
Yan et al. BMC Genomics          (2023) 24:758  
https://doi.org/10.1186/s12864-023-09866-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

Time series-based hybrid ensemble learning 
model with multivariate multidimensional 
feature coding for DNA methylation prediction
Wu Yan1,2,3*†, Li Tan4, Li Mengshan4*†, Zhou Weihong1,3, Sheng Sheng1,3, Wang Jun1,3 and Wu Fu‑an1,3* 

Abstract 

Background DNA methylation is a form of epigenetic modification that impacts gene expression without modify‑
ing the DNA sequence, thereby exerting control over gene function and cellular development. The prediction of DNA 
methylation is vital for understanding and exploring gene regulatory mechanisms. Currently, machine learning algo‑
rithms are primarily used for model construction. However, several challenges remain to be addressed, including lim‑
ited prediction accuracy, constrained generalization capability, and insufficient learning capacity.

Results In response to the aforementioned challenges, this paper leverages the similarities between DNA sequences 
and time series to introduce a time series‑based hybrid ensemble learning model, called Multi2‑Con‑CAPSO‑LSTM. 
The model utilizes multivariate and multidimensional encoding approach, combining three types of time series 
encodings with three kinds of genetic feature encodings, resulting in a total of nine types of feature encoding 
matrices. Convolutional Neural Networks are utilized to extract features from DNA sequences, including temporal, 
positional, physicochemical, and genetic information, thereby creating a comprehensive feature matrix. The Long 
Short‑Term Memory model is then optimized using the Chaotic Accelerated Particle Swarm Optimization algorithm 
for predicting DNA methylation.

Conclusions Through cross‑validation experiments conducted on 17 species involving three types of DNA methyla‑
tion (6 mA, 5hmC, and 4mC), the results demonstrate the robust predictive capabilities of the Multi2‑Con‑CAPSO‑
LSTM model in DNA methylation prediction across various types and species. Compared with other benchmark 
models, the Multi2‑Con‑CAPSO‑LSTM model demonstrates significant advantages in sensitivity, specificity, accuracy, 
and correlation. The model proposed in this paper provides valuable insights and inspiration across various disci‑
plines, including sequence alignment, genetic evolution, time series analysis, and structure–activity relationships.
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Background
DNA methylation is a form of DNA chemical modifica-
tion, where a methyl group forms a covalent bond with the 
5-carbon position of cytosine in CpG dinucleotides within 
the genome, under the catalysis of DNA methyltransferases 
[1–5]. This modification alters hereditary expression by 
modifying chromatin structure, DNA conformation and 
stability, and affecting DNA–protein interactions. Cru-
cially, it regulates gene expression without modifying the 
DNA sequence itself. DNA methylation is influenced by 
a variety of factors, such as environmental conditions, cli-
mate, season, age, and diseases, which can lead to diverse 
activations, inductions, or suppressions of this modifica-
tion [6–8]. The composition and structure of three types 
of methylation (5mC, 6 mA, and 4mC) are shown in Fig. 1. 
Research in DNA methylation primarily encompasses 
experimental detection techniques and theoretical com-
putational models. Experimental approaches like bisulfite 
sequencing (WGBS) are resource-intensive and economi-
cally costly [9, 10]. Consequently, developing theoretical 
computational models for DNA methylation holds substan-
tial research value and offers promising prospects for better 
understanding and studying gene regulatory mechanisms.

In recent years, models for predicting DNA methyla-
tion have attracted considerable attention [11–13]. Cur-
rently, machine learning and deep learning algorithms 
[14–19] are commonly used for model construction, such 
as random forest [20], fuzzy theory [21], decision tree 
[22], support vector machine [23], Bayesian method [24], 
convolutional neural network CNN [25–27], and long 
short-term memory network (LSTM) [28], and so on. Fur-
thermore, a number of ensemble learning models [29–31] 
have been developed, incorporating advanced concepts 

like the attention mechanism [32–34] and Multi-Head 
Attention Mechanism [35, 36]. For instance, Li et al. [37] 
constructed a hybrid learning model combining LSTM 
and CNN for predicting DNA methylation sites, demon-
strating impressive performance. Tsukiyama et al. [38], Liu 
et al. [39], Xu et al. [40] et al. proposed a series of predic-
tive models [41, 42] that combine concepts from natural 
language processing, attention mechanism, and transfer 
learning, achieving promising results. Additionally, Lv 
et al. [43] proposed a hybrid framework called iDNA-MS 
for identifying DNA modification sites, employing random 
forests and three encoding methods. In parallel, Yu et al. 
[44, 45] also proposed two adaptive feature-based DNA 
methylation recognition methods, iDNA-AB and iDNA-
ABT, which also exhibited good predictive capabilities.

Currently, machine learning algorithms are extensively 
utilized as the foundational theory in predicting DNA 
methylation sites, with particularly focus on methylation 
types such as 6  mA, 5mC, and 4mC [46–48], demon-
strating impressive performance. The authors recognize 
that three outstanding issues remain to be explored and 
addressed: (1) The performance of machine learning-
based DNA methylation models still needs further 
improvement. (2) Currently, most models are trained or 
tested only on a single type of DNA methylation, and their 
generalization ability needs to be improved. (3) Machine 
learning models have shortcomings in associating with the 
biological characteristics of the research problem itself, 
leading to poor feature extraction performance and con-
sequently impacting the learning capability of the models. 
DNA sequences are comprised of character sequences 
constituted by four letters (ACGT), whereas time series 
are sequences of numbers or other symbols arranged in a 

Fig. 1 5mC, 6 mA, 4mC methylation composition and structure
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chronological order. In terms of data representation, time 
series and biological sequences are essentially similar. In 
terms of mechanism, a time series is a sequence that pro-
gresses over time, whereas biological sequences represent 
gene relationships developed by organisms through the 
process of evolution over time.

In conclusion, from a theoretical perspective, the appli-
cation of time series analysis methods in DNA sequence 
study has been demonstrated to be viable [49–52]. We 
attempt to propose feasible solutions to the aforemen-
tioned three problems. Firstly, considering the similari-
ties between DNA sequences and time series, we propose 
a hybrid ensemble learning model, which employs time 
series methods to analyze the predictive performance of 
DNA methylation. Secondly, to assess the model’s gen-
eralization capacity across different species, we perform 
cross-species cross-validation experiments, focusing on 
various types of DNA methylation. Thirdly, we enhance 
the model’s learning potential by extracting multivariate 
features from DNA sequences and constructing a feature 
matrix for DNA sequences [53–58].

With these factors in mind, the paper proposes a mul-
tivariate multidimensional feature coding (Multi2) 
method, which combines three types of time series with 
three types of genetic features, resulting in nine encoding 
matrices. We then used CNN to extract features from the 
coding matrices, creating a feature matrix that includes 
DNA sequence timing, positional, physical–chemical, and 
biological information. Next, the parameters of the Long 
Short-Term Memory (LSTM) network were optimized 
using the Chaotic Accelerated Particle Swarm Optimiza-
tion (CAPSO) algorithm [59], resulting in a hybrid ensem-
ble learning model called Multi2-Con-CAPSO-LSTM. 
The model takes the feature matrix as input and predicts 
results of DNA methylation outcomes. The Multi2-Con-
CAPSO-LSTM model is applied in predicting three dif-
ferent types of DNA methylation (6 mA, 5mC, and 4mC) 
across various species. Its performance is compared with 
six benchmark models to evaluate the overall perfor-
mance of the Multi2-Con-CAPSO-LSTM model. The 
innovations and contributions of this study are as follows:

(1) The utilization of multivariate encoding methods 
enhances the interpretability of the proposed model. 
The proposed encoding method (Multi2) merges 
temporal and genetic information from the DNA 
sequences into its features. A feature matrix is gen-
erated using the feature information from temporal 
context of time sequence and the physical, chemical, 
biological characteristics of the gene sequence.

(2) The modeling strategy based on time series offers a 
new perspective for studying biological sequences. 
This strategy, which combines time series analysis 

methods with temporal encoding strategies, lever-
ages the similarities between time series and bio-
logical sequences to provide new insights and refer-
ences for modeling biological sequences.

(3) The hybrid ensemble learning model exhibits 
promising prospects for both promotion and appli-
cation. This model, integrating the strengths of 
CNN, CAPSO, and LSTM, has broad applications 
and substantial potential for advancement. It offers 
valuable insights for sequence research in fields like 
bioinformatics, evolutionary biology, and genetics, 
and provides crucial decision support across vari-
ous research areas in disciplines such as engineer-
ing, computer science, chemistry, and biology.

Methods
Encoding representation of DNA sequences
A DNA sequence is denoted as Seq = S1S2 · · · Si · · · Sn , 
Si ∈ {A,C ,T ,G) . This paper adopts three time series 
encoding methods [60–62] and three genetic feature 
encoding methods [63], combining them to form a mul-
tivariate multidimensional encoding representation for 
DNA sequences.

Time series encoding of DNA sequences

1 Coding of Spectral time Sequences

The time series representation of DNA sequences is 
denoted as [x(1), · · · x(N )] . Spectral encoding obtains the 
time series using the Eq. (1).

 Where x(i) represents the time sequence data at position 
i , while Si corresponds to the DNA sequence data at the 
same position.

2 CGR time sequence

The four vertices of a square are representative of the 
four types of nucleotides in a DNA sequence. The posi-
tion of the subsequent nucleotide is determined by utiliz-
ing the coordinates associated with each nucleotide.

Step (1): The initial state of the vertices is established 
as follows: A(1, 1)、T(-1, -1)、G(-1, 1)、C(1, -1);
Step (2): The center point (0, 0) is designated as the 
initial position;

(1)x(i) =

1, Si = a
2, Si = g
3, Si = c, i = 1, 2, . . . , n
4, Si = t
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Step (3): Beginning with the first nucleotide, plot a 
point at the midpoint between its corresponding ver-
tex and the center point (0, 0);
Step (4): Taking the second character as the current 
character, plot a point at the midpoint between its 
corresponding vertex and the point representing the 
previous character.
Step (5): Proceed to the next nucleotide as the cur-
rent character and continue repeating Steps (4) and 
(5) until the DNA sequence is fully represented, as 
detailed in Eq. (2).

 Where CGRi represents the CGR time sequence at the 
i-th iteration, and gi corresponds to the DNA sequence 
data at position i.

3 Z time sequence

In the DNA sequence, the number of occurrences of A , 
C , G and T up to the i-th base are denoted as Ai,Ci,Gi,Ti

,respectively. The Z time sequence is defined as Eq. (3).

 Where Xi,Yi,Zi represent the coordinate values of X-
axis, Y -axis, Z-axisi.

Gene feature encoding for DNA sequences

(1) Binary encoding of Position Feature (BPF)

The BPF is a sparse binary four-dimensional vector 
[64], and its encoding method is defined as Eq. (4).

(2)

x(i) = CGRi = CGRi−1 − CGRi−1−gi
2

gi =











(1, 1), Si = a
(−1, 1), Si = g
(1,−1), Si = c
(−1,−1), Si = t

(3)

x(i) =
√
Xi + Yi + Zi







Xi = (Ai + Gi)− (Ci + Ti)

Yi = (Ai + Ci)− (Gi + Ti)

Zi = (Ai + Ti)− (Ci + Gi)

The BPF encoding is transformed into a feature matrix 
of size 4 × L as shown in Eq. (5).

(2) Coding of Nucleic acid chemical properties (NCP)

NCP is a coding method based on hydrogen bonding 
strength, ring structure, and biological composition [41], as 
shown in Eq. (6).

In a DNA sequence of length L , the NCP encoding will 
generate a feature matrix of size 3× L , as shown in Eq. (7).

(3) Coding of Dinucleotide physical and chemical prop-
erties (DPCP)

The DPCP encoding encompasses angle change param-
eters for adjacent base spatial planes in the vertical, for-
ward–backward, and left–right directions. It also includes 
distance change parameters for the relative positions of 
adjacent bases in these directions. Then, these parameters 
are normalized using a specific method detailed in Eq. (8):

To match the column dimensions of other encoding 
schemes, a sliding dipeptide window algorithm is used to 
calculate the DPCP values, as shown in Eq. (9).

(4)b =











(1, 0, 0, 0), if b = A
(0, 1, 0, 0), if b = T
(0, 0, 1, 0), if b = G
(0, 0, 0, 1), if b = C

(5)A1 =







BPF1(1) · · · BPF1(L)
...

. . .
...

BPF4(1) · · · BPF4(L)







(6)NCP1(i) =
{

1 if Di ∈ [A,G]
0 if Di ∈ [C ,T ] , NCP2(i) =

{

1 if Di ∈ [A,T ]
0 if Di ∈ [C ,G] , NCP3(i) =

{

1 if Di ∈ [A,C]
0 if Di ∈ [G,T ]

(7)A2 =







NCP1(1) · · · NCP1(L)
...

. . .
...

NCP3(1) · · · NCP3(L)







(8)Xn =
X − Xmin

Xmax − Xmin

(9)DPCPn(i) =
Xn(Di−1DI )+ Xn(DiDi−1)

2
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DPCPn(i) represents the i-th physical and chemical 
property of the n-th nucleotide, while Xn represents the 
physicochemical property of the n-th nucleotide. Through 
calculations, a feature matrix of size 6× L is obtained, as 
shown in Eq. (10).

Multivariate multidimensional encoding representation 
of DNA sequences
By combining the three types of time series encoding 
and three types of genetic feature encoding mentioned 
above, we have derived a total of nine encoding methods 
for DNA sequence representation. This array includes six 
single encodings and three hybrid encodings, with the 
details provided in Table 1.

Time series encoding methods can capture the con-
textual relationships within DNA sequences, whereas 
gene feature encoding reflects the physical, chemical, or 
biological information inherent to the DNA sequences. 
In Table 1, Code 4 denotes the mixed encoding of time 
series, Code 8 represents the mixed encoding of gene 
features, and Code 9 signifies the combined encoding of 
both time series and gene features.

Model framework
The Multi2-Con-CAPSO-LSTM model comprises of 
four stages: data collection, feature encoding, feature 
selection, and modeling and prediction, as depicted 
in Fig.  2. The first stage is the data collection phase. 
The collected data is organized to construct a dataset 
of methylation sites. The second stage is the feature 
encoding stage. The methylation data is processed 

(10)A3 =







DPCP1(1) · · · DPCP1(L)
...

. . .
...

DPCP6(1) · · · DPCP6(L)







using time series encoding and gene feature encod-
ing methods (with three encoding methods for each), 
resulting in a multivariate multidimensional encoded 
sequence. The third stage is the feature selection phase, 
during which the various encoding sequences are fused 
to construct a two-dimensional encoding matrix. This 
study employs CNN for feature extraction, selecting 
encoding features to compose the final feature matrix. 
The final stage, modeling and prediction, involves mod-
eling the feature matrix and inputting it into the LSTM 
model for training. The parameters of LSTM are opti-
mized using the CAPSO algorithm [65]. After training 
and validation of the model, we conducted testing and 
obtained DNA methylation prediction data as the out-
put of the model.

The implementation steps of the model are as follows:

Step 1: Data Collection and Preprocessing. The col-
lected data is preprocessed by removing duplicate 
entries to obtain the training set, validation set, and 
test set, forming the experimental dataset.
Step 2: Data Encoding and Fusion. Utilize three types 
of time series encoding and three types of genetic 
feature encoding to respectively code the data in the 
dataset, and then fuse these time series and genetic 
feature encodings, ultimately resulting in a total of 
nine combined encoding methods.
Step 3: Feature Extraction. Using convolutional 
neural networks to extract features from encoded 
sequences, characteristic information from various 
encoded sequences is effectively captured.
Step 4: Feature Selection and Feature Matrix Genera-
tion. Feature selection is performed on the features 
extracted from sequences with various encodings. 
The selected features are then compiled into a feature 

Table1 Encoding representation of DNA sequences

Symbol Abbreviation Description

Code 1 Spectral encoding Spectral time sequence

Code 2 CGR encoding CGR time sequence

Code 3 Z encoding Z time sequence

Code 4 Time sequence encoding Spectral time sequence + CGR time sequence + Z time sequence

Code 5 BPF encoding Binary encoding of Position Feature

Code 6 NCP encoding Coding of Nucleic acid chemical properties

Code 7 DPCP encoding Coding of Dinucleotide physical and chemical properties

Code 8 Gene feature encoding Binary encoding of Position Feature + Nucleic acid chemical 
properties + Coding of Dinucleotide physical and chemical 
properties

Code 9 Multidimensional and multivariate hybrid encod‑
ing

Hybrid Time sequence encoding and Gene feature encoding
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matrix, resulting in a multivariate multidimensional 
data feature matrix.
Step 5: LSTM Model Construction and Parameter 
Optimization. The multivariate multidimensional 
feature matrix is used as the input to construct and 
train the LSTM model, setting relevant parameters. 
For detailed information on the model construction, 
please refer to “Model construction” section.
Step 6: Model Validation. Validate the model with 
the validation dataset by looping through steps 2 to 
5, optimizing model parameters to minimize output 
errors.
Step 7: Model Testing and Output. Utilize the test 
dataset to assess the model by looping through steps 
2 to 5, and produce the test results.
Step 8: Output. Perform statistical analysis on each 
output result.

Model construction
The Multi2-Con-CAPSO-LSTM model takes N  DNA 
sequences [x(1), · · · x(N )] as input and generates a multi-
variate multidimensional encoding matrix following the 
fusion of different encodings [66, 67]. The DNA encoding 
sequence xt is defined by Eq. (11).

 Where, xt−T represents the sequence of length T; 
Merge(•) is a fusion function that fuses the time series 
encoding funi(•) and the gene sequence encoding 
fmulti(•).

The multivariate multidimensional encoding matrix is 
convolved using CNN, as shown in Eq. (12), to obtain the 
feature matrix.

(11)xt = Merge(funi(xt−T :t−1), fmulti(xt−T :t−1))

(12)C(k) = W (k) × Xt−T :t−1

Fig. 2 Overview of the proposed model. a DNA data collection b Feature encoding c Feature fusion d Feature information extraction e Feature 
information matrix f CAPSO‑LSTM modeling g The output
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 Where, C(k) represents the convolution result, and W (k) 
represents the k-th convolution kernel.

After completing the convolutional feature extraction, 
the obtained feature matrix serves as the input to the 
LSTM model. The LSTM model consists of Gate Units 
and Memory Units, as shown in Fig. 3.

LSTM modeling involves four steps:

(1) By computing the forget gate, the forget factor can be 
obtained, as shown in Eq. (13).

 Where, ft represents the forget factor; σ(•) represents the 
sigmoid activation function, which maps values to the 
range [0,1]; (Wf , Uf , bf ) represents the weight factors of 
the forget gate.

(2) By calculating the input gate, the input factor can be 
obtained, as shown in Eq. (14). Simultaneously, a new 
cell state is generated.

 Where, it represents the input factor with a value range 
of [0,1], and (Wi, Ui, bi) represents the weight factors of 

(13)ft = σ(Wf xt + Uf ht−1 + bf )

(14)it = σ(Wixt + Uiht−1 + bi)

the input gate. After obtaining the input factor, LSTM 
creates a new cell state using Eq. (15).

 Where, Ct ′ represents the new cell state;tanh(•) is an 
activation function with a range of [-1,1], and (Wc, Uc, bc) 
are the weight factors used to compute the new cell state.

(3) As shown in Eq. (16), the cell state is updated.

(4) The output factor is calculated as shown in Eq. (17).

 Where, the output factor ot determines the current out-
put or the input for the next state; (Wo, Uo, bo) represents 
the weight factors of the output gate.

The LSTM model has three sets of weight factors, 
denoted as (W,U, b) . In this study, the parameters are opti-
mized using the CAPSO algorithm. Unlike traditional PSO, 
CAPSO utilizes only the exploration factor during the opti-
mization process [59], and the particle iteration is defined 
as shown in Eq. (18):

(15)Ct ′ = tanh(Wcxt + Ucht−1 + bc)

(16)Ct = ft ∗ Ct−1 + it ∗ Ct ′

(17)ot = σ(Woxt + Uoht−1 + bo)

Fig. 3 The unit of long short‑term memory
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 Where, xki,d represents the position of particle i in dimen-
sion d at the k-th iteration, and r is a random number. 
C2 is obtained from the chaotic variable generated by the 
Logistic equation, as shown in Eq. (19).

When 0 < dki < 1 , the resulting C2 is in a fully chaotic 
state.

When applying the CAPSO algorithm to optimize the 
(W,U, b) parameters, the particle structure is defined as 
shown in Eq. (20).

Finally, the output is obtained by multiplying the out-
put factor with the cell state, as depicted in Eq. (21).

Experiments
Experimental data
The dataset utilized in this study was obtained from a 
benchmark dataset [43], encompassing three types of 
DNA methylation from 17 different species, amounting 
to a total of 30,4619 records. According to different spe-
cies, we derived 17 sub-datasets. Each sub-dataset was 
divided into training set, validation set, and test set, with 

(18)xk+1
i,d = (1− C2)x

k
i,d + C2p

k
g ,d + C2r

(19)dk+1
i = 4dki (1− dki )

(20)ypso = fcapso(W ,U , b)

(21)ht = ot ∗ tanh (Ct)

proportions of 70%, 15%, and 15%, respectively. Data sta-
tistics are shown in Table 2.

Model evaluation metrics
This study employs five commonly used evaluation met-
rics, namely sensitivity (SN) reflecting true positive rate, 
specificity (SP) reflecting true negative rate, accuracy 
(ACC), Matthews correlation coefficient (MCC) reflect-
ing correlation, and Area Under ROC Curve (AUC). 
Their definitions are shown in Eq. (22):

 Where TP, TN, FN, and FP represent true positives, true 
negatives, false negatives, and false positives, respectively.

Results and discussion
Experimental results
We trained and validated the Multi2 Con CAPSO LSTM 
using 17 sets of training and validation data. Through 
adjustments of various parameters, our goal was to mini-
mize the model’s error. Then, we finally apply the model 
to the testing data. The prediction results for the training 
set, validation set, and testing set are shown in Fig. 4.

(22)































SN = TP
TP+FN × 100%

SP = TN
TN+FP × 100%

ACC = TP+TN
TP+FN+TN+FP × 100%

MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

AUC =
�

i∈pos ranki−
numpos(numpos+1)

2

numposnumneg

Table 2 Experimental data distribution

Dataset Species Type Training(70%) Validation(15%) Testing(15%) Total

1 H.sapiens 5hmC 2915 624 624 4163

2 M.musculus 5hmC 5152 1103 1103 7358

3 C.equisetifolia 4mC 2772 593 593 3958

4 F.vesca 4mC 22116 4739 4739 31594

5 S.cerevisiae 4mC 2772 593 593 3958

6 Tolypocladium 4mC 21456 4598 4598 30,652

7 D.melanogaster 6 mA 15668 3357 3357 22382

8 R.chinensis 6 mA 838 180 180 1198

9 Xoc BLS256 6 mA 24102 5164 5164 34430

10 C.elegans 6 mA 11146 2388 2388 15922

11 T.thermophile 6 mA 11146 2388 2388 15922

12 A.thaliana 6 mA 44622 9562 9562 63746

13 H.sapiens 6 mA 25670 5500 5500 36670

14 C.equisetifolia 6 mA 8492 1820 1820 12132

15 F.vesca 6 mA 4344 930 930 6204

16 S.cerevisiae 6 mA 5300 1136 1136 7572

17 Tolypocladium 6 mA 4730 1014 1014 6758

Total 213241 45689 45689 304619
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By observing the positions of the result curves, it can be 
observed that the validation set curves are situated at the 
top, indicating the best predictive performance, as shown 
in Fig. 4a, c, e, g. The training set curve is slightly lower, 
while the testing set curve is positioned at the bottom, 
suggesting a decreasing predictive performance from the 
validation set to the training set and then to the testing 

set. Upon analyzing the data distribution and statistics of 
the predicted results, it becomes evident that the valida-
tion set demonstrates the best performance, indicating 
that the model has been sufficiently trained. The average 
results of the model on each dataset are shown in Table 3.

Table 3 also demonstrates that the validation set exhib-
its superior prediction performance. The training set is 
used to train the model’s parameters, while the validation 
set is used to optimize these parameters based on the 
training. Therefore, it is anticipated that the validation set 
would display better overall performance. The testing set 
is used to evaluate the model’s generalization ability with 
new samples. As a result, the overall predictive capabil-
ity of the model on the test set is not as good as on the 
training and validation sets. However, the average metric 
values on the testing set are also around 0.9, indicating 
that the Multi2-Con-CAPSO-LSTM model possesses 
robust overall predictive capability and strong generaliza-
tion capability.

Fig. 4 The prediction result curves and statistical results of the model on the training set, validation set, and testing set. a SN curve. b SN 
distribution statistics. c SP curve. d SP distribution statistics. e ACC curve. f ACC distribution statistics. g AUC curve. h AUC distribution statistics

Table 3 The averages predicted results on the training set, 
validation set, and test set

Index Training Validation Testing

SN 0.9386 0.9388 0.9350

SP 0.8903 0.9157 0.8748

ACC 0.9429 0.9457 0.9229

MCC 0.9068 0.9243 0.9027

AUC 0.9189 0.9326 0.8940
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Discussion of different DNA methylation types
To evaluate the model’s predictive performance across 
different DNA methylation types, the model’s perfor-
mance metrics for each DNA methylation type (5hmC, 
4mC, and 6 mA) in 17 species are plotted in Fig. 5.

From the data distribution and statistical graphs, it 
can be observed that sensitivity, accuracy, and AUC are 
all above 0.82, with an average distribution around 0.92. 
The SP and MCC are also exceed 0.70, with an average 
around 0.85. All these metrics indicate that the model 
performs well for all types of DNA methylation, espe-
cially in the 5hmC test subset, where the SN reaches 0.97, 
and SP, ACC, MCC, and AUC are all above 0.9.

The results indicate that the Multi2-Con-CAPSO-
LSTM shows slightly different predictive performance 
among different DNA methylation types. The perfor-
mance of this model is quite consistent, and the model 
can effectively predict various methylation types. The 

average testing results for different DNA methylation 
types are shown in Table 4.

Through comprehensive analysis of experimental results 
for three different DNA methylation types (5hmC, 4mC, 
and 6 mA), it can be observed that the Multi2-Con-CAPSO-
LSTM can effectively predict these DNA methylation 
types. These results further demonstrate that the Multi2-
Con-CAPSO-LSTM exhibits exceptional performance 

Fig. 5 The performance of the model in 5hmC, 4mC and 6 mA. a ~ e show the data distribution and statistical results of SN, SP, ACC, MCC, and AUC 
for different species and different types of DNA methylation. f ~ h display the radar graphs for each evaluation metric

Table 4 The testing results of 5hmC, 4mC and 6 mA

Index 5hmC 4mC 6 mA Average

SN 0.9820 0.9197 0.9320 0.9445

SP 0.9265 0.7804 0.8689 0.8586

ACC 0.9177 0.9104 0.9284 0.9188

MCC 0.9319 0.8548 0.8164 0.8677

AUC 0.9222 0.8591 0.9016 0.8943
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in predicting multi-types of DNA methylation. From the 
experiments involving the three DNA methylation types, 
Multi2-Con-CAPSO-LSTM can predict both single type of 
DNA methylation and multi-type of DNA methylation.

Discussion of different feature encodings
The study employs six different DNA sequence encod-
ing methods, resulting in a total of nine encoding repre-
sentations. We have two primary concerns: Firstly, Does 
the utilization of different encoding methods directly 
impact the model’s performance? Secondly, is the hybrid 
encoding approach more effective? To address these 
questions, we conducted experiments employing six 
individual encoding methods and three hybrid encoding 
approaches. The prediction results based on each encod-
ing method are shown in Fig. 6.

The hybrid encoding approach (code 9) that combines 
time series and genetic features demonstrates excellent 
performance across various evaluation metrics, showing 

significant advantages in terms of true positive rate, true 
negative rate, and accuracy, as shown in Fig.  6a, c, d. 
Based on the observations from Fig. 6b and e, the follow-
ing conclusions can be drawn: The model performance 
is the weakest when using a single time series encoding 
method (code 1, code 2, code 3); The performance of 
the model using a hybrid time series encoding method 
(code 4) is comparable to that of using a single genetic 
feature encoding method (code 5, code 6, code 7); The 
model performance using a hybrid genetic feature encod-
ing method (code 8) is slightly superior to that of using 
a single genetic feature encoding method; The hybrid 
encoding method that combines time series and genetic 
features (code 9) demonstrates overall good performance, 
with all five evaluation metrics values exceeding 0.9.

Among different encoding methods, the single time 
series encoding (code 1, code 2, code 3) includes time-
related feature information. However, because DNA 
methylation sites are only related to features within their 
extremely small window, the information extracted from 

Fig. 6 The prediction results for different encoding methods. a Floating histogram. b Bar chart. c Dot plot. d Scatter plot. e Box plot
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these encodings is insufficient, thereby impacting the 
model’s performance. Single gene feature encoding (code 
5, code 6, code 7) includes information about the posi-
tion, physicochemical properties, and biological aspects 
of the gene sequence. During the modeling process, rel-
evant features are extracted from single gene feature 
encoding, resulting in an improvement in the predictive 
performance of the model. Similarly, code 9 effectively 
fuses the temporal information from the time series and 
the positional information, physicochemical properties, 
and biological information of gene features. Code 9 dem-
onstrates an advantage in feature extraction by capturing 
more intrinsic correlated information within the DNA 
sequences, which ensures the model’s performance.

Through various feature encoding experiments, it is 
demonstrated that we have answers to both of the ques-
tions of concern. Firstly, the nine encoding methods 
directly impact the model’s performance. Secondly, the 
hybrid encoding methods (Code 4, Code 8 and Code 
9) have significant performance advantages. Especially, 
the multidimensional multivariate hybrid encoding 
(Code 9) not only considers the pre and post sequence 
correlation of DNA methylation, but also incorpo-
rates the positional information, physiological proper-
ties, and biological information of the DNA sequence. 
As a machine learning model, Multi2-Con-CAPSO-
LSTM can fuse these DNA methylation features, which 
ensures good performance.

Fig. 7 Predictive Results for Different Species. a Bar chart of various evaluation index b Box plot of different species. c Dot‑line plot of SN. d Interval 
plot. e Dot‑line plot of AUC 
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Discussion of different species
To evaluate the predictive performance of Multi2-Con-
CAPSO-LSTM and analyze the performance variations 
among different species, we conducted a statistical anal-
ysis of the predictive evaluation metrics for the model 
across 17 different species. The results are presented in 
Fig. 7.

It can be observed that species 2, species 3, and spe-
cies 14 demonstrate relatively good predictive perfor-
mance, while species 5, species 7, and species 11 show 
slightly poorer predictive results, as shown in Fig.  7a, 
c, e. As shown in Fig.  7b and d, the data distribution 
for the three species, M.musculus, C.equisetifolia, and 
R.chinensis, is concentrated in the upper region, indi-
cating better predictive performance. However, the 
data distribution of S. cerevisiae, D. melanogaster, and 
T. thermophile, is concentrated in the lower region, 
indicating slightly poorer predictive performance for 

these species. Table  5 shows the performance of the 
model of different species.

The statistical results in Table 6 also indicate that the 
evaluation indicators of the three species, M.musculus, 
C.equisetifolia, and R.chinensis, are all above 0.9, indi-
cating good performance. Where S. cerevisiae, D. mel-
anogaster, and T. thermophile, the most evaluation 
indicators are distributed between 0.81 and 0.90. From 
the overall predictive results, the model’s predictive 
performance exhibits slight variation among different 
species, but it can still effectively predict the methyla-
tion status in each species.

Discussion of cross‑validation under cross‑species
To investigate the model’s generalization ability and vali-
date its performance in predicting methylation in other 
species, we conducted cross-species validation experi-
ments using different species in both the training and 
testing sets. Firstly, one species is selected from the 
dataset of 17 species for model training. Next, we con-
ducted testing of the model using the remaining 16 spe-
cies (excluding the one used for training). The heatmaps 
of SN and AUC for the cross-validation of each species 
are shown in Fig. 8.

The main diagonal blocks indicate that under the same 
species, the model demonstrates excellent predictive 
performance, with most SN and AUC values above 0.9, 
and a few slightly below 0.9, as shown in Fig. 8. It can be 
observed that the testing performance is good between 
Specie 1 and Specie 2. Similarly, the performance is 
also good among Specie 3 to Specie 6. Additionally, 
the performance among the 11 species from Specie 7 
to Specie 17 is favorable as well. These results demon-
strate high sensitivity and AUC values, all exceeding 0.8. 
Moreover, the predictive performance among Specie 3 
to Specie 6 and Specie 14 to Specie 17 also shows good 
performance, with SN and AUC values mostly ranging 
between [0.8, 0.9].

The cross-species validation experiments show that 
the model performs best when trained and tested on 

Table 6 Benchmark models in this paper

Model Model details References

iDNA‑MS Random Forest algorithm
http:// lin‑ group. cn/ server/ iDNA‑ MS

Lv, ect. 2020 [43]

iDNA–ABT Adaptive embedding based on Bidirectional Encoder Representations from Transformers 
together with transductive information maximization

Yu, ect. 2021 [45]

iDNA‑AB iDNA‑ABT using the cross‑entropy loss Yu, ect. 2021 [45]

EA‑LSTM Evolutionary attention‑based LSTM Li, etc. 2019 [68]

CTS‑LSTM LSTM network for correlated time series Wan, etc. 2020 [69]

Conv‑LSTM Convolutional neural network and LSTM Fu, etc. 2022 [70]

Table 5 The performance for different species

Species SN SP ACC MCC AUC 

H.sapiens 0.9662 0.8958 0.9235 0.9203 0.9099

M.musculus 0.9878 0.9672 0.9420 0.9435 0.9346

C.equisetifolia‑4mc 0.9622 0.9076 0.9326 0.9184 0.9286

F.vesca 0.9588 0.8422 0.9316 0.9385 0.8885

S.cerevisiae 0.8776 0.7567 0.8781 0.7863 0.8309

Tolypocladium 0.9000 0.7866 0.9061 0.8513 0.8621

D.melanogaster 0.8760 0.7680 0.8891 0.7291 0.8655

R.chinensis 0.9664 0.9179 0.9323 0.9251 0.9281

Xoc BLS256 0.9115 0.8405 0.9225 0.8576 0.8867

C.elegans 0.9217 0.8691 0.9241 0.7570 0.8871

T.thermophile 0.9058 0.7623 0.9217 0.7676 0.8448

A.thaliana 0.9620 0.9082 0.9136 0.8456 0.9230

H.sapiens 0.9577 0.9084 0.9391 0.9020 0.9301

C.equisetifolia‑6 mA 0.9633 0.9195 0.9465 0.9319 0.9370

F.vesca 0.9205 0.8793 0.9305 0.7977 0.8952

S.cerevisiae 0.8960 0.8290 0.8929 0.8148 0.8916

Tolypocladium 0.9485 0.8726 0.9101 0.7265 0.9038

http://lin-group.cn/server/iDNA-MS


Page 14 of 18Yan et al. BMC Genomics          (2023) 24:758 

the same species. Additionally, the model demonstrates 
excellent performance across different species with the 
same methylation type, as well as within the same species 
with different methylation types. The performance of the 
model is relatively satisfactory in different methylation 
types and different species. The above results indicate 
that Multi2-Con-CAPSO-LSTM exhibits good generali-
zation ability and scalability.

Discussion with other benchmark models
We selected two categories of models as benchmark-
ing comparisons. The first category consists of gen-
eral methylation predictors, while the second category 

encompasses enhanced prediction methods based on 
LSTM. In total, there are six models participating in the 
performance testing and comparison, with three models 
in each category. The benchmarking comparison models 
are shown in Table 6.

To ensure the fairness of these comparisons, we utilized 
the same testing set to operate each model on identical 
hardware and software systems. We randomly selected 
500 data samples from each of the 17 species in the data-
set to create a distinct database. Subsequently, individual 
training and testing were conducted for each model. For 
more detailed information, such as the parameters set-
ting of each model, please refer to the relevant literature. 

Fig. 8 Heatmap of Cross‑validation under cross‑species. a Sensitivity (SN). b Area Under the Curve (AUC). (The x‑axis represents the training species, 
and the y‑axis represents the testing species.)

Fig. 9 The prediction results of each comparative model. a Dot‑line plot of evaluation index. b Dot‑line plot of computation time
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The performance evaluation metrics and the average 
computation time of each comparison model are illus-
trated in Fig. 9.

It can be observed that the comprehensive perfor-
mance of the iDNA-MS, iDNA-AB, iDNA-ABT, EA-
LSTM, CTS-LSTM, and Conv-LSTM models gradually 
improves in terms of SN, SP and ACC, as shown in 
Fig.  9a. However, the Multi2-Con-CAPSO-LSTM 
model surpasses the others in all the metrics, demon-
strating an obvious advantage. As shown in Fig. 9b, the 
computation time of the models is generally compa-
rable across the 17 species. The iDNA-MS, iDNA-AB, 
and iDNA-ABT models exhibit shorter computation 
times, whereas the EA-LSTM, CTS-LSTM, Conv-
LSTM, and the proposed Multi2-Con-CAPSO-LSTM 
model require relatively longer computation times. The 
average computation time of the Multi2-Con-CAPSO-
LSTM model is 26.02 s, which is considered within an 
acceptable time range. The statistics and distribution of 
SN and AUC for each model across the 17 species are 
shown in Fig. 10.

From the distribution of evaluation metrics, both SN 
and AUC, the proposed model in the study ranks in the 
highest range, indicating its excellent predictive per-
formance, as shown in Fig. 10a and b. According to the 
statistical results depicted in Fig. 10c and d, there are 16 
data points near 0.94 for the SN metric, and 1 data point 
close to 0.91. In addition, for the AUC metric, there are 
11 data points nearing 0.93, and 6 data points around 
0.90. In summary, when compared to other benchmark 
models, the Multi2-Con-CAPSO-LSTM model demon-
strates superior predictive performance. The average val-
ues of the evaluation metrics for each model across the 
17 species are shown in Table 7.

The statistical data presented in Table  5 also dem-
onstrate the significant advantage of the Multi2-Con-
CAPSO-LSTM model, which can be attributed to the 
following three factors: (1) The hybrid encoding method 
of DNA sequences supplies the model with multivari-
ate data. The model combines three types of tempo-
ral sequence encoding and three types of gene feature 
encoding for DNA sequences, providing reliable and 

Fig. 10 Prediction results of each comparative model in 17 species. a Distribution of SN for each model. b Distribution of AUC for each model. c 
Statistics of SN for each model. d Statistics of AUC for each model
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multivariate foundational data for subsequent feature 
extraction. (2) The CNN and CAPSO method provide 
assurance for feature selection and parameter selection 
in the model. Through convolutional operations, the 
model transforms multivariate data into feature matrices, 
encapsulating temporal, spatial, and biochemical infor-
mation. At the same time, the CAPSO method provides a 
solution for obtaining optimal parameters. (3) The LSTM 
network fully capitalizes on the long-term and short-
term information within the DNA sequences, bolstering 
the prediction speed of the model. Given the pre- and 
post-relationships between DNA sequence methyla-
tion and the sequence itself, LSTM can effectively utilize 
these contextual relationships, thereby enhancing perfor-
mance. Comparative experiments have shown that the 
Multi2-Con-CAPSO-LSTM model exhibits significant 
advantages in terms of sensitivity, specificity, accuracy, 
and correlation, compared to other benchmark models. 
Whether general methylation predictors or improved 
prediction methods, the prediction performance of the 
model in this paper is superior.

Conclusions
In the paper, we propose a hybrid integrated learning 
model called Multi2-Con-CAPSO-LSTM. Firstly, com-
pared to other models, Multi2-Con-CAPSO-LSTM dem-
onstrates superior predictive performance. Secondly, 
through experiments conducted on 17 species with vari-
ous methylation types, including 4mC, 5hmC, and 6 mA, 
the Multi2-Con-CAPSO-LSTM model has demonstrated 
excellent overall performance and effectively predicts 
multiple types of DNA methylation. Thirdly, as a machine 
learning-based DNA methylation model, Multi2-Con-
CAPSO-LSTM integrates the positional information, 
physiological properties, and biological information of 
the DNA sequence, which ensures its good performance. 
The Multi2-Con-CAPSO-LSTM model provides a valu-
able reference for many disciplines such as biology, com-
puter science, chemistry, and medicine. It covers a wide 
range of research areas including sequence alignment, 
genetic evolution, time series analysis, and structure–
activity relationship studies. Although the proposed 
model in the study has achieved satisfactory results, 

there are still many challenges to address when facing 
the large-scale DNA methylation data. There are many 
issues that require further exploration. For example, how 
to improve the time and space complexity of machine 
learning methods, and how to design encoding methods 
that can extract as much global information from DNA 
sequences as possible. Currently, there are still some con-
troversies in the research on biological sequences based 
on time series analysis methods. In future research, we 
will continue to delve into the key issues of the cross-dis-
ciplinary study of time series and biological sequences, 
aiming to make modest yet meaningful contributions to 
the integration and development of these two fields.
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