-eQTLs, there was an over-
lap of 71.4% of CC terms, 71.4% of MF, and 86.1% of BP. 
The overlapping results of MP from S2 and S6 revealed 
28% and 82.5% of similarity in cis- and trans-eQTLs, 
respectively. There was a 100% overlap of the significant 
MP in cis-eQTLs from the S4 and the top twenty most 
significant pathways in cis-eQTLs for S2.

Genes modulated by eQTLs
A total of 457 genes were found to be associated with 
the eQTLs from the different scenarios. The scenarios 
with SNPs only from the skeletal muscle transcriptome 
(S2 and S6) enabled the identification of more genes 
modulated both in cis and in trans action. Scenarios 
with LD-pruned SNPs also identified more modulated 
genes. Additionally, the scenario S6 presented the largest 
number of overlapping genes modulated with the other 
scenarios, that is, genes modulated in cis or trans iden-
tified in scenario S6 were frequently identified in other 
scenarios.

In S2, the trans-eQTLs located in the genes encod-
ing CEBZB (zeta CCAAT enhancer binding protein), 
eIF2B (eukaryotic translation initiation factor 2B sub-
unit alpha), TSTD3 (sulfur thiosulphate transferase 
domain containing 3), TMEM245 (Transmembrane 
protein 245), and OXCT1 (3-oxoacid CoA-transferase 
1) were identified. These trans-eQTLs were associ-
ated with expression of genes involved in regulatory 

Table 4 Description of the most enriched gene ontology (GO) and metabolic pathways (MP) terms across the evaluated scenarios

MP Metabolic pathways, BP Biological process, CC Cellular component, MF Molecular function, FDR False Discovery Rate, S2 SNPs from the RNA-seq data of the skeletal 
muscle, S4 SNPs from the GGP-50K plus the SNPs from the RNA-seq data of the skeletal muscle, liver, and brain tissues, S6 SNPs from the RNA-seq data of the skeletal 
muscle after linkage disequilibrium pruning (r² threshold of 0.70); cis: genes locally modulated by eQTLs used for the enrichment analyses; trans: genes distantly 
modulated by eQTLs used for the enrichment analyses

Gene Set Scenario Action Term Description FDR

ssc05204 S2 Cis MP Chemical carcinogenesis 4E‑05

GO:0007264 S2 Trans BP Small GTPase mediated signal transduction 1E‑04

GO:0031252 CC Cell leading edge 1E‑04

GO:0005509 MF Calcium ion binding 4E‑05

ssc04520 MP Adherens junction 2E‑08

ssc00982 S4 Cis MP Drug metabolism 5E‑02

ssc04913 S6 Cis MP Ovarian steroidogenesis 4E‑04

GO:0072359 S6 Trans BP Circulatory system development 3E‑11

GO:0019898 CC Extrinsic component of membrane 1E‑04

GO:0042802 MF Identical protein binding 7E‑05

ssc05205 MP Proteoglycans in cancer 5E‑08
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mechanisms, such as transcription factors, chroma-
tin modifiers, primers, and bindings. Key transcrip-
tion factors identified include BCLAF1, E2F8, ELF1, 
ELK3, ETS1, ETV6, GABPB1, TCF12, TCF4, GTF3C1, 
MYT1L, SREBF2, YY1, ETS1, SOX7, FAP2A, and 
GTF3C5.

In addition, cis-eQTLs identified in S2 modulate the 
genes NAT10 (RNA cytidine acetyltransferase), YIPF2 
(Protein yipf2 isoform x3; member 2), EARS2 (Prob-
able glutamate—tRNA ligase, mitochondrial isoform 
x1; glutamyl-tRNA synthetase 2; Belongs to the class-I 
aminoacyl-tRNA synthetase family), GBA (Glucosylce-
ramidase precursor; Sus scrofa glucosidase), MTERF3 
(Transcription termination factor 3, mitochondrial 
isoform x2), EMG1 (ENSSSCP00000026081), SYMPK 
(Symplekin isoform x1), and THYN1 (Thymocyte 
nuclear protein 1 isoform x1). These genes are modu-
lated by cis-eQTLs predicted to 3’UTR, 5’UTR, down-
stream, upstream, and missense variants.

The inclusion of SNPs from the 50 K SNP chip array 
resulted in a lower number of significant modulated 
genes (FDR < 0.01) between scenarios S2 and S3, as 
well as between S6 and S7, with a pattern inversely 
to the increase in the number of SNPs. However, the 
combination of SNPs from the SNP array with skel-
etal muscle sequencing SNPs (S3 and S7 scenarios) 
enabled the identification of 13 specific variants 
of the GGP-50  K associated with 19 genes, includ-
ing the Zic family member 5 (ZIC5) identified exclu-
sively in the S3 scenario in cis. This gene contains a 
variant from the GGP-50  K panel (rs81431697). In 
addition, in the S7 scenario, in trans, there were also 
genes modulated exclusively by variants derived from 
the GGP-50  K SNP panel dataset, including SLC7A1, 
TRAPPC9, ENSSSCG00000034462, GOLT1A, ENS-
SSCG00000018018, ENSSSCG00000024765, TTC23, 
and ENSSSCG00000009523. The other genes identi-
fied in scenarios S3 and S7, modulated by SNPs from 
the GGP-50  K SNP panel dataset, were identified in 
S6, however, modulated by variants identified in the 
skeletal muscle transcriptome.

Lastly, in scenarios S4 and S8, there were no signifi-
cant eQTLs derived from the GGP-50  K SNP panel 
dataset. The cis-eQTLs, detected only in liver or brain 
tissue (not identified in the transcriptome of skel-
etal muscle tissue and GGP-50  K), modulated only 
four genes in S4 (not identified in S2, S3, S6 and S7), 
including CACNG5 (calcium voltage-gated channel 
auxiliary subunit gamma 5), IK (IK cytokine), RBM46 
(RNA binding motif protein 46), and ZNF821 (zinc 
finger protein 821), which were cis modulated. Only IK 
and ZNF821 were identified in S8 and cis modulated.

Discussion
Currently, most of the GWAS studies for meat quality 
traits in livestock have used SNPs located primarily in 
non-coding genomic regions. However, Next Generation 
Sequencing (NGS) technology has enabled the discovery 
of thousands of SNPs across the whole transcriptome, 
which are usually not included in SNP chip arrays. There-
fore, in this study we evaluated the impact of combining 
different sets of SNPs from medium-density SNP chip 
arrays (i.e., GGP-50  K) and SNPs identified in the tran-
scriptome of pig brain, liver, and skeletal muscle tissues 
(with and without LD pruning) on the identification of 
cis- and trans-eQTLs and their association with carcass 
and body composition traits in Large White pigs. In addi-
tion, enrichment analyses were performed using the gene 
lists identified across the scenarios to reveal GO terms 
and MP in which these genes are involved. The SNPs 
were used to identify cis- and trans-eQTLs.

Identification of cis- and trans-eQTLs in different scenarios
The combination of SNP datasets and LD pruning 
resulted in eight scenarios that were used to iden-
tify cis- and trans-eQTLs. A total of 15,090 genes were 
identified when considering the gene expression level in 
the skeletal muscle transcriptome. The number of cis- 
and trans-eQTLs in all scenarios is within the expected 
ranges reported in the literature. For instance, Liu et al. 
[28] detected 10,693 cis-eQTLs and 10,961 trans-eQTLs 
in the Longissimus dorsi muscle of 189 crossbred pigs 
from Duroc boars crossed with Luchuan sows. Liu et al. 
[29] reported 3,054 eQTLs, including 1,283 cis-eQTLs 
and 1,771 trans-eQTLs in skeletal muscle from F2 White 
Duroc x Erhualian pigs. Besides the tissue sampled, there 
are several other differences among studies, which may 
explain the variability in the number of cis- and trans-
eQTLs identified. These differences include the technique 
used for measuring gene expression (e.g., RT-qPCR, 
RNA-seq, and microarray), sequencing coverage depth, 
breed (e.g., Duroc, Luchuan, Erhualian, Large White, or 
crossbred animals), sample size, statistical models, covar-
iates used for adjusting the phenotypes, level of correc-
tion for population stratification, initial number of SNPs 
and genes considered (SNP x gene interactions), quality 
control measures applied to SNPs and genes, method and 
thresholds used for multiple testing correction, and the 
significance levels.

In this study, there was a decrease in the number of 
eQTLs associations in cis- and trans-eQTLs as the num-
ber of SNPs increased, likely due to the greater strin-
gency of correction for multiple tests and the reduced 
sample size, as suggested by Huang et al. [30]. The reduc-
tion of significant eQTLs by increasing the weight of the 
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correction method may be due to a greater removal of 
false positives [30]. Thus, when incorporating SNPs from 
other genomic regions, such as those identified in the 
liver and brain tissues, it is important to consider stricter 
significance thresholds. However, such approaches are 
necessary to capture variants located in other genomic 
regions that may contribute to a better understanding of 
the cellular mechanisms involved in phenotypic variabil-
ity on the studied traits.

Inclusion of SNPs from different sources to identify eQTLs
It was found that in S3 and S7, the combination of SNPs 
from a 50  K SNP chip panel with SNPs from the skele-
tal muscle transcriptome allowed the detection of addi-
tional cis- and trans-eQTLs. The eQTLs identified in 
scenarios S3 and S7 are specifically derived from SNPs 
from the GGP-50 K SNP panel dataset. Among these, the 
rs81431697 eQTL showed modulation in cis action of the 
ZIC5 gene, which is involved in cell differentiation [31].

In scenarios S4 and S8, we also identified local and 
distant eQTLs that modulate genes not identified in 
the other scenarios and from SNPs derived from mus-
cle sequencing (S2, S3, S6, and S7). These genes are 
related to bioprocesses (CACNG5) [32], regulation of 
the immune system and autoimmune disorders (IK) 
[33], and developmental disorders (RBM46) [34]. Addi-
tionally, the ZNF821 gene encodes a protein involved 
in the regulation of the structure and function of DNA 
(GO:1,990,837) [35]. Thus, verifying the combination of 
all SNPs allowed the identification of genes, not identified 
in other scenarios, modulated by eQTLs not identified by 
the sequencing of skeletal muscle tissue transcriptome. 
However, the scenarios containing the combinations of 
all SNPs contributed to the identification of genes cis 
modulated by eQTLs not present in the transcriptome of 
the skeletal muscle of pigs. The scenarios S4 and S8 pre-
sented the lowest number of genes modulated by trans-
eQTLs (8 and 6). Therefore, the approach used in these 
two scenarios is not indicated for detecting distant effects 
of variants on gene modulation in the skeletal muscle of 
pigs.

Modulated genes by cis- and trans-eQTLs and regulatory 
mechanisms
Trans-eQTLs identified in the genes CEBZB, eIF2B, 
TSTD3, TMEM245, and OXCT1, in scenario S2 modulat-
ing gene encoding transcription factors, include BCLAF1, 
E2F8, ELF1, ELK3, ETS1, ETV6, GABPB1, TCF12, TCF4, 
GTF3C1, MYT1L, SREBF2, YY1, ETS1, SOX7, FAP2A, 
and GTF3C5. This indicates potential indirect regulatory 
interactions between the genes containing the eQTLs and 
these transcription factors, by trans modulation. These 
genes play important roles in the phenotypic expression 

of traits such as carcass, body composition, and meat 
quality. BCLAF1 is involved in the regulation of muscle 
growth in homologues [36]. E2F8 is involved in the regu-
lation of cell cycle progression [37], and ELF1 is involved 
in the regulation of gene expression [38, 39]. Addition-
ally, chromatin modifiers identified in this study, such as 
GABPB1, TCF12, and GTF3C1, are known to play a role 
in regulating gene expression [40–42].

Genes such as MYT1L, SREBF2, and YY1 also play 
important roles in regulating gene expression [43–50], 
and they may interact with each other, such as enhancer 
CEBPZ and eIF2B regulate the expression of genes 
involved in protein synthesis, potentially impacting skel-
etal muscle mass. OXCT1, on the other hand, can inter-
act with other genes to regulate the expression of genes 
involved in muscle development [23, 51], potentially 
affecting meat quality.

Additionally, we highlighted other potential mecha-
nisms such as the cis action –a cis-eQTL modulates the 
expression of genes nearby. The variants predicted by 
VEP indicate consequences, such as changes in 3’UTR, 
downstream gene, upstream gene, and missense regions. 
These consequences may imply changes in amino acids, 
molecular affinity, tridimensional structure, or mRNA 
stability, all of which can affect regulation of gene expres-
sion. Changes in the expression of genes such as TPM1 
and ARL14EP could influence the regulation of cell 
growth, and consequently, muscle growth and carcass 
weight [52]. Genes involved in energy metabolism such 
as GLUT4 and CPT1A were also identified. For example, 
GLUT4 is involved in glucose uptake by cells and CPT1A 
is involved in the production of ketone bodies from fatty 
acids [46, 53, 54]. Thus, alterations in the expression of 
these genes can lead to changes in carcass and body com-
position traits.

The impact of linkage disequilibrium pruning on eQTL 
identification
Based on the observed pattern of the scenarios based 
on LD pruning (S6, S7, and S8), and the fact that more 
SNPs implies in an increased number of statistical tests 
and more conservative FDR correction, the number of 
cis-eQTLs in S8 is the only one that increased across all 
scenarios compared. In all other cases including trans-
eQTLs, the detection sensitivity of eQTLs decreased with 
the relative increase in the number of SNPs. Although 
cis-eQTLs are more easily identified [28], they were not 
the most predominant in this study.

Pruning for LD also had a significant impact on the 
identification of eQTLs, as genetic variations that are 
linked may also be associated with differences in gene 
expression levels. Therefore, LD pruning is important as 
it allows the removal of linked genetic variants that may 
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confound the results of gene expression analyses [9, 12, 
15, 16, 21, 55, 56]. LD pruning reduces the number of 
variants considered in the analyses, which can improve 
the results by reducing collinearity among SNPs [15, 21].

The numerical difference in the total association num-
ber of cis- and trans-eQTLs identified in S2 was 214, 
whereas in the equivalent scenario subjected to LD 
pruning (S6) this difference was 13,430 eQTLs. A simi-
lar pattern was observed between scenarios S3 and S7. 
However, smaller differences were observed when con-
sidering only the unique eQTLs. A notable decrease in 
the count of the cis-eQTLs from S2 (2,247) to S6 (223) 
was observed, indicating that LD pruning, despite reduc-
ing the numerical count of cis-eQTLs and their unique 
genomic coordinates, favored the identification of trans-
eQTLs. The cis effect adopted in these analyses refers to 
the “local” effect, as explained by Hasin-Brumshtein et at. 
[57]. These cis-eQTLs are defined by a distance of up to 
1 Mb from the regulated gene, indicating that these SNP 
are closer and thereby more susceptible to be pruned due 
to greater LD among them. This could explain the reduc-
tion in the number of cis-eQTLs from S2 to S6.

It was also observed that most of the genes modulated 
by eQTLs to GGP-50 K (scenarios S3 and S7) were also 
modulated by eQTLs from scenario S6. This indicates 
that LD pruning may contribute to increasing the eQTL 
detection ability, which would explain part of the over-
lapping of modulated genes in the scenarios enriched 
with SNPs from SNP chip arrays such as S3 and S7.

As some of the cis- and trans- eQTLs were associated 
with several genes, genes associated with several eQTLs 
simultaneously were also observed. The scenarios with 
SNPs from skeletal muscle sequencing of pigs identified 
the greatest number of genes. Additionally, it demon-
strated significant overlap in functional analyses with the 
LD unpruned scenarios, despite having a smaller set of 
initial SNPs. This suggests that LD pruning can effectively 
balance the stringency of multiple testing correction. 
These observations highlight the intrinsic relationship 
between pruning for LD and FDR in sensibility of the 
correction to multiple tests from the results.

eQTL associations with carcass and body composition 
traits
The cis- and trans-eQTLs identified in each of the sce-
narios were used for the GWAS analyses with carcass and 
body composition traits. However, there were no signifi-
cant variants or any trends for the tested traits. Accord-
ing to Yang et  al. [58], MLMA is directly related to the 
proportion of samples to the number of SNPs and a small 
number of markers reduces the power of the MLMA 
model. The lack of significance in our analyses may be 

related to the small sample size (72 pigs). Larger sample 
sizes are recommended for future studies [59].

Despite the lack of significant associations between 
cis- and trans-eQTLs with carcass traits and body com-
position, a substantial number of overlapping eQTLs 
with previously reported QTL related to pork meat and 
carcass traits were identified. This overlap with QTL pro-
vides valuable insights into potential regulatory interac-
tions of cis- and trans-eQTLs and gene mechanisms that 
may influence the carcass and body composition traits 
evaluated in this study.

The incorporation of SNPs from brain and liver tissues 
transcriptomes, as well as SNPs from SNP chip arrays, 
into the skeletal muscle SNP dataset was helpful in iden-
tifying genes not identified solely based on SNPs from 
skeletal muscle transcriptome. However, this increases 
the number of statistical tests as discussed earlier. LD 
pruning contributed to increasing the number of eQTLs 
identified with good concordance with the functional 
enrichment analyses. However, LD pruning might also 
lead to the loss of information on potentially important 
variants. Furthermore, different approaches to com-
bine SNPs can lead to different tested hypotheses. These 
combinations can increase false positives in addition to 
inflating errors and increasing the weight of the multi-
ple testing correction. However, the combination of SNP 
sources and LD pruning depends on the hypothesis to be 
assessed, in addition to factors such as data availability 
and sample size. The eQTLs identified in this study can 
be used in future analyses of gene regulation, cis- and 
trans-eQTLs-regulated genes, gene co-expression net-
works, and data integration. However, it is important to 
note that the sample size used in the study was a limiting 
factor for some analyses, such as GWAS and associations 
with the phenotypic traits.

Conclusions
The scenarios including LD-pruned SNPs (r²>0.7) iden-
tified in the transcriptome of the skeletal muscle tissue 
of pigs resulted in the highest number of genes modu-
lated by eQTLs. The eQTLs identified are involved in 
gene regulation related to complex traits of pigs, such as 
transcription factors and enhancers. In addition, com-
bining SNPs identified in the transcriptome of skeletal 
muscle with SNPs from the transcriptome of brain and 
liver tissues and SNPs from SNP chip arrays contributed 
to the identification of eQTL modulating genes not iden-
tified when using only the SNPs from the pig skeletal 
muscle transcriptome. New functional candidate vari-
ants associated with the gene expression levels in skel-
etal muscle were identified in all scenarios. Interestingly, 
the addition of the 50 K SNP chip array data resulted in 
gene associations not discovered in the other scenarios. 
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Overall, in this study we identified various novel candi-
date functional variants associated with the level of gene 
expression in porcine muscle that contribute to better 
understanding phenotypic variability in complex traits in 
pigs.

Methods
Experiment
The transcriptome and the carcass and body composition 
data used in this study were previously described by our 
team [25, 60, 61]. Briefly, 72 genetically lean male immu-
nocastrated pigs of the Large White breed with negative 
genotypes for the homozygous halothane gene (NN) were 
randomly assigned to one of four dietary treatments with 
six replicate pens per treatment and three pigs per pen. 
Treatments consisted of diets supplemented with 1.5% 
degummed soybean oil or 3% oil from soybean oil, or 
3% canola oil, or 3% fish oil from crooked sardines (Cet-
engraulis edentulus). All animals had ad  libitum access 
to feed and water throughout the experimental period 
(98 days). The average initial body weight (BW) was 
28.44 ± 2.95 kg, and the average age was 71 ± 1.8 days. The 
pigs were fed a basal diet formulated to meet or exceed 
the nutritional requirements for growing and finishing 
pigs [62].

Collection of samples and phenotypes
After a 12-h fasting period, the pigs were slaughtered 
with an average BW of approximately 132.7 kg. Skeletal 
muscle (Longissimus lumborum) between the 10th and 
11th ribs, liver (right lobe of the liver), and brain (portion 
of the middle region of the frontal lobe) samples were 
collected within a maximum of 30  min after bleeding, 
immediately frozen in liquid nitrogen, and then stored 
at -80° C in an ultra-freezer. These samples were used for 
total mRNA extraction. The carcass and body composi-
tions phenotypes collected include SW, CCY, LEA, BFT, 
and IMF [25].

Total RNA extraction and mRNA sequencing
The RNA extraction from the tissue of skeletal muscle, 
brain, and liver samples, quality control of the RNA-seq 
data, counting, and normalization are described in Silva 
et al. [36] and Fanalli et al. [37, 38]. The sequencing analy-
ses were performed at the Genomics Center from the 
Luiz de Queiroz College of Agriculture (ESALQ), Piraci-
caba, São Paulo, Brazil.

Quality control of RNA-seq data, counting 
and normalization
The quality of RNA-seq was checked using the FastQC 
software v. 0.11.8 [39]. Sequencing adapters and low 
complexity reads were removed by Trim Galore 0.6.5 

software [40]. Reads with a minimum length of 70 bases 
and a Phred score greater than 33 were kept after trim-
ming and were aligned and mapped to the porcine ref-
erence genome (Sus scrofa 11.1) [41] using the assembly 
available at Ensembl (Release 102) [42]. Alignment, map-
ping, and sorting (by genomic coordinates) were per-
formed using the STAR v. 2.7.6a software [43].

The dataset used is available in the European Nucleo-
tide Archive (ENA) repository (EMBL-EBI), under the 
accession PRJEB52665 (brain tissue) [www. ebi. ac. uk/ 
ena/ data/ view/ PRJEB 52665]; PRJEB50513 [www. ebi. 
ac. uk/ ena/ data/ view/ PRJEB 50513] (liver tissue); and 
PRJEB52629 (skeletal muscle tissue - Longissimus lumbo-
rum) [www. ebi. ac. uk/ ena/ data/ view/ PRJEB 52629].

Identification of SNPs in RNA-seq data
For the variant calling analyses for each tissue, the 
Genome Analysis Toolkit (GATK, v. 4.1.9.0) was used 
in the Genomic Variant Call Format (GVCF) mode [44, 
45]. Genome coverage for each of the BAM files was 
calculated using SAMtools (v. 1.9) [46, 47]. The Haplo-
typeCaller algorithm [44, 45] was used to call the vari-
ants individually, generating GVCF files for each sample. 
These files were then merged using the CombineGVCF 
tool [44, 45] and the joint genotyping analyses were per-
formed using the GenotypeGVCF [44, 45]. In the end, a 
VCF file with all genotypes was generated.

DNA extraction and genotyping
The extraction of the genomic DNA of the 72 animals was 
performed using 30 mg of liver tissue that was macerated 
in liquid nitrogen, transferred to a 1.5mL microtube, and 
then processed according to the procedures protocol 
suggested by the manufacturer of the HighPrep™ Blood 
& Tissue DNA Plus Kit (MagBio Genomics, London, 
UK) which uses nucleic acid isolation technology based 
on magnetic beads. Subsequently, the DNA obtained 
was evaluated for quality and quantity by readings in 
the NanoDrop 2000 nano-spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA) at three different 
wavelengths 230 nm, 260 nm, and 280 nm. The integrity 
of the DNA extracted from the samples was evaluated 
by means of Ultra-Violet (UV) light visualization of the 
electrophoresis run on a 1.5% agarose gel [w/vol] and in 
Tris-borate-EDTA buffer with GelRed fluorescent stain-
ing (Biotium, Hayward, CA, USA). After DNA evaluation 
and quantification, an aliquot of approximately 1,000 ng 
was sent to the NEOGEN company (Pindamonhang-
aba, SP, Brazil) for genotyping using the first genera-
tion GeneSeek Genomic Profiler (GGP) Porcine 50 K, a 
medium-density SNP chip array with 50,915 SNPs. The 
results were received in the Illumina raw format and con-
verted to PLINK 1.9 [48] “ped” and “map” formats using 

http://www.ebi.ac.uk/ena/data/view/PRJEB52665
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a python algorithm [https:// github. com/ bioin forma tics- 
ptp/ Zanar di/ blob/ master/ Zanar di. py]. The individual 
identification (iid) and family identification (fid) referring 
to the animals were updated by PLINK 1.9 [48], based on 
the sampling index present in the “sample map” file, so 
that the animal identifications coincided with the other 
data files. In addition, the genomic coordinates (position 
and chromosome) were updated for the latest version of 
the Illumina GGP Porcine 50  K-24 v2 chip (www. illum 
ina. com/ produ cts/ by- type/ micro array- kits/ ggp- porci ne. 
html). Data from SNPs from all tissues and 50 K animal 
genotyping were merged (--bmerge) using the PLINK 1.9 
software [48].

Quality control
After the variant calling, to reduce the false discovery rate, 
variants were filtered by the SNP for variant quality score 
(QUAL) equal or greater than 30 (Pred score, Sanger/Illu-
mina 1.9 + encoding) [46, 49, 50] and total coverage depth 
(DP) equal or greater than 10, using BCFtools v. 1.9. [24, 
46]. Subsequently, we filtered only SNPs of the autosomal 
chromosomes from 1 to 18 and biallelic SNPs using the 
PLINK 1.9 software [23, 48]. Quality filters were used for 
variants with low MAF (--maf) 0.05, variants with a 0.95 
genotyping call rate (0.05 missing) (--geno), and variants 
with extreme departure from the Hardy-Weinberg equi-
librium test (--hwe) with p-value lower than  10−6 [23, 24, 
51, 52]. Files were also generated without quality filters 
to perform LD pruning considering a r² threshold of 0.70 
(--indep-pairphase) in the PLINK 1.9 software [63]. The 
parameters used for LD pruning were: “--indep-pairphase 
50 5 0.7”, that is, a window size equal to 50 SNPs, a window 
offset every 5 SNPs per step, and a correlation threshold 
(r²) paired equal to 70%. Thus, the pairs of SNPs in each 
window of 50 SNPs, with a square correlation greater 
than 70% were noted and one of the SNPs of that pair 
was removed, later, the window was shifted by 5 SNPs, 
and the procedure was repeated, until none of these cor-
related pairs (r²>0.7) remained [48]. The genomic datasets 
pruned for LD were subsequently filtered for MAF, miss-
ing call rate, and extreme departure from HWE as previ-
ously described.

Scenarios
To identify the SNPs that modulate the level of gene expres-
sion in the skeletal muscle of pigs, the SNPs identified from 
the brain and liver transcriptome data and 50 K genotyping 
were combined with the skeletal muscle transcriptome SNP 
dataset, which generated four datasets (scenarios). These 
datasets were subjected to LD pruning, which resulted in 
four additional scenarios. These combinations were per-
formed to investigate the impact of adding SNPs from 

different tissues and SNP identification methods to SNPs 
derived from skeletal muscle transcriptome sequencing 
data on the identification of cis- and trans-eQTLs in mus-
cle. Furthermore, LD pruning was performed for all com-
binations of SNPs, aiming to elucidate the implications of 
using this technique in the eQTLs mapping, according to 
different combinations of SNPs from different tissues and 
methods for SNP identification. These scenarios are: (S1) 
SNP set from the GGP-50 K; (S2) SNP set from the SNP 
calling of RNA-seq data of the skeletal muscle; (S3) SNP 
set from the GGP-50 K plus the SNP calling of RNA-seq 
data of the skeletal muscle; (S4) SNP set from the GGP-
50 K plus the SNP calling of RNA-seq data of the skeletal 
muscle, liver, and brain tissues; (S5) SNP set from the GGP-
50 K after LD pruning; (S6) SNP set from the SNP calling of 
RNA-seq data of the skeletal muscle after LD pruning; (S7) 
SNP set from the GGP-50 K plus the SNP calling of RNA-
seq data of the skeletal muscle after LD pruning; and, (S8) 
SNP set from the GGP-50 K plus the SNP calling of RNA-
seq data of the skeletal muscle, liver, and brain tissues after 
LD pruning.

Identification of eQTLs
The Matrix eQTL package [53] of the R statistical pro-
gram was used to identify associations between the SNPs 
from different scenarios and the gene expression level 
of the skeletal muscle tissue. The window for cis-eQTL 
(local effect) was defined as up to 1  Mb upstream from 
the start of transcription and up to 1  Mb downstream 
from the end of the regulated gene. The other combina-
tions were considered as trans-eQTL. To deal with gene 
expression outliers, the data was transformed to a nor-
mal distribution based on the mean, preserving the rela-
tive rank, as recommended by the consortium ‘GTEx’ 
(Genotype-Tissue Expression) [54]. The Matrix eQTL 
package tests the linear association between each marker 
(SNP) and gene assuming the genotype effect as additive, 
performs a separate test for each pair (marker and gene), 
and corrects for multiple testing by calculating the false 
discovery rate (FDR) [60, 61]. The fixed linear regression 
model fitted was:
G = β ∗ s + PC + SBW + SIRE + THREAT + ε  where 

G is the gene expression level in normalized transcripts 
per million (TPM), β is the SNP allelic substitution effect, 
s is the genetic marker covariate, coded as 0 (homozygous 
for the reference allele), 1 (heterozygous), and 2 (homozy-
gous for the reference alternative), PCare the first 10 
principal components to correct for potential popula-
tion stratification (these principal components explained 
a total of 28% on the variance-standardized relation-
ship matrix), SBW is the initial body weight, SIRE is a 
dummy variable that represents the sire effect, TREAT 

https://github.com/bioinformatics-ptp/Zanardi/blob/master/Zanardi.py
https://github.com/bioinformatics-ptp/Zanardi/blob/master/Zanardi.py
http://www.illumina.com/products/by-type/microarray-kits/ggp-porcine.html
http://www.illumina.com/products/by-type/microarray-kits/ggp-porcine.html
http://www.illumina.com/products/by-type/microarray-kits/ggp-porcine.html


Page 15 of 18Freitas et al. BMC Genomics           (2024) 25:14  

is a dummy variable that represents the treatment effect, 
and ε is the random residuals with ε ∼ i.i.d.N 0, σ 2  . 
For both cis- and trans-eQTLs, an FDR level of 0.01 was 
considered.

The estimated effect size (slope coefficient) and the 
genetic variance explained by the markers were also cal-
culated according to the Matrix eQTL package [53]. The 
scatter plots were done using the R ggplot2 package [64]. 
The genomic coordinates of the eQTLs data and associ-
ated genes were converted to mega base pairs (Mb) and 
sorted by chromosome and position. The eQTLs and 
gene position orders were used to plot the graphs with 
the X-axis referring to the order of the SNPs and the 
Y-axis referring to the order of the initial position of the 
genes.

Association with carcass and body composition traits
After identifying the eQTLs, significant SNPs were 
selected and these SNPs were associated with the traits 
of interest. The association between the SNPs in the 
eQTLs for all scenarios (S2, S3, S4, S6, S7, and S8) with 
the phenotypes was performed using a Mixed Linear 
Model Association (MLMA) [57] in the GCTA software 
[65], considering the effects identified for each phenotype 
and fitting the genomic relationship matrix to account 
for population stratification and polygenic effects. The 
model fitted was:
y = a+ β*x+ SBW+ TREAT+G+ ε  where y is 

the phenotypic record of each carcass and body com-
position trait evaluated, a is the overall mean, β is the 
additive effect (fixed effect) of the SNP being tested 
for potential association with the phenotype,  x is the 
indicator variable of the SNP genotype coded as 0 
(homozygous for the reference allele), 1 (heterozygous), 
or 2 (homozygous for the reference alternative), SBW 
is the systematic effect of initial body weight (as a lin-
ear covariate), TREAT represents the systematic treat-
ments effect, g is the polygenic effect (random effect), 
that is, the cumulative effect of all SNPs (as modelled by 
the genomic relationship matrix), and ε is the residual 
effect. The carcass and body composition traits evalu-
ated were SW, CCY, LEA, BFT, and IMF.

The values resulting from the association analyses were 
corrected for multiple tests using the FDR method [30, 
60], and the significance level adopted was 5% while we 
considered as indicative the FDR value between 5% and 
10%.

Prediction of the effects of cis- and trans-eQTLs identified 
in each of the scenarios
Based on the significant cis- and trans-eQTLs variants 
(FDR < 0.01) identified in scenarios S2, S4, S6, and S8, 

the functional consequence analyses of these variants 
(cis plus trans) for each of these scenarios were pre-
dicted using the VEP tool (Ensembl release 109 - Feb 
2023 © EMBL-EBI) [66] and considering the Sus scrofa 
11.1assembly genome. The distance to transcription that 
the VEP assigned for the upstream/downstream conse-
quence was of up to 5,000  bp and the other configura-
tions were kept the default of the web interface (www. 
ensem bl. org/ info/ docs/ tools/ vep/ online/ index. html) 
[67]. The command line used was “./vep --appris --bio-
type --buffer_size 5000 --check_existing --distance 5000 
--mane --sift b --species sus_scrofa --symbol --tran-
script_version --tsl --cache --input_file [input_data] 
--output_file [output_file]”, where input_data is the VCF 
file with the cis- and trans-eQTLs from each scenario.

Annotation and functional enrichment of eQTLs
The GALLO package [26] was used to perform the 
QTL annotation of the SNPs identified as cis- and 
trans-eQTLs in scenarios S2, S4, S6, and S8. The 
eQTLs annotation was performed using known QTL 
data obtained from the PigQTLdb database (version 47 
- pigSS11) [27], considering a window of up to 100 kb 
downstream and upstream of the genomic coordinates 
of the cis- and trans-eQTLs for each scenario. Enrich-
ment analyses were performed using a hypergeomet-
ric test based on the “qtl_enrich” function from the 
GALLO package [26] to reduce the bias of overrepre-
sented traits. The QTL enrichment test was performed 
using traits annotated within the candidate regions 
(window of up to ± 100 kb of the eQTL) from the QTL 
database, considering 18 autosomes. The hypergeo-
metric test estimate allows us to determine whether 
the number of records observed for a specific trait in 
the 18 pig autosomes is greater than what would be 
expected by chance.

Gene annotation, GO, and metabolic pathways 
for the genes
Annotations of genes close to the cis- and trans-eQTLs 
were performed in each of the scenarios (S2, S4, S6, and 
S8), considering a window of 100  kb downstream and 
upstream of each eQTL. The adopted reference position 
was the genomic coordinate of each of the cis- and trans-
eQTL, for each scenario. Data from the gene annotation 
of the species Sus scrofa (Assembly Sscrofa11.1; genome-
build-accession GCA_000003025.6; available at: [https:// 
ftp. ensem bl. org/ pub/ relea se- 106/ gtf/ sus_ scrofa/]) were 
extracted from the Ensembl platform (Ensembl release 
106 - Jul 2022) [42] in the “.gtf ” format (gene transfer 
format).

http://www.ensembl.org/info/docs/tools/vep/online/index.html
http://www.ensembl.org/info/docs/tools/vep/online/index.html
https://ftp.ensembl.org/pub/release-106/gtf/sus_scrofa/
https://ftp.ensembl.org/pub/release-106/gtf/sus_scrofa/
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Only genes regulated by cis- and trans-eQTLs 
(FDR < 0.01) were selected for the GO and MP analyses to 
understand the functional roles of the genes related to the 
eQTLs. These analyzes were performed using the WebGe-
staltR package [68], where counted genes uniquely modu-
lated by cis- and trans-eQTLs in each scenario (S2, S4, S6, 
S8) were used to identify biological processes (BP), molecu-
lar functions (MF), cellular components (CC), and meta-
bolic pathways (MP). The enrichment method adopted was 
ORA (Over-Representation Analyses), while the other set-
tings were the package default for each set of genes regu-
lated by cis- and trans-eQTLs, for each scenario separately.
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3’UTR   3 prime untranslated region variant
5’UTR   5 prime untranslated region variant
BFT  Backfat thickness measured by ultrasound in cm
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CC  Cellular Component
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CV  Coefficient of variation
DNA  Deoxyribonucleic acid
DP  Total coverage depth
EMBL‑EBI  European Molecular Biology Laboratory‑European Bioinformatics 
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ENA  European Nucleotide Archive
eGWAS  Expression Genome‑Wide Association Study
eQTLs  Expression Quantitative Trait Loci
eQTL  Expression Quantitative Trait Locus
FDR  False Discovery Rate
GGP‑50K  GeneSeek Genome Porcine medium density SNPs from SNP array
GO  Gene Ontology
GRM  Genomic Relationship Matrix between the pair of animals
GVCF  Genomic Variant Calling Format
HWE  Hardy‑Weinberg Exact balance test
Kb  Kilobase (1,000 base pairs)
LD  Linkage disequilibrium
LEA  Loin eye area measured by ultrasound in  cm2

MAF  Minor allele frequency
Mb  Mega base pair
MF  Molecular function
IMF  Muscle fat content in percentage
MLMA  Mixed Linear Model Association
MP  Metabolic pathways
N  Number
ORA  Over Representation Analyses
PC  Principal components
QTL  Quantitative trait loci
QUAL  Phred score
RNA  Ribonucleic acid
RNA‑seq  RNA sequencing
RT‑PCR  Real Time Polymerase Chain Reaction
RT‑qPCR  Real Time Quantitative Polymerase Chain Reaction
r2  Correlation
SBW  Initial body weight
SD  Phenotypic standard deviation
SM  Skeletal muscle
SNP  Single nucleotide polymorphism
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SSC18  Sus scrofa chromosome 18
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TPM  Transcripts per million
UV  Ultra‑violet light 
VEP  Variant Effect Predictor
VCF  Variant calling format
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 Additional file 1. “Composition of scenarios by the method of identifica‑
tion of SNPs by along the scenarios”. Description: This file presents the 
count of the SNPs by their respective methods of obtained dataset, RNA‑
seq and GGP‑k. This count was made after quality control filters and could 
be used to understand the composition of scenarios.

 Additional file 2. “Cis‑ and trans‑eQTLs identified based on different 
scenarios of genomic data from pigs”. Description: This file presents the 
results of the expression quantitative trait loci (eQTLs) analyses for differ‑
ent scenarios (FDR < 0.01). It includes information on the eQTLs identified 
in each scenario, providing insights into the genetic variants associated 
with gene expression regulation. Furthermore, the information of the VEP 
is included to facilitate to understand the information about the cis‑ and 
trans‑eQTLs.

 Additional file 3. “Manhattan plots and QQ‑plots for respective scenarios 
(S1‑S8)”. Description: This file shows all Manhattan plots from GWAS analy‑
ses above the scenarios S2, S3, S4, S6, S7, and S8.

 Additional file 4. “Variant Effect Prediction for cis‑ and trans‑eQTLs identi‑
fied in the skeletal muscle of pigs with threshold of 1% from the FDR”. 
Description: This file provides Variant Effect Prediction (VEP) information 
for all cis‑ and trans‑eQTL (FDR < 0.01) identified in the scenarios S2, S3, 
S4, S6, S7, and S8. It includes detailed annotations and predictions on the 
functional consequences of genetic variants associated with gene expres‑
sion regulation in the scenarios (FDR < 0.01).

 Additional file 5. “Annotation of the genes regulated by the cis‑ and 
trans‑eQTLs based on different scenarios”. Description: This file contains 
the annotation of the genes regulated by the eQTLs found in scenarios S2, 
S3, S4, S6, S7, and S8. It provides information on the biological functions, 
description, and other relevant annotations for the identified genes.

 Additional file 6. “Annotation and enrichment for the modulated genes 
by eQTLs identified in the skeletal muscle of pigs”. Description: This file 
contains the results of gene enrichment analyses, including enriched 
gene sets, pathways, and functional categories associated with the eQTLs 
and their regulated genes. This file also provides modulated gene annota‑
tions, including gene symbols, chromosomal locations, gene descriptions, 
and other relevant information.
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