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Abstract 

Background It is widely acknowledged that hypoxia and m6A/m5C/m1A RNA modifications promote the occur-
rence and development of tumors by regulating the tumor microenvironment. This study aimed to establish a novel 
liver cancer risk signature based on hypoxia and m6A/m5C/m1A modifications.

Methods We collected data from The Cancer Genome Atlas (TCGA-LIHC), the National Omics Data Encyclopedia 
(NODE-HCC), the International Cancer Genome Consortium (ICGC), and the Gene Expression Omnibus (GEO) data-
bases for our study (GSE59729, GSE41666). Using Cox regression and least absolute shrinkage and selection opera-
tor (LASSO) method, we developed a risk signature for liver cancer based on differentially expressed genes related 
to hypoxia and genes regulated by m6A/m5C/m1A modifications. We stratified patients into high- and low-risk 
groups and assessed differences between these groups in terms of gene mutations, copy number variations, path-
way enrichment, stemness scores, immune infiltration, and predictive capabilities of the model for immunotherapy 
and chemotherapy efficacy.

Results Our analysis revealed a significantly correlated between hypoxia and methylation as well as m6A/m5C/
m1A RNA methylation. The three-gene prognosis signature (CEP55, DPH2, SMS) combining hypoxia and m6A/m5C/
m1A regulated genes exhibited strong predictive performance in TCGA-LIHC, NODE-HCC, and ICGC-LIHC-JP cohorts. 
The low-risk group demonstrated a significantly better overall survival compared to the high-risk group (p < 0.0001 
in TCGA, p = 0.0043 in NODE, p = 0.0015 in ICGC). The area under the curve (AUC) values for survival at 1, 2, and 3 years 
are all greater than 0.65 in the three cohorts. Univariate and Multivariate Cox regression analyses of the three data-
sets indicated that the signature could serve as an independent prognostic predictor (p < 0.001 in the three cohorts). 
The high-risk group exhibited more genome changes and higher homologous recombination deficiency scores 
and stemness scores. Analysis of immune infiltration and immune activation confirmed that the signature was asso-
ciated with various immune microenvironment characteristics. Finally, patients in the high-risk group experienced 
a more favorable response to immunotherapy, and various common chemotherapy drugs.

Conclusion Our prognostic signature which integrates hypoxia and m6A/m5C/m1A-regulated genes, provides valu-
able insights for clinical prediction and treatment guidance for liver cancer patients.
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Introduction
Liver cancer, the second most deadly malignancy world-
wide, is characterized by a poor prognosis [1]. Existing 
diagnostic tools for liver cancer relying on histological 
and radiological assessments, often lack precision and 
practicality [2]. Moreover, clinicopathological features 
have failed to account for the heterogeneity, among 
patients, resulting in varying treatment outcomes even 
among individuals with the same TNM stage [3]. Current 
staging methods also fall short in guide immunotherapy, 
which has shown promise in treating liver cancer [4, 5]. 
Hence, there is pressing need for the development of a 
novel liver cancer signature capable of predicting prog-
nosis and guiding treatment decisions.

The presence of hypoxia within tumor microenviron-
ment (TME) has been attributed to the considerable 
distance between the vascular system and tumor cells, 
coupled with the rapid proliferation of tumor cells [6, 
7]. As oxygen is becomes increasingly scarce, tumor tis-
sues establish a new dynamic equilibrium, leading to 
the formation a hypoxia, hypoglycemic and acidic TME 
that favors tumor growth [8, 9]. Extensive research has 
established a strong correlation between hypoxia and 
rapid tumor progression, metastasis, and drug resistance 
[10–13]. Notably, liver cancer is one of the most hypoxic 
malignant tumors, with a median oxygen content as low 
as 0.8% [14]. The hypoxic TME induces metabolic repro-
gramming, mediated by mRNA methylation, which sub-
sequently triggers phenotypic changes in immune cells, 
creating an immunosuppressive TME [15].

Eukaryotic mRNA undergoes methylation modifica-
tions including  N6-methyladenosine (m6A), 5-methylcy-
tosine (m5C), and  N1-methyladenosine (m1A). Research 
has revealed that genes involved in the regulation of 
m6A/m5C/m1A modifications play a pivotal role in shap-
ing the TME, thereby promoting tumor progression [16–
19]. Hypoxia-inducible factors (HIFs) orchestrate cellular 
adaptation to hypoxic environments by participating in 
multiple regulatory pathways [20, 21]. HIFs activation 
governs glucose and lactate metabolism, enabling tumors 
to thrive in hypoxia conditions while also contributing to 
the formation of an immunosuppressive TME [22–25]. 
Studies have demonstrated that m6A-modifying enzymes 
influence the methylation and expression of HIFs, thus 
affecting tumor proliferation. For example, in glioblas-
toma, hypoxia-induced ALKBH5 stabilizes SFPQ on 
the CXCL8 gene by clearing m6A methylated NEAT1, 
promoting the expression of CXCL8/IL8 and facilitat-
ing immune evasion [26]. Upregulation of HBXIP can 

enhance the expression of m6A methylase METTL3, 
maintaining elevated levels of HIF-α and promoting the 
malignant proliferation of liver cancer [27]. Hypoxia 
within the TME alters the methylation levels of m6A/
m5C/m1A, subsequently affecting downstream adap-
tive responses such as immune cell function and tumor 
behavior [28–30]. It has been reported that there is a 
positive feedback loop between hypoxia and m6A/m5C/
m1A methylation in driving malignant tumor prolifera-
tion [15].

Therefore, in the present study, we analyzed the inter-
play between hypoxia and m6A/m5C/m1A regulated 
genes and established a novel risk prognosis signature for 
liver cancer that integrated both hypoxia and m6A/m5C/
m1A modification. To our knowledge, this represents 
the first prognostic signature that combines hypoxia and 
mRNA methylation regulatory genes, offering an enrich-
ing approach to clinical management and providing 
valuable guidance for the neoadjuvant treatment of liver 
cancer.

Materials and methods
Dataset collection and preprocessing
The flow chart outlining our research is illustrated in 
Fig. S1. We collected RNA-seq, methylation-seq, and 
clinicopathological data for liver cancer samples from 
various sources. Specifically, TCGA-LIHC and ICGC-
JP were acquired from Xena (https:// xenab rowser. net/ 
datap ages/), NODE-OEP000321 were downloaded from 
NODE (https:// www. biosi no. org/ node/), and GSE59729, 
GSE41666, and GSE144269 were obtained from GEO 
(https:// www. ncbi. nlm. nih. gov/ gds). The clinical infor-
mation of these data sets is listed in Table 1. To facilitate 
analysis, we converted all transcriptome sequencing data 
from count to TPM format and retrieved chip data using 
R package GEOquery (version 2.64.2) [31]. Subsequently, 
we standardized all gene expression profiles using the 
normalizeBetweenArrays function from the R package 
limma (only for chip data) and log2(X + 1) transformation 
[32]. The TCGA-LIHC dataset was employed as the train-
ing set for model development, while NODE-OEP000321 
and ICGC-JP served as the validation sets. All analyses 
were performed using R (version 4.2.2). GSE144269, a 
transcriptome sequencing dataset for liver cancer, was 
used to verify the expression levels of risk genes.

Hypoxia genes were extracted from the hallmark gene 
set in the Molecular Signatures Database (MsigDb, www. 
gsea- msigdb. org, version 7.0). The regulatory genes 

https://xenabrowser.net/datapages/
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(Writer, Reader, and Eraser) of m6A/m5C/m1A were 
obtained from the literature [33, 34].

Unsupervised clustering of hypoxia and its correlation 
with methylation
To assess the hypoxia status of liver cancer patients, we 
applied an unsupervised clustering algorithm by the R 
package ConsensusClusterPlus (version 1.60.0) (default 
parameter) based on the hypoxia hallmark gene set [35]. 
Additionally, we computed the activation scores for 
hypoxia and m6A/m5C/m1A regulation using the single 
sample Gene Set Enrichment Analysis (ssGSEA) method 
from the R package GSVA (version 1.44.2). We analyzed 
differences in the expression of m6A/m5C/m1A regula-
tor genes and total methylation levels across different 
hypoxia clusters. Furthermore, we examined the correla-
tion between hypoxia and the activation of m6A/m5C/
m1A regulation [36].

Established a Hypoxia‑m6A/m5C/m1A‑related‑score 
scoring system to evaluate liver cancer cases
To identify differentially expressed genes (DEGs) associ-
ated with hypoxia status more accurately, we intersected 

DEGs obtained from hypoxia clustering (TCGA-LIHC) 
and differential oxygen treatment (GSE41666 and 
GSE59729). We then calculated DGEs using the R pack-
age limma (|logFoldChange|> 1, p < 0.01) [32]. Subse-
quently, we analyzed DEGs between tumor and normal 
samples using the same package (|logFoldChange|> 1, 
p < 0.01) and identified gene sets significantly related to 
m6A/m5C/m1A regulator genes (r > 0.5, p < 0.001). The 
intersection of these two gene sets yielded a candidate 
gene set for model establishment using joint Cox regres-
sion analysis. Initially, we employed the Univariate Cox 
regression to identify genes related to overall survival 
(OS) (selecting genes with p values less than 0.05 after 
adjusting for p values using the Benjamini & Hochberg 
correction) via the R package Survival (version 3.5–5). 
Subsequently, we employed the Least Absolute Shrinkage 
and Selection Operator (LASSO) penalized Cox regres-
sion model to mitigate overfitting among candidate genes 
using the R package glmnet (version 4.1–7) and Survival. 
Finally, a risk model was established using Multivari-
ate Cox regression, and risk scores for each patient were 
computed as follows:

where n means all samples, exp indicates the expression 
level for each risk gene, and coef indicates their regres-
sion coefficients.

Evaluation and verification of the prognostic signature
We assessed the predictive and generalization capa-
bilities of the Hypoxia-m6A/m5C/m1A-related-Score 
(HMRs) gene signature in both the training and vali-
dation sets. Patients were stratified into high- and 
low-risk groups based on the median risk score. We 
analyzed survival differences between these groups 
using Kaplan–Meier (K-M) curves with the R package 
survminer (version 0.4.9) and evaluated the predictive 
capability of the risk score through Received Operat-
ing characteristic curve (ROC) analysis. Univariate and 
Multivariate Cox regression analyses were conducted 
to assess the clinical prognostic independence of the 
prognostic risk model. Principal Component Analysis 
(PCA) and t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) were employed to evaluate the classifica-
tion ability of the HMRs signature.

Relationships between HMRs gene signature and genomic 
alterations
It is well-established that cancer patients with different 
prognoses can distinguish variations in gene expression 
and mutation patterns. Consequently, we investigated 

risk score (patient) =

n

k=1

(coef × exp)

Table 1 Summary of clinical information from the datasets used 
in the analysis

Training cohort Validation cohorts

TCGA (362) NODE (159) ICGC (231)

status (%)

 alive 233 (64.4) 103 (64.8) 188 (81.4)

 dead 129 (35.6) 56 (35.2) 43 (18.6)

time (mean (SD)) 2.22 2.66 (1.11) 67.20 (10.12)

age (mean (SD)) 59.52 53.69 (10.90) 2.22 (1.14)

stage (%)

 I&II 254 (70.2) 105 (66.0) 141 (61.0)

 III&IV 84 (23.2) 54 (34.0) 90 (39.0)

 NA 24 (6.6) - -

gender (%)

 female 118 (32.6) 31 (19.5) 61 (26.4)

 male 244 (67.4) 128 (80.5) 170 (73.6)

T_stage (%)

 T1&T2 271 (74.9) - -

 T3&T4 88 (24.3) - -

 NA 3 (0.8) - -

bmi (mean (SD)) 26.14 (8.47) - -

tumor_grade (%)

 G1 55 (15.2) - -

 G2 174 (48.1) - -

 G3 116 (32.0) - -

 G4 12 (3.3) - -

 NA 5 (1.4) - -
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the association between risk groups determined by 
HMRs and genomic alterations. Initially, we performed 
an analysis of DEGs between high- and low-risk groups 
using the R package limma (|logFoldChange|> 0.5, 
p < 0.05). To gain insights into the functional relevance 
of these DEGs, we conducted pathway enrichment 
analysis using Metascape [37]. Subsequently, we uti-
lized the R package progeny (version 1.18.0) to assess 
the activation levels of 14 typical cancer related path-
ways between the high- and low-risk groups. We then 
explored the relationship between genomic instabil-
ity and risk scores in liver cancer from various angles. 
This included an analysis of the mutation spectrum 
and somatic total mutation burden (TMB) using the R 
package maftools (version 2.12.0) and an examination 
of copy number variation (CNV) using GISTIC2 [38, 
39]. Additionally, we investigated differences in frag-
mented genomic alterations and Homologous Recom-
bination Deficiency (HRD) between the two risk groups 
[40, 41]. Cancer stem cells, which exhibit characteris-
tics akin to normal stem cells, play a pivotal role in drug 
resistance, proliferation, and metastasis of tumors [42]. 
To better understand their involvement, we compared 
tumor stem cell indices between the high- and low-risk 
groups [43].

Relationships between HMRs gene signature 
and immunocyte infiltration
It is widely acknowledged that the immune micro-
environment of tumor tissue has a profound impact 
on tumor progression and prognosis [44]. Therefore, 
we examined the relationship between the immune 
microenvironment of liver cancer and the HMRs gene 
signature from various angles. Initially, we utilized 
the R package estimate (version 1.0.13) to compute 
the immune score of the tumor [45]. Subsequently, 
we employed the ssGSEA method from the R pack-
age GSVA (version 1.44.2) to estimate the proportions 
of 28 typical immune cell types [36]. To comprehen-
sively assess the immune microenvironment of liver 
cancer, we employed a variety of immunoinfiltration 
analysis methods, including TIMER, CIBERSORT, 
XCELL, QUANTISEQ, MCP-counter, EPIC, and CIB-
ERSORT-ABS. All proportions of immune cells were 
retrieved from TIMER2.0 (http:// timer. comp- genom 
ics. org/) [46–52]. To evaluate associations between 
immune cells and risk scores, we employed Wilcoxon 
signed-rank sum tests and Pearson correlation analy-
ses. Finally, we examined the activation of the immune 
cycle in liver cancer based on the Tracking Tumor 
Immunophenotype (TIP) tool (http:// biocc. hrbmu. edu. 
cn/ TIP/ index. jsp) [53].

Estimate of immunotherapeutic and chemotherapy drug 
response between HMRs groups
To broaden the model’s applicability, we analyzed 
its potential impact on clinical practice. Initially, we 
assessed the predictive power of risk scores for immu-
notherapy outcomes. We conducted this analysis using 
the PD-1 treatment cohort from IMvigor210 to explore 
the relationship between HMRs and immunotherapy 
response [54]. Additionally, we then evaluated the pre-
dictive effect of HMRs on immunotherapy using Tumor 
Immune Dysfunction and Exclusion (TIDE, http:// tide. 
dfci. harva rd. edu/ faq/), tumor inflammation score (TIS), 
and immunophenoscore (IPS, obtained from The Can-
cer Immunome Atlas Database, https:// tcia. at/ about) 
[55–58]. Furthermore, we compared differences in com-
mon immune checkpoint inhibitors (ICI) and the Human 
Leukocyte Antigen (HLA) family genes among the 
HMRs groups. Transcatheter arterial chemoemboliza-
tion (TACE) serve as a primary treatment for unresect-
able liver cancer. However, its therapeutic efficacy varies 
due to the heterogeneity of liver cancer. We analyzed 
the ability of the risk score to predict TACE response 
based on GSE104580. Finally, we utilized the Genomic 
of Drug Sensitivity in Cancer (GDSC) and the R pack-
age pRRophetic (version 0.5) to predict the half-maximal 
inhibitory concentration (IC50) of 8 common liver can-
cer chemotherapeutic drugs. We compared differences 
in IC50 values between the HMRs groups by using Wil-
coxon signed-rank sum tests [59, 60].

Multi‑database validation of risk gene expression 
and function analysis of candidate gene
To validate the findings, we leveraged multiple independ-
ent datasets to analyze the differential expression of risk 
genes between tumor and normal tissues. Initially, we 
identified the differentially expressed risk genes in the 
TCGA-LIHC, ICGC-JP, and GSE144269 datasets. Fur-
thermore, we employed the online tool, The University 
of Alabama at Birmingham CANcer Data Analysis Portal 
(UALCAN, https:// ualcan. path. uab. edu/ index. html), to 
assess differences in risk gene expression at the protein 
level [61]. Immunohistochemical results for risk genes 
were obtained from The Human Protein Atlas (THPA) 
database (https:// www. prote inatl as. org/) [62]. Finally, 
we examined the expression differences of risk genes in 
paired and unpaired tumor datasets using the online tool 
TNMplot (https:// tnmpl ot. com/ analy sis/) [63].

We also conducted functional analyses of risk genes, 
including pan-cancer survival and differential expression 
analysis, using Gene Expression Profiling Interactive Anal-
ysis (GEPIA2, http:// gepia2. cancer- pku. cn/# index) [64]. 
Additionally, differences in the methylation levels of genes 

http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://tide.dfci.harvard.edu/faq/
http://tide.dfci.harvard.edu/faq/
https://tcia.at/about
https://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org/
https://tnmplot.com/analysis/
http://gepia2.cancer-pku.cn/#index
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under different clinical classifications were analyzed using 
UALCAN. To visualize the methylation sites of risk genes, 
we employed the R package trackViewer (version 1.36.2) 
to visualize [65]. Finally, we performed single-cell expres-
sion analysis of risk genes, initially assessing the expression 
levels of risk genes across different cell types in multiple 
liver cancer single-cell datasets using the Tumor Immune 
Single-cell Hub 2 (TISCH2, http:// tisch. comp- genom ics. 
org/ home/) [66]. Subsequently, we determined in which 
cell types the risk genes were significantly expressed using 
the PanglaoDB database (https:// pangl aodb. se/ index. html) 
[67]. Finally, the relationship between the expression levels 
of risk genes at both protein and transcript levels and the 
cell cycle were explored using the THPA database [62].

Results
Hypoxia‑based clustering of liver cancer was significantly 
correlated with m6A/m5C/m1A methylation regulation
The results of unsupervised clustering showed that hypoxia 
gene sets could classify liver cancer into two clusters 
(Fig. 1A, B), with significant differences in survival between 
these two clusters (Fig.  1C). Pathway activation analy-
sis based on ssGSEA showed that the activation degree 
of hypoxia in cluster 2 was significantly higher than that 
in cluster 1 (Fig.  1D). Almost all m6A/m5C/m1A regula-
tor genes were significantly highly expressed in cluster 
2 (Fig. 1E), and the average methylation degree in cluster 
2 was significantly higher than that in cluster 1 (Fig.  1F). 
Pathway activation analysis based on ssGSEA showed that 
the activation degree of m6A/m5C/m1A in cluster 2 was 
significantly higher than in cluster 1 (Fig.  1G), and there 
was a significant correlation between hypoxia pathway 
activation of m6A/m5C/m1A regulation pathway (Fig. 1H, 
r = 0.42). These results suggest that hypoxia is positively 
correlation with m6A/m5C/m1A mediated methylation 
regulation.

Construction of HMRs model of liver cancer
A total of 34 genes related to hypoxia, m6A/m5C/m1A 
methylation regulation, and differentially expressed in 
tumors were used as candidate genes for model creation 
(Fig.  2A). 13 genes related to prognosis were obtained 
through Univariate Cox regression analysis (Fig.  2B), and 
candidate genes were screened using LASSO Cox regres-
sion (Fig.  2C, D, E) and Multivariate Cox regression 
(Fig. 2F). Finally, a liver cancer risk score model related to 
hypoxia and m6A/m5C/m1A methylation regulation was 
obtained. The risk score was estimated as follows:

Risk score = (0.152×expr of CEP55)+(0.366×expr of DPH2)+(0.313×expr of SMS)

Validation of the prognostic prediction efficacy of HMRs 
model in liver cancer
Based on the HMRs model, we calculated the risk scores 
of patients in each dataset and divided all patients into 
high-risk and low-risk groups based on the median risk 
scores in the training set. Survival analysis results showed 
that patients in the high-risk group had a worse progno-
sis (Fig. 3A, B, C, p < 0.01) and higher mortality (Fig. 3D-
I). t-SNE and PCA analysis showed significant clustering 
of patients in the high- and low-risk groups (Fig.  3J, K, 
L for t-SNE, Fig. 3M, N, O for PCA). Risk genes were sig-
nificantly high expression in the high-risk group (Fig. 3P, 
Q, R). These results indicated that the HMRs model is a 
robust prediction classifier for liver cancer prognosis.

The time-dependent ROC curve revealed that the 
HMRs model had good predictive performance in both 
the training and validation sets. The area under the curve 
(AUC) of 1-year, 2-year, and 3-year of the training set 
and validation set were greater than 0.65 (0.765, 0.686, 
0.689 in TCGA-LIHC, 0.681, 0.711, 0.653 in NODE-
HCC, 0.719, 0.677, 0.724 in ICGC-LIHC-JP) (Fig. 4A-C). 
The results of prognostic independence analysis based 
on Univariate and Multivariate Cox regression indi-
cated that the HMRs model was an independent prog-
nostic factor for liver cancer (Fig. 4D-I). Univariate Cox 
regression analysis identified clinical stage and risk score 
as risk factors for liver cancer (p < 0.001 in all three data 
sets). Multivariate Cox regression analysis showed that 
risk score was the only independent prognostic factor 
in TCGA-LIHC and NODE-HCC datasets. Analysis of 
the ICGC-LIHC-JP dataset revealed clinical stage, risk 
score, and gender as risk factors for liver cancer (p < 0.05). 
These results strongly suggest that HMRs represent an 
independent predictor of the prognosis of liver cancer 
patients.

The HMRs model is significantly correlated with genomic 
alterations
Due to the significant correlation between the HMRs 
model and the prognosis of liver cancer patients, we con-
ducted a series of bioinformatics analyses to reveal the 
molecular mechanisms associated with this model.

A total of 893 genes (479 down-regulated, 414 up-
regulated) were differentially expressed between high- 
and low-risk groups (Fig. S2). Pathway analysis showed 
that DEGs were significantly enriched in processes such 
as metabolism (monocarboxylic acid metabolic pro-
cess, DNA metabolic process) and immune response 

http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
https://panglaodb.se/index.html
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(adaptive immune system) (Fig.  5A). Activation analy-
sis of typical tumor pathways showed that pathways 
related to cancer progression, such as Androgen, 
EGFR, Estrogen, Hypoxia, JAK-STAT, and MARK were 

significantly activated in the high-risk group (Fig.  5B). 
However, pathways related to cancer suppression and 
immune response, such as NFKB, p53, TGFβ, TNFα, 
and WNT, were also significantly activated in the 

Fig. 1 The relationship between hypoxia and m6A/m5C/m1A methylation regulation. A The consensus matrix of unsupervised clustering 
when K = 2. B Cumulative distribution function (CDF) curve proves that K = 2 has the best clustering effect. C K-M survival curves showed 
the differences of overall survival rate among the 2 clusters. D Analysis of activation difference of hypoxia pathway between two clusters, 
the significance of the difference was analyzed by Wilcoxon signed rank test. E Heatmap of differential expression of m6A/m5C/m1A methylation 
regulation genes in two clusters, the significance of the difference was analyzed by T test. F Analysis of differences in Mean DNA methylation degree 
between two clusters, the significance of the difference was analyzed by Wilcoxon signed rank test. G Analysis of activation differences of m6A/
m5C/m1A methylation regulation between two clusters, the significance of the difference was analyzed by Wilcoxon signed rank test. H Correlation 
analysis between hypoxia pathway and m6A/m5C/m1A methylation regulation. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS means 
non-significant)
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high-risk group (Fig. 5B). Pathways related to cell pro-
liferation and migration, such as PI3K and VEGF, were 
significantly activated in the low-risk group (Fig.  5B). 
These results indicate a correlation between the HMRs 
model and pathways such as cell proliferation and 
immune regulation.

We then analyzed the differences in gene mutations 
between high- and low-risk groups. Although there was 
no significant difference in TMB between the two groups 
(Fig.  5C), there were differences in mutation land-
scape between the high- and low-risk groups (Fig.  5D, 
E). Genes such as TP53, COL7A1, DNAH10, CAC-
NA1H, DIP2C, and NLRP2 exhibited a higher muta-
tion frequency in the high-risk group, while NLRP12 
has a higher mutation frequency in the low-risk group 

(Fig. 5F). Mutation site analysis showed that the type and 
number of mutations in TP53 were significantly higher 
than those in the low-risk group (Fig. 5G). These results 
suggest the presence of differences in gene mutation pat-
terns among patients in the high- and low-risk groups, 
and there is significant heterogeneity between the two 
groups of patients. Genomic variation analysis showed 
that the high-risk group had more CNV and structural 
variations (Fig.  5H, I, J). The higher HRD score in the 
high-risk group indicated that there were more defects 
in the DNA damage repair mechanism in the high-risk 
group, leading to more mutations (Fig. 5K). The cancer 
stem cell index based on methylation suggested that the 
stemness characteristics of the high-risk group were 
more obvious (Fig.  5L), while the results based on the 

Fig. 2 Construction of HMRs model of liver cancer A Venn diagram displaying the 34 intersection genes of the hypoxia-associated DEGs 
and the m6A/m5C/m1A methylation regulation associated DEGs. B Forest plots shows the 13 survival related genes obtained by Univariate Cox 
regression; P value corrected using B-H correction. C LASSO deviance profile of the 13 genes. D LASSO regression coefficient profile of the 13 genes. 
E 5 genes coefficient after LASSO analysis. F Final 3 genes forest plot after Multivariate Cox regression
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epigenetic regulation characteristics of stem cells sug-
gested that there was no significant difference between 
the two groups (Fig. 5M). These results indicate signifi-
cant differences in expression patterns and gene muta-
tions between high- and low-risk groups, leading to 
survival differences between groups.

Analysis of immune microenvironment between risk 
groups
Immune infiltration analysis using the estimate sug-
gested a higher degree of immune infiltration in the 
high-risk group (Fig. 6A), while there were no signifi-
cant differences in tumor cell purity, stromal cell score, 

Fig. 3 Validation of the prognostic prediction efficacy of HMRs model A B C K-M curve of OS of liver cancer patients in high- and low-risk groups. 
D E F Risk curve for the investigated patients. G H I Risk scatter diagram for the investigated patients. The investigated patients risk scores clustering 
based on t-SNE J K L and PCA M N O P Q R Heatmap for the different expression of 3 risk genes in high- and low-risk group, the significance 
of the difference was analyzed by T test, the red asterisk represents significantly higher expression in the latter group. (*p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001, NS means non-significant)
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and estimate score (Fig. S3A, B, C). Immune cell infil-
tration analyses of 28 types of immune cells showed 
that Activated CD4 T cells, Activated dendritic cells, 
Central memory CD4 T cells, Central memory CD8 T 
cells, Effector memory CD4 T cells, MDSC, Memory 
B cells, Regulatory T cells, T follicular helper cells, 
Type 17 T helper cells, Type 2 T helper cells, were 
significantly activated in the high-risk group, while 
Eosinophils and CD56dim natural killer cells were 
highly infiltrated in the low-risk group (Fig. 6B). Other 
immune infiltration analysis approaches consistently 
suggested that the high-risk group has more abundant 
immune cell infiltration (Fig. S4A, B). The infiltrating 
immune cells in the high-risk group consisted of mul-
tiple types of immunosuppressive and activated cells, 
indicating a more complex immune microenvironment 
in the high-risk group. TIP analysis suggested that 
there was no significant difference in immune acti-
vation between high- and low-risk groups (Fig.  6C). 
Analysis of anti-tumor immune pathway activation 
showed that the high-risk group elevated activation 
levels in pathway associated with the Release of can-
cer cell antigens, CD8 T cell recruiting, Neutrophil 
recruiting, TH17 cell recruiting, and MDSC recruit-
ing pathways in steps 1 and 4, while the Infiltration of 

immune cells into tumors, Recognition of cancer cells 
by T cells, Killing of cancer cells in steps 5, 6, 7 were 
significantly activated in the low-risk group (Fig. 6D). 
Taken together, these results indicated that the low-
risk group could more effectively eliminate tumor 
cells, thereby improving the prognosis of patients.

Prediction of treatment outcomes for liver cancer using 
the HMRs model
Analysis of the IMvigor210-based immunotherapy data-
set showed that patients who responded to treatment 
had higher risk scores (Fig. 7A). Evaluation of immuno-
therapy effectiveness based on TIDE suggested that the 
high-risk group had a lower TIDE score, indicating a bet-
ter response to immunotherapy (Fig. 7B). TIS is consid-
ered a predictive biomarker for the combination therapy 
of PD-1 inhibitors, and patients with high TIS scores can 
benefit from treatment [56, 57]. Analysis showed that 
the TIS of the high-risk group was higher, indicating that 
immunotherapy combination therapy conferred more 
substantial benefits for the high-risk group (Fig. 7C). IPS 
analysis showed that the high-risk group had significantly 
higher IPS scores (Fig.  7D), while the remaining scores 
were comparable to the low-risk group (Fig.  7E, F, G). 
These results indicate that the high-risk group was more 

Fig. 4 Validation of the prognostic independence of the HMRs model A B C The 1-, 2-, 3-year AUC in ROC analysis. D E F Univariate and G H I 
Multivariate Cox regression analysis of risk score and clinical features
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Fig. 5 Relationship between risk models and genomic alterations A Pathway annotation of DEGs between risk groups. B Analysis of differences 
in activation of 14 typical cancer-related pathways in the high- and low-risk group, the significance of the difference was analyzed by Wilcoxon 
signed rank test. C Analysis of differences in TMB between two risk groups, the significance of the difference was analyzed by Wilcoxon signed 
rank test. D E The mutation landscape of patients in the TCGA-LIHC cohort (show the top 20 genes) about the high- and low-risk groups. 
F Display of mutation genes information with significant differences between risk groups. G Display of mutation sites of TP53 differences 
between high- and low-risk groups. Display CNV information of high H and low I risk groups. J Analysis of differences in fraction genome altered 
between two risk groups, the significance of the difference was analyzed by Wilcoxon signed rank test. K Analysis of differences in HRD score 
between two risk groups, the significance of the difference was analyzed by Wilcoxon signed rank test. Analysis of tumor cell stemness index based 
on methylation L and epigenetic regulation characteristics M between two risk groups, the significance of the difference was analyzed by Wilcoxon 
signed rank test. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS means non-significant)
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likely to benefit from immunotherapy. Multiple common 
ICIs and HLA were significantly expressed in the high-
risk group (Fig. 7H, I), which also supports the specula-
tion that the high-risk group can derive more benefit 
from immunotherapy. We also analyzed the predictive 
ability of our risk score for the effectiveness of TACE 
treatment. The results showed that TACE had a better 
effect on the low-risk group (Fig. 7J). Finally, we analyzed 
the guidance of risk scoring on chemotherapy medica-
tion. Of these 8 commonly used chemotherapy drugs, 
Erlotinib was more suitable for the low-risk group, while 
Cisplatin, 5-Fluorouracil, Vorinostat, Tivozanib, Doxo-
rubicin, and Temsirolimus were more beneficial to the 
high-risk group (Fig. 7K).

Analysis of expression patterns of risk genes
Due to the lack of clinical samples for risk gene validation 
in this study, we analyzed the expression patterns of risk 

genes from multiple perspectives. Analysis based on the 
ICGC-JP, GSE144269, and TCGA-LIHC datasets showed 
significant overexpression of risk genes in tumor tissues 
(Fig. S5A, B, C). Analysis based on the UALCAN data-
base showed that the proteins of DPH2 and SMS were 
significantly overexpressed in tumors, while the differ-
ence in CEP55 was not significant (Fig. S5D). The results 
of immunohistochemistry analysis showed that CEP55 
was moderately expressed in tumor tissue, with a lower 
expression level in normal tissue (Fig. S5E), while SMS 
exhibited low expression in tumor tissue and could not 
be detected in normal tissue (Fig. S5G). DPH2 was highly 
expressed in tumor tissues, while its expression level was 
low in normal tissues (Fig. S5F). We validated the expres-
sion patterns of risk genes using the expression chip data 
collected by TNM plot for liver cancer. The results showed 
that risk genes were significantly overexpressed in tumor 
tissues, both in paired and non-paired samples (Fig. S5H, 

Fig. 6 Analysis of tumor immune microenvironment A Analysis of differences in immune scores between two risk groups B Analysis of immune 
cell infiltration differences between two groups. C Overall immune activation differences between two risk groups based on TIP. D Differences 
in the cancer immunity cycle activities between two groups. The significance of the difference was analyzed by Wilcoxon signed rank test. (*p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001, NS means non-significant)
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I, J). In addition, pan-cancer analysis based on GEPIA2 
showed that high expression of risk genes was associ-
ated with poor prognosis in various cancers (Fig. S6A, B, 

C, D, including liver cancer). Based on the above results, 
risk genes are significantly overexpressed in liver cancer’s 
tumor tissue and are all risk factors for liver cancer.

Fig. 7 The ability of HMRs model to predict the outcome of liver cancer treatment A Association between risk scores and immunotherapy 
response based on the IMvigor210. B Difference in response to immunotherapy in risk groups predicted by TIDE. Differences in the TIS C IPS 
D IPS-CTLA4- and PD1/PDL1/PDL2 blocker E IPS-CTLA4 blocker F, IPS-PD1/PDL1/PDL2 blocker G ICIs H and HLA I between two groups. J 
Association between risk scores and TACE treatment response. K Difference in IC50 of common chemotherapy drugs between risk group. The 
significance of the difference was analyzed by Wilcoxon signed rank test. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS means non-significant)
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Gene function analysis of DPH2
The results of multivariate Cox regression analysis high-
lighted the significant impact of DPH2 on the progno-
sis of liver cancer (p = 0.014, hazard ratio > 1, Fig.  2F). 
We also confirmed that DPH2 was significantly overex-
pressed in both gene and protein expression levels in liver 
tumor tissue. Therefore, we analyzed the role of this gene 
in the development of liver cancer. Univariate and Mul-
tivariate Cox regression analysis showed that DPH2 was 
a significant independent prognostic factor in both the 
TCGA-LIHC (Fig. S7A, D) and ICGC-LIHC-JP (Fig. S7C, 
F) datasets, but nor significant in the NODE-HCC data-
set (Fig. S7B, E). The time-dependent ROC curve analy-
sis of DPH2 expression suggested that the AUC values of 
both TCGA-LIHC (Fig. S7G) and ICGC-LIHC-JP (Fig. 
S7I) datasets for survival at 1, 2, and 3 years are greater 
than 0.65, indicating that the gene has good predictive 
ability for liver cancer prognosis, while the NODE-HCC 
dataset revealed that DPH2 lacks predictive ability (Fig. 
S7H). Analysis shows that normal and low-level tumor-
grade samples have higher levels of DPH2 methylation 
and lower gene expression (Fig. S7J, L). Patients with low 
gene expression levels were associated with higher meth-
ylation levels (Fig. S7K). Multiple methylation modifica-
tion sites were observed in the promoter region of the 
DPH2 gene (Fig. S7M). These results suggest that DPH2 
is a potential prognostic target in liver cancer, and meth-
ylation in the promoter region of this gene may affect its 
expression, thereby influencing clinical outcomes.

Further analysis showed that the correlation between 
DPH2 and immune cells is not significant (Fig. S6E). 
Analysis of liver cancer single-cell data based on TISCH2 
showed that DPH2 exhibits low expression in immune-
related cells (Fig. S8A). PanglaoDB database analysis 
showed that DPH2 is highly expressed in Basal cells (Fig. 
S8B). THPA database analysis demonstrated that the pro-
tein expression level of DPH2 increased with the progres-
sion of cell interphase, unlike gene expression (Fig. S8C, 
D, E, F). These results suggest a possible regulatory rela-
tionship between DPH2 and cell proliferation.

Discussion
Liver cancer exhibits significant inter-tumor heteroge-
neous and involves complex and diverse biological pro-
cesses, resulting in inconsistent prognoses [3, 68]. Given 
its high morbidity and mortality rates and limited treat-
ment options, it is imperative to develop a convenient 
method for guiding personalized precision treatment for 
liver cancer.

Current evidence suggests that hypoxia within the 
TME is closely associated with unfavorable processes in 
liver cancer, including tumor proliferation, metastasis, 
angiogenesis, resistance to radio- and chemotherapy, 

and disease progression [69]. The impact of hypoxia on 
the TME is multifaceted, encompassing metabolic repro-
gramming and the modulation of immune cell functions 
through post-transcriptional methylation modifications 
[28]. Notably, there exists an intricate crosstalk between 
hypoxia in solid tumors and methylation modifications 
such as m6A/m5C/m1A [15]. In this study, we compre-
hensively examined the relationship between hypoxia 
and m6A/m5C/m1A methylation and subsequently 
developed a prognostic risk model for liver cancer by 
integrating hypoxia and methylation information. To our 
knowledge, this represents the first reported liver cancer 
prognosis model that integrates gene expression related 
to hypoxia and methylation regulation. Based on our 
comprehensive analyses, the HMRs model serves as a 
robust classifier for predicting liver cancer prognosis and 
offers valuable insights for guiding liver cancer immuno-
therapy and chemotherapy.

Our analysis preliminarily revealed a positive correla-
tion between hypoxia and methylation in liver cancer, as 
patients with higher hypoxia pathway activation exhib-
ited poorer prognoses, along with elevated methylation 
levels and increase m6A/m5C/m1A pathway activation. 
These finding validate the rationale behind our inte-
grated modeling approach. Survival curves, clustering, 
ROC analysis, and both Univariate and Multivariate Cox 
analyses of the training and validation sets provided com-
pelling evidence of the effectiveness and robustness of 
HMRs in predicting liver cancer prognosis.

Hypoxia has been linked to the promotion of tumor 
heterogeneity and genomic evolution, with high-hypoxia 
patients often displaying elevated CNV and TMB [70]. 
Additionally, hypoxia contributes to reshaping the TME 
by inducing m6A/m5C/m1A methylation, influenc-
ing biological functions such as immunosuppression, 
metabolic dysregulation, and metastasis promotion [15]. 
Studies have shown that genomic instability represented 
by TMB and abnormal immune microenvironment can 
reflect tumor prognosis and immunotherapy effect [71, 
72]. In our study, we conducted a series of analyses using 
the TCGA-LIHC dataset to investigate the biological 
processes associated with HMRs. Our analyses revealed 
significant disparities in immune responses, cell prolif-
eration, and metabolism pathways between high- and 
low-risk groups. Mutation of TP53 will affect cell apop-
tosis and cause the tumor to fall into a dynamic cycle of 
hypoxia [73]. Although no significant differences in TMB 
were observed between risk groups, the mutated genes 
were notably different, with TP53 mutations being more 
prevalent in the high-risk group, which also exhibited a 
higher frequency of CNV. Furthermore, we observed 
increased HRD in the high-risk group, suggesting greater 
genomic instability. Notably, hypoxia’s impact on gene 
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expression, especially that of m6A/m5C/m1A regulators, 
has been shown to enrich and maintain tumor stem cells, 
consistent with our observation of a higher cancer stem 
cell index in the high-risk group [74, 75]. These finding 
collectively indicate that the HMRs model encompasses 
the characteristics of hypoxia and m6A/m5C/m1A meth-
ylation in regulating cancer biological processes, making 
it a potential prognostic predictor for liver cancer.

Further analysis revealed that the low-risk group 
exhibit a higher proportion of Eosinophils and 
CD56dim natural killer cells, potentially contribut-
ing to cancer cell suppression and improved survival. 
Eosinophils are thought to enhance immune function, 
while CD56dim natural killer cells inhibit cancer cell 
proliferation [76, 77]. Moreover, our assessment of anti-
tumor immune pathway activation using the TIP tool 
suggested that the low-risk group may eliminate tumor 
cells more efficiently, contributing to better patient 
prognoses. Conversely, the high-risk group display 
complex immune cell infiltration with both immune-
activating and immunosuppressive cell types exhibit-
ing higher proportions. While immune activating cells 
like Central memory CD4 T cells, Central memory CD8 
T cells and Type 2 T helper cells were more abundant 
in the high-risk group [78–80]. Immunosuppressive or 
inflammation-promoting cells like Effector memory 
CD4 T cells, MDSC and Regulatory T cells were also 
highly prevalent in the high-risk group [81, 82]. The 
effect of immune cells in TME on the occurrence and 
metastasis of hepatocellular carcinoma is complex [83]. 
This intricate immune cell composition in the high-risk 
group may renders anti-tumor pathways less effective, 
resulting in poorer prognoses.

Our results also indicated that the HMRs model could 
effectively assess the efficacy of immunotherapy and 
TACE for liver cancer. Despite limited immunotherapy 
datasets for liver cancer, multiple analysis methods con-
sistently demonstrated that the high-risk group display 
better responses to immunotherapy. The high group’s 
increased release of cancer cell antigens and higher 
expression of multiple ICIs and HLAs suggest a poten-
tial advantage in responding to immunotherapy, sup-
ported by the release of more tumor antigens. Studies 
have shown that combined radiotherapy, chemothera-
peutic, and immunotherapy can improve the prognosis of 
patients with liver cancer [84]. Our study also identified 
specific chemotherapeutic drugs that showed varying 
responses between risk groups, offering potential clinical 
benefits, particularly when combined with immunother-
apy. TACE, on the other hand, exhibited better responses 
in the low -risk group, thereby providing valuable treat-
ment guidance for patients in this subgroup.

Furthermore, we investigated the gene DPH2, known 
to be involved in ribosomal protein biosynthesis and 
protein elongation accuracy [85]. Expression analy-
ses across multiple datasets consistently indicated sig-
nificant overexpression of DPH2 in liver cancer. We 
observed a positive correlation between DPH2 expres-
sion levels and tumor stage, coupled with a negative 
correlation between methylation levels and both DPH2 
expression and clinical phenotypes. These findings sug-
gest a close association between DPH2 and mitosis. 
In normal tissues, promoter hypermethylation keeps 
DPH2 expression low, while in cancer tissues, decreas-
ing methylation levels with increasing tumor stage 
elevate DPH2 expression potentially influencing dis-
ease progression. We propose that DPH2 represents a 
potential target for liver cancer prognosis evaluation 
and treatment.

Conclusion
In summary, our study unveiled the intricate relationship 
between hypoxia and m6A/m5C/m1A methylation regu-
lation, leading to the development of the Hypoxia-m6A/
m5C/m1A-related-Score model. This model captures 
the biological phenotypes of hypoxia and m6A/m5C/
m1A methylation, such as genomic instability, metabolic 
abnormalities, and immune dysregulation, effectively 
predicting liver cancer survival outcomes. Moreover, 
our model offers valuable insight into guiding immuno-
therapy, TACE, and chemotherapy for liver cancer, thus 
facilitating precise treatment strategies for liver cancer 
patients.
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