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Abstract 

Oxidative stress (OS) plays an essential role in chronic diseases such as colorectal cancer (CRC). In this study, we 
aimed to explore the relation between oxidative stress-related genes and CRC prognosis and their involvement 
in the immune microenvironment. Totally 101 OS-related genes were selected from the MsigDB database. Then, uni-
variate Cox regression was used to explore the prognostic value of the selected genes correlated with the CRC patient 
survival in the TCGA database. A total of 9 prognostic OS-related genes in CRC were identified. Based on consensus 
clustering, CRC patients were then categorized into two molecular subtypes. A prognostic risk model containing 
8 genes was established using Lasso regression, and CRC patients were divided into high or low-risk groups based 
on the median risk scores. The predictive value of the 8 genes in CRC prognosis was validated using ROC curves, 
which indicate that CTNNB1, STK25, RNF112, SFPQ, MMP3, and NOL3 were promising prognostic biomarkers in CRC. 
Furthermore, the immune cell infiltration levels in different risk groups or CRC subtypes were analyzed. We found 
that the high-risk or C1 subtype had immunosuppressive microenvironment, which might explain the unfavorable 
prognosis in the two groups of CRC patients. Additionally, functional experiments were conducted to investigate 
the effects of OS-related genes on CRC cell proliferation, stemness, and apoptosis. We found that CTNNB1, HSPB1, 
MMP3, and NOL3 were upregulated in CRC tissues and cells. Knockdown of CTNNB1, HSPB1, MMP3, and NOL3 sig-
nificantly suppressed CRC cell proliferation, stemness and facilitated CRC cell apoptosis. In conclusion, we established 
prognostic CRC subtypes and an eight-gene risk model, which may provide novel prognostic indicators and benefit 
the design of individualized therapeutic strategies for CRC patients.

Keywords  Colorectal cancer, Oxidative stress, Risk model, Prognosis, Biomarker

Introduction
Colorectal cancer (CRC) is the third most frequently 
diagnosed malignancy, with over 1.9 million new cases 
reported worldwide in 2020, accounting for 10% of global 
cancer incidence [1]. Risk factors such as family history, 
cigarette smoking, excessive drinking, and colonic micro-
biota infection are associated with the CRC development 
[2]. Despite the diagnostic and therapeutic advance-
ments, the prognosis in patients diagnosed at advanced 
stages remains unsatisfactory [3], with the 5-year survival 
of 65%, and the 10-year survival of 58% in CRC patients 
[4]. Therefore, it is clinically imperative to identify 
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potential biomarkers for early diagnosis and prognosis 
evaluation in CRC patients.

Oxidative stress (OS) is regarded as an imbalance in 
the reactive oxygen species (ROS) production and elimi-
nation. Studies have demonstrated that OS is implicated 
in the pathological processes of different malignancies, 
including CRC [5, 6]. ROS is produced as a byproduct 
in mitochondria biogenesis and normal metabolism of 
oxygen, and participates in the cellular signaling trans-
duction or induction of intracellular defense [7, 8]. The 
counteractive effects of ROS, such as ROS favoring the 
proliferation of cancer cells or causing cancer cell death 
due to excessive ROS production, have been noted, sug-
gesting the tumor-suppressing or tumor-promoting role 
of ROS in cancer development [8]. Indexes related to OS 
are clinically useful in the prognosis evaluation of CRC 
patients [9, 10]. Moreover, multiple studies have demon-
strated the many OS-related genes are potential prognos-
tic biomarkers in cancer treatment [11–13]. For example, 
Xu Wang et  al. have identified 34 OS- and ferroptosis-
associated genes of predictive value in CRC patient 
prognosis with good efficacy [14]. Zilu Chen et  al. have 
established a prognostic model for CRC with 14 OS-
related genes with high predictive value [15].

ROS is implicated as an important signaling molecule 
in the tumor microenvironment (TME), which consists 
of macrophages, immune cells, endothelial cells, fibro-
blasts, tumor cells and an extracellular matrix (ECM) [16, 
17]. ROS has been shown to regulate tumor immunity by 
mediating the functions of tumor-infiltrating immune 
cells, including tumor-associated macrophages and regu-
latory T cells [17, 18]. Thus, it is reasonable to explore the 
correlation between OS-related transcripts and the CRC 
immunity, which may provide promising therapeutic tar-
gets for the improvement of immunotherapeutic effects 
in CRC patients. In this study, we intended to identify 
OS-related genes with prognostic value in CRC patients, 
sub-classify CRC patients and constructed a prognostic 
risk model based on the prognostic OS-related genes. 
The immune cell infiltration levels in different CRC sub-
types or risk groups were analyzed using bioinformatics 
tools. Furthermore, functional assays were conducted 
to explore the expression and biological functions of 
selected OS-related genes in CRC. The findings could 
fill in the potential gap in the knowledge of ROS biology 
in CRC and might help to develop novel prognostic bio-
markers for CRC treatment.

Material and methods
Data collection and processing
The RNA-Seq data and clinical information of CRC 
patients were collected from TCGA-COAD and TCGA-
READ projects in ‘The Cancer Genome Atlas’ (TCGA) 

database (https://​portal.​gdc.​cancer.​gov/). RNA-seq infor-
mation in transcripts per million (TPM) format was 
retrieved and normalized by log2(value + 1) transforma-
tion using the R 4.2.1 software. A total of 623 CRC samples 
were included in the analysis. The clinical information of 
patients was provided in the Supplementary material. The 
flow chart of this study is shown in Fig. 1.

Identification and functional enrichment analyses 
of prognostic OS‑related genes
The oxidative stress-related genes (n = 101) were screened 
from the MsigDB database (http://​www.​gsea-​msigdb.​
org/​gsea/​index.​jsp). Univariate Cox regression was used 
to select prognostic OS-related genes correlated with 
the survival of CRC patients in the TCGA database with 
p < 0.05 as the threshold value, and 9 genes were obtained. 
To evaluate the biological functions of OS-related genes, 
bioconductor annotation package org.Hs.eg.db was 
used for conversions of gene identifiers, and clusterPro-
filer package (4.4.4) was used for Gene ontology (GO) 
enrichment analyses in “Homo sapiens” [19]. GO terms 
include cell component (CC), biological process (BP) and 
molecular function (MF). Adjusted p < 0.05 was set as the 
threshold value. The relation between the biological and 
genetic traits was assessed using the MSigDB.

CRC Subtype classification
Consensus clustering was conducted to classify CRC 
cases into different subtypes using the CancerSubtypes 
R package, which integrates the common computational 
biology methods for the identification of cancer sub-
types [20]. The clustering variable k varied from k = 2 to 
k = 10. The cumulative distribution function (CDF) plot 
and CDF delta area curves were applied to determine 
the optimal cluster number and stability. The prognostic 
OS-related genes were analyzed by consensus cluster-
ing algorithm using agglomerative pam clustering upon 
1-pearson correlation distances and resampling 80% of 
the samples for 10 repetitions.

Construction and assessment of the prognostic risk model
The prognostic OS-related genes were selected with 
univariate Cox regression and screened for the con-
struction of the prognostic risk model by the LASSO 
algorithm using the glmnet R package (4.1.7). The risk 
score of each CRC patient was calculated as previously 
documented [11]. Risk Score =  n

i
Xi × Yi (X indicates 

correlation coefficient between genes and survival, Y 
indicates expression level of genes). CRC patients were 
separated into two (high/low) risk groups with the 
median risk score as the cutoff value. The differences in 
patient prognosis between the high and low-risk groups 
were assessed with Kaplan–Meier analysis using log-rank 
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statistical methods. ROC curves and DCA curves were 
generated to assess the sensitivity and accuracy of the 
risk model. The time-dependent receiver operating char-
acteristic (ROC) curves (1-, 3-, and 5-year) were gener-
ated using the survminer and timeROC package in R 
software. P < 0.05 was used as the threshold value.

Immune cell infiltration analysis
To explore the levels of immune cell infiltration in CRC, 
the ssGSEA algorithm in the R GSVA package (1.44.5) 
was used to analyze the enrichment of 24 immune cells in 
CRC samples [21]. Then, levels of immune cell infiltration 
were compared between different CRC subtypes or risk 
groups based on expression of the marker genes for 24 
types of immune cells [22]. ESTIMATE package was used 
for the calculation of the stromal score, immune score 

as well as ESTIMATE score of CRC patients in different 
groups. Pearson’s correlation analysis was conducted to 
evaluate the relation between Lasso risk score and infil-
tration levels of immune cells or purity of CRC tumors.

Predictive value of the selected OS‑related genes in CRC 
prognosis
ROC curves were used to evaluate the value of the 8 OS-
related genes to predict CRC prognosis. The pROC and 
ggplot2 R packages were used to generate ROC curves, 
with the False Positive Rate (FPR) as x axis and True Posi-
tive Rate (TPR) as y axis.

Clinical specimens
Thirty pairs of CRC tissue samples, as well as adjacent 
normal tissues were obtained during surgical treatment 

Fig. 1  Flow diagram of the study
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from patients with CRC at our hospital. The specimens 
were stored at − 80  °C until further analysis. All par-
ticipants had received no chemotherapy or radiother-
apy prior to the surgery. Written informed consent was 
signed by all participants, and the study was approved by 
the Ethics Committee of our hospital.

Cell culture and cell transfection
Human CRC cell lines (SW480, HT29, HCT116) and 
embryonic kidney (HEK293T) cells were provided by 
the American Type Culture Collection (VA, USA). 
SW480 and HEK293T cells were incubated in DMEM 
(Thermo Fisher). HT29 and HCT116 cells were cultured 
in McCoy’s 5A media. Both culture media were supple-
mented with 10% FBS and 1/100 Penicillin/Streptomycin 
in a humidified incubator containing 5% CO2 at 37 °C. To 
silence CTNNB1, HSPB1, MMP3 and NOL3, shRNAs 
targeting the respective genes were obtained from GEN-
ESEED Company (Guangzhou, China) and transfected 
into CRC cells with Lipofectamine™ 3000 in accordance 
with the manufacturer’s protocol.

RT‑qPCR
Cells were harvested, and total RNA was extracted using 
TRIzol (Thermo Fisher). Then the collected RNA was 
reverse transcribed into cDNA using a SuperScript First-
Strand Synthesis System. qPCR was subsequently per-
formed with the SYBR Green I dye detection (Takara, 
Japan) on a real-time detection system (Bio-Rad). Rela-
tive RNA expression was quantified with the 2−ΔΔCt 
method normalized to GAPDH. The sequences of prim-
ers are shown in Table 1.

Western blot
Total protein was extracted from the CRC tissue samples 
using RIPA buffer (Thermo Fisher). The protein samples 
were separated by the SDS-PAGE gels and then electro-
transferred onto polyvinylidene difluoride membranes. 
Next, the membranes were blocked with 5% nonfat milk 
for 60 min, probed with anti-CTNNB1, anti-HSPB1, anti-
MMP3, and anti-NOL3, and incubated overnight at 4 °C. 
GAPDH was used as a loading control. The membranes 
were then incubated with the secondary antibodies for 
60  min at room temperature. The blots were visualized 
using ECL chemiluminescence reagent (Amersham Bio-
sciences) and then quantified using ImageJ software.

Immunofluorescence
CRC cells were seeded into 24-well plates, immersed in 
4% PFM and treated with 0.4%Triton X-100. Next, cells 
were blocked with 5% bovine serum albumin for 30 min 
at ambient temperature, and incubated with primary 
antibody against CTNNB1, HSPB1, MMP3, and NOL3 

at 4 °C overnight. Then the cells were cultured with fluo-
rescent secondary antibody in dark for 60 min, followed 
by staining the cell nuclei with DAPI solution (Sigma-
Aldrich, USA). Finally, the images were captured using a 
fluorescence microscopy (Leica; Wetzlar, Germany).

Cell proliferation
After plating the transfected CRC cells into six-well 
plates (5000 cells per well), cells were maintained at 37 °C 
for two weeks. Then, the colonies of CRC cells were fix-
ated using paraformaldehyde (PFM) and stained using 
0.1% crystal violet (Sigma-Aldrich) and the number of 
colonies was counted manually under a microscope.

Flow cytometry analysis
Transfected CRC cells were harvested and centrifuged 
for five minutes at 1500  rpm and washed with 1 × PBS 
three times. Subsequently, cells were suspended in the 
binding buffer supplemented with 5 μL of FITC-conju-
gated Annexin V and cultured for thirty minutes at 4 °C. 
Then, 5 μL of propidium iodide was added and incubated 
for five minutes at room temperature. CRC cell apopto-
sis in each group was evaluated using flow cytometry 
(Thermo Fisher, Rockford, IL, USA).

Sphere formation assay
CRC cell stemness was determined using sphere forma-
tion assays. Briefly, transfected CRC cells were seeded 
in ultra-low attachment plates and incubated in 2  ml 
serum-free DMEM-F12 medium (Thermo Fisher) con-
taining 10  μg/L bFGF (Thermo Fisher), 20  μg/L EGF 

Table 1  Sequences of primers used in this study

STK25 Forward: 5’-TGG​ACT​TGC​TTA​AAC​CAG​G-3’

Reverse: 5’-GAT​AAT​CCA​GGC​CCT​TCA​G-3’

CTNNB1 Forward: 5’-CCA​AGT​CCT​GTA​TGA​GTG​GG-3’

Reverse: 5’-GCA​TAC​TGT​CCA​TCA​ATA​TCAGC-3’

HSPB1 Forward: 5’-CTT​CAC​GCG​GAA​ATA​CAC​G-3’

Reverse: 5’-TGG​TGA​TCT​CGT​TGG​ACT​G-3’

MMP3 Forward: 5’-GAC​TCC​ACT​CAC​ATT​CTC​C-3’

Reverse: 5’-AAG​TCT​CCA​TGT​TCT​CTA​ACTG-3’

SFPQ Forward: 5’-AAT​GAA​CAT​GGG​AGA​TCC​CT-3’

Reverse: 5’-GCT​TCA​TAA​CCT​ATG​CCA​CC-3’

RNF112 Forward: 5’-GCC​TTG​TCA​GTC​ACT​TCC​T-3’

Reverse: 5’-GTA​TGG​GAC​CAA​CTG​TTG​C-3’

NOL3 Forward: 5’-TAA​AGA​GGC​TGA​ACC​GGA​G-3’

Reverse: 5’-TTC​AGG​AAT​CTT​CGG​ACT​CG-3’

PAGE4 Forward: 5’-CCA​CCA​ACT​GAC​AAT​CAG​G-3’

Reverse: 5’-ACC​TTC​TAC​TTT​ACG​TTC​TTCG-3’

GAPDH Forward: 5’-CCT​CCT​GTT​CGA​CAG​TCA​G-3’

Reverse: 5’-CAT​ACG​ACT​GCA​AAG​ACC​C-3’
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(Sigma-Aldrich) and B27 (1:50, Thermo Fisher). After 
two weeks, cells were fixated with PFM and then stained 
with crystal violet for 15 min. The number of spheres was 
calculated under a microscope.

Statistical analysis
R software and GraphPad Prism 8.0 were used for data 
analysis and visualization. Data values are reported as the 
mean ± standard deviation. Statistical differences among 
three or more groups were assessed using one-way Anal-
ysis of Variance. The differences were considered statisti-
cally significant when the P value was less than 0.05.

Results
Identification and enrichment analysis of prognostic 
OS‑related genes in CRC​
The prognostic OS-related RNA transcripts in CRC were 
screened using MsigDB and TCGA databases. Based on 
MsigDB, we identified 101 oxidative stress-related genes. 
Then, univariate Cox regression analysis selected 9 prog-
nostic OS-associated genes (STK25, CTNNB1, HSPB1, 
MMP3, SFPQ, RNF112, NOL3, PAGE4, NCOA7) in CRC 
based on the relation between genes and overall sur-
vival of CRC patients in TCGA database (Fig.  2A). The 
correlation between the expression of 9 genes in CRC is 
presented in the heatmap in Fig.  2B, and expression of 
most genes was significantly correlated in CRC samples. 
Furthermore, the underlying biological functions of the 
9 genes were evaluated by GO analyses. The nine genes 
were involved in cell death in response to OS, cellular 
response to OS and chemical stress in terms of biologi-
cal process (BP); cytoplasmic region, neuron projection 
cytoplasm and Z disc in terms of cellular component 
(CC); transcription coactivator activity, RNA polymerase 
II-specific DNA-binding transcription factor binding and 
DNA-binding transcription factor binding in terms of 
molecular function (MF) (Fig. 2C-E).

Identification of CRC subtypes with OS‑related genes
CRC patients were classified into different molecular sub-
types using consensus clustering based on the expression 
of the 9 prognostic OS-related genes. Cumulative distri-
bution function (CDF) curves and CDF Delta area curves 
were used to determine the optimal number of clusters. 
When clustering variable k = 2, comparatively stable clus-
tering results were obtained (Fig.  3A-B), and patients 
were classified into one of the two OS-related subtypes 
(C1, C2) (Fig.  3D). Furthermore, we found that only in 
the 2-subtype classification the cluster consensus score 
for all subtypes was higher than 0.8, suggesting that the 
2-subtype classification was more robust compared with 
the others (Fig. 3C). Additionally, the heatmap presented 
the consensus matrix with 2 cluster count and the gene 

expression profile showed high similarity in each sub-
type (Fig.  3D). The tracking plot revealed that the sam-
ples were distinctly divided into 2 subtypes, which was 
more robust when k = 2 (Fig. 3E). Then, the prognosis of 
CRC patients in the two subtypes was evaluated, and the 
results indicated that patients had a more favorable prog-
nosis in the C2 subtype (Fig. 3F).

Construction of the prognostic risk model with OS‑related 
genes
To construct the OS-related prognostic risk model, 
Lasso regression was used to analyze the 9 prognostic 
OS-related genes selected by univariate Cox regression 
analyses to prevent the model from being overfitted. 
Eight OS-related genes were selected by Lasso into this 
prognostic signature, including PAGE4, STK25, RNF112, 
NOL3, HSPB1, CTNNB1, MMP3 and SFPQ (Fig. 4A-B). 
We then calculated the risk score of each CRC patient 
and classified them into high/low-risk groups. The distri-
bution of risk score and expression pattern of the 8 OS-
related genes in CRC samples were presented in Fig. 4C. 
Patients in the high-risk group had a lower survival rate 
(Fig.  4D). The correlation between the levels of 8 OS-
related genes with each other or with the Lasso risk score 
was presented in Fig.  4E. We also revealed that the C1 
CRC subtype had higher Lasso risk scores than the C2 
CRC subtype (Fig. 4F). Then ROC curves were generated 
to evaluate the sensitivity of the prognostic risk model, 
and the AUCs for the 1-, 3-, and 5-year overall survival 
were 0.70, 0.67 and 0.66, suggesting the high accuracy of 
the 8-gene prognostic risk model for predicting progno-
sis in CRC patients (Fig. 4G). Then, the decision net anal-
ysis (DCA) curves were used to evaluate model reliability, 
and the results showed that the Lasso risk score had bet-
ter predictive performance and higher value for clinical 
application (Fig. 4H).

Prognostic potential of 8 OS‑associated genes in CRC​
ROC curves were used to evaluate prognostic potential 
of the 8 OS-associated genes in CRC. The results showed 
that AUC of CTNNB1 (AUC: 0.879, [0.849–0.909]) 
(Fig.  5A), STK25 (AUC: 0.884, [0.853–0.914]) (Fig.  5B), 
RNF112 (AUC: 0.966, [0.952–0.980]) (Fig.  5C), SFPQ 
(AUC: 0.901, [0.866–0.937]) (Fig.  5D), MMP3 (AUC: 
0.940, [0.914–0.965]) (Fig.  5E) and NOL3 (AUC: 0.902, 
[0.867–0.937]) (Fig.  5F) was over 0.8, showing good 
performance in the prognosis prediction. The AUC of 
PAGE4 was 0.559 (0.522–0.596) (Fig.  5G), with a rela-
tively low accuracy, while the AUC of HSPB1 was 0.499 
(0.437–0.560) (Fig. 5H), with the lowest prognostic value 
in CRC among the 8 OS-associated mRNAs.
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Fig. 2  Identification and enrichment analysis of prognostic oxidative stress-related genes in CRC. A Univariate Cox regression analysis 
was conducted to select the prognostic oxidative stress-related genes in CRC. B Heatmap of the expression correlation of the 9 selected oxidative 
stress-related genes. C Bar plot and (D) Bubble chart of the biological functions of 9 genes based on GO enrichment analysis. E Interactions 
of the GO terms
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Correlation between the infiltration of immune cells 
with risk score or CRC subtypes
The prognosis of CRC patients is significantly affected by 
the tumor immune microenvironment [23]. As revealed 
by ssGSEA, the difference in tumor immunity between 
two risk groups or between the two CRC subtypes was 
shown in Fig. 6A-B. The high-risk group showed higher 
levels of NK CD56bright cells and NK cells, while the 
CRC patients in the low-risk group showed increased 
infiltration levels of aDC, DC, macrophages, neutrophils, 
T cells, T helper cells, Tcm, Tgd, Th1 cells and Th2 cells, 
which suggested that patients in the low-risk group had 
stronger tumor immune response relative to the high-
risk group, and the infiltration of these immune cells may 
possibly affect the prognosis of CRC patients. Moreo-
ver, those in the C2 CRC subtype showed higher levels 
of aDC, B cells, cytotoxic T cells, DC, eosinophils, iDC, 
macrophages, mast cells, neutrophils, pDC, T cells, T 
helper cells, Tem, Tgd, Th1 cells, Th17 cells, Th2 cells and 
Tregs, which were also related to the enhanced immune 
response compared with the C1 CRC subtype. We then 
assessed the difference in tumor immune microenviron-
ment in different groups. Results demonstrated that CRC 
patients in the high-risk group or C1 subtype had signifi-
cantly reduced stromal, immune, and ESTIMATE scores, 

which indicated that the TME was significantly different 
between the high/low-risk groups or the C1/C2 subtypes 
(Fig. 6C-D). As shown in Fig. 6E, the correlation between 
the Lasso risk score with the immune infiltration levels 
was explored, and the Lasso risk score was positively 
related to the immune infiltration levels of NK CD56 
bright cells, NK cells and pDCs, and negatively related 
to the immune infiltration levels of aDCs, macrophages, 
neutrophils, T cells, T helper cells, Tcm, Tgd, Th1 cells 
and Th2 cells. Additionally, we also identified the nega-
tive correlation between the Lasso risk scores with the 
immune, ESTIMATE, and stromal scores in CRC, sug-
gesting the association between high risk score and the 
immunosuppressive tumor microenvironment in CRC 
patients (Fig. 6F). Overall, these results indicated that the 
low-risk group or C2 subtype presented a stronger tumor 
immune response and may benefit from immunotherapy 
relative to the high-risk group or C1 subtype.

Association between OS‑related genes and CRC stemness 
and microsatellite instability
ROS is reported to maintain stem cells and is impli-
cated in the modulation of stemness-related properties 
in cancer progression [24]. Thus, we further analyzed 
the relation between the eight prognostic OS-related 

Fig. 3  Consensus clustering of CRC subtypes based on oxidative stress-related genes. A Consensus clustering model with CDF for k = 2–10. B 
Changes in CDF delta area curve of TCGA for k = 2–10. C Bar plot of consensus score in each subgroup with indicated cluster count (2–10). D Heat 
map of sample clustering when k = 2. E Tracking plot for k = 2–10 in the TCGA database. F Survival outcome in the two subtypes
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genes and CRC cell stemness. As revealed by Spear-
man correlation analysis, the levels of HSPB1, MMP3, 
CTNNB1, SFPQ and RNF112 showed a slight posi-
tive association with the stemness scores in CRC, and 
the levels of PAGE4, NOL3 and STK25 were slightly 
positively related to the stemness scores in CRC 
(Fig. 7A-H).

Oxidative stress can cause cellular DNA damage. 
Microsatellite instability (MSI) is an indicator of chro-
mosome instability and also one of the main oncogenic 
pathways of CRC. We subsequently analyzed the asso-
ciation between 8 prognostic genes and MSI in CRC. 
We found that STK25, RNF112, PAGE4, CTNNB1 and 
HSPB1 expression was negatively correlated with the 

MSI, while the levels of SFPQ, NOL3 and MMP3 were 
positively correlated with the MSI, although not signifi-
cant (Fig. 7I-P).

Expression pattern of 8 prognostic OS‑related genes in CRC​
We further investigated the mRNA and protein levels 
of 8 prognostic OS-related genes in CRC patient tissue 
specimens and cells. The mRNA and protein levels of 
CTNNB1, HSPB1, MMP3 and NOL3 were significantly 
upregulated in the tumor samples of CRC patients, and 
the expression of the other 4 genes showed no signifi-
cant difference between CRC tumor samples and adja-
cent normal tissue samples (Fig.  8A-B). Moreover, the 
RT-qPCR analysis and immunofluorescence assays also 

Fig. 4  Construction of the prognostic risk model with OS-related genes. A The best lambda value was screened by Lasso regression. B The 
coefficient profiles of each oxidative stress-related gene; C The risk score, survival outcome, and heatmap of 8 oxidative stress-related genes in CRC 
patients. D Survival curves of CRC patients in indicated groups. E Correlation between the levels of 8 oxidative stress-related genes and the Lasso 
risk score. F Profile of the Lasso risk score in the C1 and C2 subtypes. G The ROC curves were used to evaluate the accuracy of prognostic risk 
models. H Decision curve analysis (DCA) curves were used to evaluate the net benefits of the models
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indicated the upregulation of CTNNB1, HSPB1, MMP3 
and NOL3 mRNAs in all CRC cells (Fig. 8C-D).

Effects of CTNNB1, HSPB1, MMP3 and NOL3 knockdown 
on CRC cell proliferation, stemness and apoptosis
Functional experiments were conducted to evaluate the 
impact of dysregulated genes (CTNNB1, HSPB1, MMP3, 
NOL3) on the cellular model of CRC malignancy. We 
found that silencing of CTNNB1, HSPB1, MMP3 and 
NOL3 significantly reduced the colony number of CRC 
cells (Fig.  9A-B). As revealed by the sphere formation 
assays, the stemness of CRC cells was significantly inhib-
ited after silencing CTNNB1, HSPB1, MMP3 and NOL3 
(Fig. 9C-D). On the contrary, the apoptosis rate of CRC 
cells was elevated after the knockdown of CTNNB1, 
HSPB1, MMP3 and NOL3 (Fig.  9E-F). Overall, these 
results indicated that CTNNB1, HSPB1, MMP3 and 
NOL3 knockdown suppressed the proliferation stemness 
and promoted the apoptosis of CRC cells.

Discussion
CRC is the second most fatal malignancy, with around 
935,000 deaths cases in 2020 worldwide [1]. Oxidative 
stress resulting from oxidant/antioxidant imbalance can 
lead to DNA and protein modification and lipid peroxi-
dation and is closely associated with CRC development 
[6]. Therefore, the exploration of prognostic oxidative 

stress-related biomarkers is instrumental to design per-
sonalized therapeutic plans and improve the clinical out-
come of CRC patients. In this study, we constructed a 
novel oxidative stress-related gene prognostic signature, 
which shows the potential for risk stratification, predic-
tion of prognosis and immune response in CRC patients. 
We identified 9 prognostic OS-related genes in CRC, 
and CRC patients were categorized into 2 OS-related 
molecular subtypes (C1, C2). The Lasso regression fur-
ther selected 8 prognostic OS-related genes (STK25, 
CTNNB1, HSPB1, MMP3, SFPQ, RNF112, NOL3, 
PAGE4) and constructed a prognostic 8-gene risk model. 
The prognostic value of these genes, subtypes or the con-
structed risk signature in CRC was identified, and the 
association between the tumor immune cell infiltration 
with the C1/C2 or high-/low-risk groups was confirmed.

OS is a pathological response implicated in the devel-
opment of a variety of diseases [25]. ROS levels are dif-
ferent in cancer cells than in normal cells, and oxidative 
DNA damage increases the cancer risks [26]. In this 
study, we identified 9 prognostic OS-associated genes in 
CRC patients based on univariate Cox regression analy-
ses, including STK25, CTNNB1, HSPB1, MMP3, SFPQ, 
RNF112, NOL3, PAGE4, NCOA7. Previous studies have 
revealed that STK25 is lowly expressed in CRC tissues, 
and CRC patients with high STK25 expression are pre-
dicted with favorable prognosis. STK25 overexpression 

Fig. 5  Prognostic potential of 8 OS-associated genes in CRC. ROC curves of the (A) CTNNB1, (B) STK25, (C) RNF112, (D) SFPQ, (E) MMP3, (F) NOL3, 
(G) PAGE4 and (H) HSPB1 for the prediction of prognosis in CRC patients
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inhibits CRC cell autophagy by regulating the JAK2/
STAT3 signaling [27]. A study also indicates that STK25 
overexpression suppresses CRC cell proliferation and 
aerobic glycolysis in  vitro, while STK25 silencing shows 
opposite effects on CRC cell growth [28]. CTNNB1 is 
a key regulator of the Wnt signaling and encodes the 

β-catenin 1 protein. This signaling is implicated in the 
regulation of tumorigenesis, stemness, TME and metab-
olism of various cancers, CRC included [29–31]. The 
stabilization of CTNNB1 by ACLY is also indicated to 
promote cell migration and invasiveness in colon cancer 
[32]. HSPB1 (HSP27) overexpression is demonstrated to 

Fig. 6  Correlation between risk score or CRC subtype and the tumor immune cell infiltration. A ssGSEA was used for the determination of immune 
cell infiltration in different subtypes or risk groups. B ESTIMATE algorithm was applied for the assessment of the tumor purity in indicated groups. 
C Heatmap showed the correlation between the Lasso risk score and the immune cell infiltration levels in CRC patients. D Heatmap showed 
the correlation between the Lasso risk score and the stromal, immune, and ESTIMATE scores
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reverse the anti-tumor impact of miR-214 on colon can-
cer cell growth and resistance to 5-FU [33]. High HSPB1 
expression predicts adverse survival outcomes in CRC 

patients, and HSPB1 is suggested as an independent prog-
nostic biomarker for UICC stage I/II patients [34]. MMP3 
is highly expressed in the CRC tissues and is indicated 

Fig. 7  Association between OS-associated genes and CRC stemness and microsatellite instability. The expression correlation of (A) HSPB1, (B) 
MMP3, (C) PAGE4, (D) NOL3, (E CTNNB1, (F) STK25, (G) SFPQ and (H) RNF112 with the stemness scores based on DNA methylation was subject 
to Spearman correlation analysis. The correlation of the expression of (I) STK25, (J) SFPQ, (K) RNF112, (L) NOL3, (M) PAGE4, (N) CTNNB1, (O) HSPB1 
and (P) MMP3 with microsatellite instability (MSI) in CRC patients
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Fig. 8  Expression profile of 8 prognostic OS-related genes in CRC. A Western blot was conducted to detect the protein expression of the 8 
oxidative stress-related genes in CRC tumor specimens and adjacent normal samples. B RT-qPCR was used to measure the mRNA levels of the 8 
oxidative stress-related genes in CRC cell lines and HEK293T cells. C RT-qPCR was used to detect the mRNA expression of the four dysregulated four 
genes. D Immunofluorescence assays showed the upregulation of four dysregulated four genes in CRC cells and HEK293T cells. *P < 0.05, **P < 0.01, 
***P < 0.001



Page 13 of 16Yang et al. BMC Genomics            (2024) 25:8 	

Fig. 9  Effects of CTNNB1, HSPB1, MMP3 and NOL3 knockdown on CRC cell proliferation, stemness and apoptosis. A-B Colony formation assays 
were performed to assess the proliferation of CRC cells after indicated transfection. C-D Sphere formation assays for the assessment of CRC cell 
stemness in each group. E–F Flow cytometry was used to assess CRC cell apoptosis in each group. *P < 0.05, **P < 0.01, ***P < 0.001
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to promote cancer cell migration and invasion [35, 36]. 
SFPQ is reported to exert oncogenic effects on CRC cell 
proliferation and apoptosis, and lncRNA-422 inhib-
its CRC cell growth by targeting SFPQ [37]. RNF112 is 
abundant in the brain and is indicated to play protective 
roles against brain injury and maintain brain functions 
[38, 39]. However, the biological functions of RNF112 in 
CRC progression are rarely reported. NOL3 is reported as 
an autophagy-associated gene in CRC, and patients with 
high levels of NOL3 have adverse clinical outcomes [40]. 
PAGE4 is a member of the Cancer Testis Antigen fam-
ily and shows protective effects on prostate cancer cells 
against OS-caused cell apoptosis by attenuating DNA 
damage [41]. PAGE4 is also upregulated in the primary 
tumor samples of CRC with liver metastasis and is sug-
gested as a potential biomarker to predict liver metastasis 
in CRC [42]. NCOA7 expression is higher in the low-risk 
colon adenocarcinoma patients and shows a negative 
association with the risk score in an immune-associated 
risk model for colon adenocarcinoma prognosis [43]. In 
this study, we categorized the CRC patients into C1, C2 
subtypes with the consensus clustering of the OS-related 
genes. CRC patients in the C1 subtype had adverse sur-
vival outcomes. We also constructed a prognostic risk 
model based on Lasso regression, and 8 OS-related RNAs 
were selected in this model. Risk score was applied for 
categorizing CRC patients, and those with low-risk scores 
had more favorable overall survival outcomes. Moreover, 
we also found that the C2 subtype was associated with 
lower risk scores, which was consistent with our findings 
of the CRC patient prognosis. The predictive value of the 
8 selected genes in prognosis was evaluated, and the ROC 
curves indicated that CTNNB1, STK25, RNF112, SFPQ, 
MMP3 and NOL3 were promising prognostic biomark-
ers for CRC patients. Furthermore, the correlation of the 
prognostic 8 OS-related RNAs with the stemness and 
MSI in CRC was evaluated, and a less significant asso-
ciation was found. We then explored the expression and 
functions of 8 genes in CRC and identified that CTNNB1, 
HSPB1, MMP3 and NOL3 were upregulated in CRC tis-
sue samples and cells. Knockdown of CTNNB1, HSPB1, 
MMP3 and NOL3 hindered CRC cell proliferation and 
stemness and facilitated CRC cell apoptosis, which may 
provide novel therapeutic targets for CRC.

OS has been revealed to modulate the immune cell 
functions in TME, which consists of tumor constituents 
as well as non-tumor components such as stromal and 
immune cells [44]. In our work, the immune infiltration 
analysis revealed a strong association between CRC sub-
types or risk scores with the immune response. Patients 
in the C1 subtype or high-risk group were related to 
stronger immunosuppression with lower levels of T/T-
helper cells, which was consistent with previous findings 

[45, 46], suggesting that the lower immune activity con-
tributed to the adverse prognosis in the C1 subtype and 
high-risk group of CRC patients.

With the advancement of high-through sequencing, 
numerous CRC-related biomarkers are identified. The 
underlying regulatory mechanism of the selected bio-
markers requires further investigation. Li et al. have estab-
lished an LMI-INGI model to predict the interactions 
between lncRNAs and miRNAs based on interactome 
network and graphlet interaction, which shows high pre-
diction performance and applicability [47]. Another study 
has reported the development of the network distance 
analysis model for the prediction of lncRNA-miRNA 
interactions (NDALMA), with good prediction accu-
racy and suitability [48]. Wang et al. propose a GCNCRF 
method for the prediction of lncRNA-miRNA interac-
tions based on graph convolutional neural (GCN) and 
network and conditional random field (CRF) with an AUC 
value of 0.947 in validation, showing higher prediction 
accuracy compared with the other methods [49]. Based 
on deep learning method, the graph convolutional net-
work with graph attention network (GCNAT) and MDA-
AENMF model based on auto-encoder and non-negative 
matrix factorization are developed for the predictions of 
associations between diseases and metabolites, and their 
prediction accuracy has been verified [50, 51]. Moreover, 
the deep learning predictive model named DMFGAM is 
constructed for the prediction of molecules related to car-
diotoxicity with excellent performance, which provides 
a useful tool of the discovery and development of drugs 
[52]. In this study, the interaction between the OS-related 
genes and the underlying mechanisms of these genes were 
not investigated. Therefore, the effective computational 
prediction models are expected to be explored in future 
research for deepening the understanding of the potential 
regulatory mechanisms of the screened biomarkers.

We need to acknowledge that there are some limita-
tions to our work. First, based on bioinformatics tech-
nology, the results were only verified in the in  vitro 
studies, and animal experiments are needed to explore 
the roles of the selected prognostic OS-related genes in 
future studies. Second, the regulatory mechanisms of 
the selected oxidative-related genes in CRC were not 
explored. Third, the CRC patient data were only collected 
from the public databases and expected to be validated 
from other sources in the future.

In conclusion, we proposed two OS-related CRC subtypes 
and a prognostic risk model based on OS-related genes. The 
risk score or CRC subtypes was significantly associated with 
the immune response and CRC patient survival, and the 
predictive accuracy for CRC prognosis was validated. The 
results of this work may provide clues for the design of indi-
vidualized therapeutic strategies for CRC patients.



Page 15 of 16Yang et al. BMC Genomics            (2024) 25:8 	

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​023-​09879-0.

Additional file 1: Figure 8. (A) Western blot was conducted to detect 
the protein expression of the 8 oxidative stress-related genes in indicated 
groups shown in the manuscript file.

Additional file 2. 

Acknowledgements
None.

Authors’ contributions
RZ, and SZ conceived and designed the experiments. LY and CF contributed 
significantly to the experiments and arranging data. LY and CF performed the 
data analyses. LY and CF wrote the draft manuscript. RZ, and SZ revised the 
manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Zhejiang Medical and Health Science and 
Technology Plan Project (No. 2022PY028), and the Taizhou Science and Tech-
nology Department Project (No. 21ywa08, 22ywa13).

Availability of data and materials
The datasets generated during and/or analyzed during the current study are 
available from the corresponding author upon reasonable request. Data are 
also available through GitHub repository: https://​github.​com/​ZSK5/​OS_​CRC.​git.

Declarations

Ethics approval and consent to participate
All patients provided their written, voluntarily informed consent. All proce-
dures were carried out in accordance with the guidelines outlined in the 
Helsinki Declaration and this study was approved by the Ethics Committee of 
Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical Univer-
sity, Zhejiang, China.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 16 August 2023   Accepted: 7 December 2023

References
	1.	 Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of 

Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA 
Cancer J Clin. 2021;71(3):209–49.

	2.	 Dekker E, et al. Colorectal cancer. Lancet. 2019;394(10207):1467–80.
	3.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 

2020;70(1):7–30.
	4.	 Siegel RL, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin. 

2017;67(3):177–93.
	5.	 Acevedo-León D, et al. Oxidative Stress and DNA Damage Markers in 

Colorectal Cancer. Int J Mol Sci. 2022;23(19):11664.
	6.	 Basak D, Uddin MN, Hancock J. The Role of Oxidative Stress and Its 

Counteractive Utility in Colorectal Cancer (CRC). Cancers (Basel). 
2020;12(11):3336.

	7.	 Tong L, et al. Reactive oxygen species in redox cancer therapy. Cancer 
Lett. 2015;367(1):18–25.

	8.	 Lu C, et al. Crosstalk of MicroRNAs and oxidative stress in the pathogen-
esis of cancer. Oxid Med Cell Longev. 2020;2020:2415324.

	9.	 Sawai K, et al. Oxidative stress as a biomarker for predicting the prognosis 
of patients with colorectal cancer. Oncology. 2022;100(11):612–9.

	10.	 Cao Y, et al. An oxidative stress index-based score for prognostic predic-
tion in colorectal cancer patients undergoing surgery. Oxid Med Cell 
Longev. 2021;2021:6693707.

	11.	 Liu Q, Yu M, Zhang T. Construction of oxidative stress-related genes risk 
model predicts the prognosis of uterine corpus endometrial cancer 
patients. Cancers (Basel). 2022;14(22):5572.

	12.	 Dong C, Zhang N, Zhang L. The multi-omic prognostic model of 
oxidative stress-related genes in acute myeloid leukemia. Front Genet. 
2021;12:722064.

	13.	 Liu Q, et al. Identifying the role of oxidative stress-related genes as 
prognostic biomarkers and predicting the response of immuno-
therapy and chemotherapy in ovarian cancer. Oxid Med Cell Longev. 
2022;2022:6575534.

	14.	 Wang X, et al. A novel oxidative stress- and ferroptosis-related gene 
prognostic signature for distinguishing cold and hot tumors in colorectal 
cancer. Front Immunol. 2022;13:1043738.

	15.	 Chen Z, et al. Prognostic assessment of oxidative stress-related genes in 
colorectal cancer and new insights into tumor immunity. Oxid Med Cell 
Longev. 2022;2022:2518340.

	16.	 Kennel KB, Greten FR. Immune cell - produced ROS and their impact on 
tumor growth and metastasis. Redox Biol. 2021;42:101891.

	17.	 Weinberg F, Ramnath N, Nagrath D. Reactive oxygen species in the tumor 
microenvironment: an overview. Cancers (Basel). 2019;11(8):1191.

	18.	 Kotsafti A, et al. Reactive oxygen species and antitumor immunity-from 
surveillance to evasion. Cancers (Basel). 2020;12(7):1748.

	19.	 Yu G, et al. clusterProfiler: an R package for comparing biological themes 
among gene clusters. OMICS. 2012;16(5):284–7.

	20.	 Xu T, et al. CancerSubtypes: an R/Bioconductor package for molecular 
cancer subtype identification, validation and visualization. Bioinformatics. 
2017;33(19):3131–3.

	21.	 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

	22.	 Bindea G, et al. Spatiotemporal dynamics of intratumoral immune 
cells reveal the immune landscape in human cancer. Immunity. 
2013;39(4):782–95.

	23.	 Lei X, et al. Immune cells within the tumor microenvironment: 
Biological functions and roles in cancer immunotherapy. Cancer Lett. 
2020;470:126–33.

	24.	 Chandimali N, Jeong DK, Kwon T. Peroxiredoxin II regulates cancer stem 
cells and stemness-associated properties of cancers. Cancers (Basel). 
2018;10(9):305.

	25.	 Forman HJ, Zhang H. Targeting oxidative stress in disease: prom-
ise and limitations of antioxidant therapy. Nat Rev Drug Discov. 
2021;20(9):689–709.

	26.	 Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer 
Cell. 2020;38(2):167–97.

	27.	 Chen J, et al. Downregulation of STK25 promotes autophagy via the 
Janus kinase 2/signal transducer and activator of transcription 3 pathway 
in colorectal cancer. Mol Carcinog. 2022;61(6):572–86.

	28.	 Wu F, et al. STK25-induced inhibition of aerobic glycolysis via GOLPH3-
mTOR pathway suppresses cell proliferation in colorectal cancer. J Exp 
Clin Cancer Res. 2018;37(1):144.

	29.	 Zhang L, et al. CircAGFG1 drives metastasis and stemness in colorectal 
cancer by modulating YY1/CTNNB1. Cell Death Dis. 2020;11(7):542.

	30.	 Tang Q, et al. TM4SF1 promotes EMT and cancer stemness via the 
Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 
2020;39(1):232.

	31.	 Zhu Y, et al. LINC00365 promotes colorectal cancer cell progres-
sion through the Wnt/β-catenin signaling pathway. J Cell Biochem. 
2020;121(2):1260–72.

	32.	 Wen J, et al. ACLY facilitates colon cancer cell metastasis by CTNNB1. J 
Exp Clin Cancer Res. 2019;38(1):401.

	33.	 Yang Y, et al. MiR-214 sensitizes human colon cancer cells to 5-FU by 
targeting Hsp27. Cell Mol Biol Lett. 2019;24:22.

	34.	 Bauer K, et al. High HSP27 and HSP70 expression levels are independent 
adverse prognostic factors in primary resected colon cancer. Cell Oncol 
(Dordr). 2012;35(3):197–205.

	35.	 Yu J, et al. Comprehensive analysis of the expression and prognosis for 
MMPS in human colorectal cancer. Front Oncol. 2021;11:771099.

https://doi.org/10.1186/s12864-023-09879-0
https://doi.org/10.1186/s12864-023-09879-0
https://github.com/ZSK5/OS_CRC.git


Page 16 of 16Yang et al. BMC Genomics            (2024) 25:8 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	36.	 Wen Y, et al. Histone deacetylase (HDAC) 11 inhibits matrix metallopro-
teinase (MMP) 3 expression to suppress colorectal cancer metastasis. J 
Cancer. 2022;13(6):1923–32.

	37.	 Meng Y, et al. LncRNA-422 suppresses the proliferation and growth 
of colorectal cancer cells by targeting SFPQ. Clin Transl Med. 
2022;12(1):e664.

	38.	 Zhang F, Zhang C. Rnf112 deletion protects brain against intracerebral 
hemorrhage (ICH) in mice by inhibiting TLR-4/NF-κB pathway. Biochem 
Biophys Res Commun. 2018;507(1–4):43–50.

	39.	 Tsou JH, et al. Important roles of ring finger protein 112 in embry-
onic vascular development and brain functions. Mol Neurobiol. 
2017;54(3):2286–300.

	40.	 He Q, et al. Prognostic significance of autophagy-relevant gene markers 
in colorectal cancer. Front Oncol. 2021;11:566539.

	41.	 Lv C, et al. PAGE4 promotes prostate cancer cells survive under oxidative 
stress through modulating MAPK/JNK/ERK pathway. J Exp Clin Cancer 
Res. 2019;38(1):24.

	42.	 Chen Z, et al. Cancer/testis antigens and clinical risk factors for liver 
metastasis of colorectal cancer: a predictive panel. Dis Colon Rectum. 
2010;53(1):31–8.

	43.	 Lu J, et al. Establishment and evaluation of module-based immune-
associated gene signature to predict overall survival in patients of colon 
adenocarcinoma. J Biomed Sci. 2022;29(1):81.

	44.	 Augustin RC, Delgoffe GM, Najjar YG. Characteristics of the tumor micro-
environment that influence immune cell functions: hypoxia, oxidative 
stress, metabolic alterations. Cancers (Basel). 2020;12(12):3802.

	45.	 Zhu J. T helper cell differentiation, heterogeneity, and plasticity. Cold 
Spring Harb Perspect Biol. 2018;10(10):a030338.

	46.	 Dong C. Cytokine regulation and function in T cells. Annu Rev Immunol. 
2021;39:51–76.

	47.	 Zhang L, et al. Predicting lncRNA-miRNA interactions based on interac-
tome network and graphlet interaction. Genomics. 2021;113(3):874–80.

	48.	 Zhang L, et al. Using network distance analysis to predict lncRNA-miRNA 
interactions. Interdiscip Sci. 2021;13(3):535–45.

	49.	 Wang W, et al. Predicting the potential human lncRNA-miRNA interac-
tions based on graph convolution network with conditional random 
field. Brief Bioinform. 2022;23(6):bbac463.

	50.	 Sun F, Sun J, Zhao Q. A deep learning method for predicting metab-
olite-disease associations via graph neural network. Brief Bioinform. 
2022;23(4):bbac266.

	51.	 Gao H, et al. Predicting metabolite-disease associations based on 
auto-encoder and non-negative matrix factorization. Brief Bioinform. 
2023;24(5):bbad259.

	52.	 Wang T, Sun J, Zhao Q. Investigating cardiotoxicity related with hERG 
channel blockers using molecular fingerprints and graph attention 
mechanism. Comput Biol Med. 2023;153:106464.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Prognostic value of oxidative stress-related genes in colorectal cancer and its correlation with tumor immunity
	Abstract 
	Introduction
	Material and methods
	Data collection and processing
	Identification and functional enrichment analyses of prognostic OS-related genes
	CRC Subtype classification
	Construction and assessment of the prognostic risk model
	Immune cell infiltration analysis
	Predictive value of the selected OS-related genes in CRC prognosis
	Clinical specimens
	Cell culture and cell transfection
	RT-qPCR
	Western blot
	Immunofluorescence
	Cell proliferation
	Flow cytometry analysis
	Sphere formation assay
	Statistical analysis

	Results
	Identification and enrichment analysis of prognostic OS-related genes in CRC​
	Identification of CRC subtypes with OS-related genes
	Construction of the prognostic risk model with OS-related genes
	Prognostic potential of 8 OS-associated genes in CRC​
	Correlation between the infiltration of immune cells with risk score or CRC subtypes
	Association between OS-related genes and CRC stemness and microsatellite instability
	Expression pattern of 8 prognostic OS-related genes in CRC​
	Effects of CTNNB1, HSPB1, MMP3 and NOL3 knockdown on CRC cell proliferation, stemness and apoptosis

	Discussion
	Anchor 30
	Acknowledgements
	References


