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Abstract 

RNA-Seq analysis of Formalin-Fixed and Paraffin-Embedded (FFPE) samples has emerged as a highly effective 
approach and is increasingly being used in clinical research and drug development. However, the processing 
and storage of FFPE samples are known to cause extensive degradation of RNAs, which limits the discovery of gene 
expression or gene fusion-based biomarkers using RNA sequencing, particularly methods reliant on Poly(A) enrich-
ment. Recently, researchers have developed an exome targeted RNA-Seq methodology that utilizes biotinylated 
oligonucleotide probes to enrich RNA transcripts of interest, which could overcome these limitations. Nevertheless, 
the standardization of this experimental framework, including probe designs, sample multiplexing, sequencing read 
length, and bioinformatic pipelines, remains an essential requirement. In this study, we conducted a comprehensive 
comparison of three main commercially available exome capture kits and evaluated key experimental parameters, 
to provide the overview of the advantages and limitations associated with the selection of library preparation proto-
cols and sequencing platforms. The results provide valuable insights into the best practices for obtaining high-quality 
data from FFPE samples.
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Introduction
RNA sequencing has been developed as one of the most 
sensitive tools for gene expression analysis. Among 
the library preparation methods, the standard Poly(A) 
enrichment protocol provides a comprehensive and accu-
rate view of polyadenylated RNAs. This method allows 

for simultaneous quantification of a multitude of RNA 
transcripts, enabling unbiased annotation of splicing var-
iants, novel transcripts, and non-coding RNAs. It’s widely 
used in the investigation of human diseases, as well as the 
identification of novel drug targets and biomarkers. How-
ever, when working with human tissue specimens from 
biobanks, hospitals, and other clinical research facilities, 
the quality and yield of RNA can often be compromised 
due to several factors, including sampling techniques and 
preservation conditions, affecting the downstream bioin-
formatic analysis [1].

Fusion genes play a crucial role in tumorigenesis and 
are involved in approximately 20% of human cancer 
cases. The rapid and accurate identification of fusion 
genes holds significant promise for understanding cancer 
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pathogenesis, enabling precise therapeutic interven-
tions, and targeting drugs that can effectively inhibit 
these abnormal gene fusions [2]. There is great potential 
to fully assess the performance characteristics, includ-
ing accuracy, reproducibility, and analytical sensitivity, of 
RNA-Seq for detecting the fusion events.

In recent years, RNA-Seq library preparation protocols 
specifically designed for FFPE samples have been devel-
oped [3], such as the RiboZero and TruSeq RNA Exome 
kit (Illumina). RNA capture is a novel approach used to 
profile RNA samples of low integrity [4]. This method 
employs capture probes that target known exons, allow-
ing for the enrichment of coding RNAs. Biotech brands, 
including Illumina, Agilent, and Nanodigmbio have 
developed commercial products, each utilizing distinct 
mechanisms and technologies. These products offer 
standardized, reproducible, and user-friendly protocols, 
making them suitable for gene expression studies con-
ducted in various research settings. However, there is 
a lack of studies that investigate the differences of their 
applications and provide insights into fundamental tech-
nical questions [5]. To address this gap, we designed the 

study to evaluate the performance of three exome cap-
ture-based library preparation kits on human reference 
RNA from the Sequencing Quality Control consortium 
[6] and commercially available FFPE sections (Fig.  1). 
To our knowledge, this research is the first to compare 
the exome capture-based kits with the well-established 
rRNA depletion protocols specifically on FFPE samples. 
Additionally, we investigated the gene expression meas-
urement in comparison to the TaqMan standard data 
and assessed the detection of fusion genes engineered in 
the FFPE reference RNA. The results aim to provide the 
scientific community with a comprehensive assessment 
of exome capture methods for RNA sequencing of FFPE 
samples.

Methods
Samples
To emulate the effects of formalin fixation-induced 
degradation, the human reference RNA (UHRR, 
#740000, Agilent Technologies) was incubated at 94 °C 
for 60 minutes to obtain fragmented RNA [7]. The peak 
observed in the Bioanalyzer (Agilent Technologies) 

Fig. 1 Experimental design of this study. 100 ng of heat-degraded Universal Human Reference RNA (UHRR) and one commercially available 
Formalin-Fixed Paraffin-Embedded (FFPE) sample were utilized as input materials. Three commercially available exome capture kits, namely Illumina 
(IL), Agilent (AG), and NadPrep (NP/NS), were employed. The rRNA depletion method (RD) was employed as the benchmark for bioinformatics 
analysis
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trace of the fragmented sample was below 200 nt, and 
the peaks corresponding to 18S and 28S rRNA were 
absent.

The Onco Fusion FFPE RNA Reference Standard 
(#GW-OPSM001, GeneWell Biotechnology) contain-
ing multiple engineered clinically relevant fusion genes 
(Table  1) was procured, and total RNA was extracted 
using the RNeasy FFPE Kit (#73504, Qiagen) follow-
ing the manufacturer’s instructions. The RNA Integrity 
Number (RIN) of the sample was 2.2, indicating signifi-
cant degradation during the FFPE sections preparation 
[8].

Library preparation
rRNA depleted RNA was generated with the Hieff NGS 
MaxUp Human rRNA Depletion Kit (#12257ES96, 
Yeasen Biotechnology), then strand-specific libraries 
were prepared using the Hieff NGS Ultima Dual-mode 
RNA Library Prep Kit (#12310ES96, Yeasen Biotech-
nology). For Illumina libraries, the TruSeq RNA Library 
Prep and Enrichment kit (#20020189, Illumina) was 
employed. Agilent and NadPrep libraries were gen-
erated using the Hieff NGS Ultima Dual-mode RNA 
Library Prep Kit, followed by the exome capture pro-
cedure using either SureSelect Human All Exon V6 
(#5190–8864, Agilent Technologies) or Exome Plus 
Panel v2.0 (#1001841, Nanodigmbio). Multiplexing 
is a term used to describe the experimental strategy 
of pooling individual libraries together before probe 
hybridization. This approach is employed in Agilent 
and NadPrep kits to reduce the cost of the capture 
experiment, in which 2-plex means to pool two DNA 
libraries into one single tube. Illumina kits need to 
increase the consumption of the probes and hybridiza-
tion reagent when pooling the libraries, multiplexing 
was not used in this study. The NadPrep libraries were 
divided into strand-specific and non-strand-specific 
groups. All protocols were conducted in accordance 
with the manufacturer’s instructions, with the recom-
mended starting material of 100 ng of input RNA. The 

quality and yield of the prepared libraries were assessed 
using an Agilent 2100 Bioanalyzer.

Sequencing
All the prepared DNBSEQ libraries were sequenced on 
the MGISEQ-2000 platform (MGI Tech) with PE150 
cycles, except for the NadPrep libraries, which under-
went an additional run with PE100 cycles. The Illumina 
libraries, on the other hand, were sequenced on the 
Novaseq 6000 platform (Illumina). Each library gener-
ated more than 30 million paired end reads.

Data processing and quality control
Ribosomal RNAs were removed by bowtie2 (v2.4.5) 
alignment with the parameter “--very-sensitive-local 
--no-unal -I 1 -X 1000”. Duplication rate was calculated 
using fastp (v0.23.2). SOAPnuke (v1.5.6) was employed to 
filter out low quality reads based on the following condi-
tions: 1) Reads containing over 50% of the length of 5′ or 
3′ sequencing adapters; 2) Reads consisting of more than 
1% of ambiguous bases; 3) Reads encompassing more 
than 20% of low-quality bases with quality score below 
15. These filtering steps were carried out prior to any fur-
ther analysis.

Alignment and quantification
The high-quality reads obtained from each sample were 
aligned to the human reference genome (NCBI ver-
sion GCF_000001405.39_GRCh38.p13) using HISAT2 
(v2.2.1) with the parameter “--sensitive --no-discordant 
--no-mixed -I 1 -X 1000 --rna-strandness RF”. Sense rate 
and distribution across genome features were calculated 
by RSeQC (v4.0.0). Simultaneously, the reads were also 
mapped to the reference mRNA sequences using bow-
tie2 (v2.4.5) with the parameter: “--sensitive --dpad 0 
--gbar 300 --mp 1,1 --np 1 --score-min L,0,-0.1 -I 1 -X 
1000 --no-mixed --no-discordant -k 200”. RSEM (v1.3.1) 
was utilized to estimate the normalized gene abundances, 
represented as Fragments Per Kilobase Million (FPKM).

Differential expressed gene (DEG) identification
The DEseq2 package (v1.31.16) was employed for the 
identification of DEGs. Two replicated libraries were 
considered as a single group for each sample. DEGs were 
determined based on the criteria of having a fold change 
greater than or equal to 1 and an adjusted p-value less 
than or equal to 0.05 when comparing the two groups.

Fusion gene detection
Three distinct approaches were employed for the iden-
tification of fusion genes. The first one was EricScript 
(v0.5.5), which used the BWA aligner (v0.7.17) for map-
ping against the transcriptome reference. Samtools 

Table 1 The list of fusion genes validated in the FFPE sample

Fusion genes COSMIC ID 
(GRCh38·COSMICv91)

Experimental 
validated

EML4-ALK Fusion COSF408 Yes

CCDC6-RET Fusion COSF1271 Yes

SLC34A2-ROS1 Fusion COSF1196 Yes

TPM3–NTRK1 Fusion COSF1329 Yes

ETV6-NTRK3 Fusion COSF571 Yes

CD74-ROS1 Fusion COSF1200 Yes
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(v0.1.19) was utilized to handle the SAM/BAM files. 
BLAT (v35) was utilized for the recalibration of exon 
junction references. The second method was Fusion-
Catcher (v1.33) which used two aligners (Bowtie v1.2.3 
and STAR v2.7.2b) for read mapping and candidate fusion 
gene finding. FusionCatcher can filter out likely false pos-
itive candidate fusion genes of several conditions, includ-
ing pseudogene, paralog gene or miRNA genes. The last 
method employed was STAR-Fusion (v1.12.0), which 
leveraged the output generated by the STAR aligner 
(v2.7.8a) to map both junction reads and spanning reads. 
These reads were mapped against a reference annotation 
set GRCh38_gencode_v37_CTAT_lib_Mar012021.plug-
n-play from the Trinity Cancer Transcriptome Analysis 
Toolkit (CTAT) genome lib. All the methods were imple-
mented using default parameter settings.

Results
In order to evaluate the performance of exome capture-
based RNA-Seq methods in profiling FFPE samples, we 
conducted a meticulous technical assessment of the three 
distinct protocols mentioned above, namely Illumina (IL), 
Agilent (AG), NadPrep with both stand-specific treat-
ment (NP) and non-strand-specific treatment (NS) on 
human reference RNA (UHRR) and commercially avail-
able FFPE RNA (FFPE). The schematic of the workflow 

along with statistical information at each library prepara-
tion step are presented in Table S1. We utilized the data-
set to evaluate and assess the performance of RNA-Seq 
library preparation protocols. First, we examined the 
protocols’ ability to maintain consistent alignment rates. 
Second, we assessed the accuracy of these protocols in 
calculating gene expression by comparing the results to 
TaqMan data. At last, we explored the protocols’ capabil-
ity to identify fusion genes that have been experimentally 
validated within the samples.

Alignment statistics
Overall, we prepared a total of 20 libraries for sequenc-
ing, both the DNBSEQ and Novaseq platforms gen-
erated comparable high-quality reads. The Novaseq 
libraries exhibited a significantly higher duplication 
rate compared to the DNBSEQ libraries (Table S1). 
This can be attributed to the exponential amplifica-
tion during the clustering process [9], which may have 
an impact on the saturation of data, particularly when 
sequencing resources are limited. We initially exam-
ined the overall alignment rates to the human genome 
(Table 2). The results demonstrated that all the proto-
cols exhibited good performance, indicated by the high 
alignment rates greater than 90%. The AG libraries 

Table 2 The alignment statistics to the human genome

No. Library Genome Mapping 
Rate (%)

Gene Mapping 
Rate (%)

Sense Rate (%) Genes detected 
number

Transcripts 
detected 
number

1 FFPE_RD_1 98.07 32.56 96.27 16,077 53,547

2 UHRR_RD_1 97.64 40.52 96.26 17,157 59,524

3 FFPE_RD_2 97.57 33.46 95.87 16,108 53,972

4 UHRR_RD_2 97.77 40.53 96.24 17,158 60,039

5 FFPE_IL_1 95.52 79.47 99.51 15,467 47,185

6 UHRR_IL_1 92.12 76.89 99.39 16,420 48,113

7 FFPE_IL_2 95.03 79.13 99.52 15,530 47,692

8 UHRR_IL_2 94.24 77.03 99.42 16,374 47,190

9 FFPE_AG_1 96.01 73.71 97.38 16,683 55,486

10 UHRR_AG_1 97.56 75.76 97.54 17,196 59,114

11 FFPE_AG_2 97.15 73.7 96.71 16,655 53,422

12 UHRR_AG_2 96.8 73.83 97.37 17,038 56,474

13 FFPE_NS_1 92.71 74.12 64.12 17,410 59,360

14 UHRR_NS_1 91.03 70.31 68.08 17,799 60,125

15 FFPE_NS_2 92.77 73.64 70.36 17,595 59,859

16 UHRR_NS_2 91.54 71.57 71.48 17,865 60,590

17 FFPE_NP_1 95.93 75.48 97.99 16,885 57,648

18 UHRR_NP_1 96.34 76.48 98.22 17,303 60,355

19 FFPE_NP_2 95.66 73.33 98.08 16,699 54,446

20 UHRR_NP_2 96.05 76 98.35 17,136 57,652
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exhibited relatively higher rRNA contamination, sug-
gesting lower specificity of the exome capture proce-
dure in this protocol.

The sense rate is a metric that calculates the percent-
age of aligned forward reads mapped to the antisense 
gDNA strand and the percentage of aligned reverse reads 
mapped to the sense gDNA strand. Strand-specific RNA-
Seq protocols offer the advantage of resolving read ambi-
guity in cases where overlapping genes are transcribed 
from the opposite strands. This specificity enhances the 
accuracy of gene quantification and prediction of fusion 
genes. The IL libraries showed the highest sense rate, 
indicating a more efficient strand-specific library prepa-
ration process [10]. Meanwhile, the IL libraries yielded 
the lowest count of identified genes and transcripts, 
potentially be attributed to the different design of tar-
gets and exome panels among these kits. We can make a 
preliminary inference about the genes for which Illumina 
kits lack probes, by noting a particular gene that exhibits 
consistent expression across all other libraries, yet in IL 
libraries the FPKM value is recorded as zero. Most of the 
selected genes are non-annotated, while some of them, 
such as gene C4orf48 may be disease relevant and impor-
tant for clinical studies [11]. The NP libraries exhibited a 
higher genome mapping rate, but lower number of genes 

detected than the NS libraries. These findings align with 
previous studies based on Poly(A) RNA sequencing [12].

In addition, the protocols showed notable distinctions 
in the proportions of reads aligned to exons, introns, and 
other intergenic regions (Table S2). For NS and NP librar-
ies, the percentages of reads that aligned to exons were 
above 94%, indicating the highest efficiency of the exome 
pull down by the capture approach. As anticipated [13], 
with the RD libraries, we observed that approximately 
half of the reads mapped to exons, while the remaining 
reads predominantly mapped to intronic regions (rang-
ing from 32 to 42%).

Transcript coverage
We proceeded to assess the coverage across the full 
length of the genes and observed that all the protocols 
demonstrated broad and uniform transcript coverage 
(Fig.  2a). Notably, the exome capture-based protocols 
exhibited a slight 5′ bias, which can be attributed to the 
second structure of the transcripts and the mechanism 
of reverse transcription [14]. In other words, a higher 
proportion of reads mapped to the 5′ region of the tran-
scripts compared to other methods, particularly those 
utilizing Poly(A) enrichment procedures. It is well estab-
lished that with Poly(A) selected mRNA, the sensitivity 

Fig. 2 Statistics of alignment and expression of the experiments. a Normalized transcript coverage of UHRR libraries. b Expression level of genes 
detected in UHRR libraries. Correlation heatmap c between UHRR libraries and TaqMan data, d of fold-change values of genes between the two 
samples (FFPE vs UHRR), and e among NP libraries with different read lengths
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of fusion detection is determined by the level of cover-
age at the position where the gene fusion resides, and this 
coverage decreases with the distance from the 3′ end of 
the mRNA, when the input RNA is in degradation [15]. 
Furthermore, the proportion of reads mapping to cod-
ing regions was significantly elevated comparing to RD 
libraries, making the exome capture-based protocols 
ideal for gene fusion detection in FFPE derived or other 
highly degraded samples.

Gene expression
We first investigated the abundance distribution of all the 
genes detected by different protocols [16] and catego-
rized them into groups based on their respective expres-
sion levels (Fig.  2b). Notably, the IL libraries exhibited 
the largest proportion of genes with low FPKM values 
(less than 1), when detecting the smallest total number 
of genes. This observation highlights a potential concern 
since clinical studies often establish thresholds for gene 
expression levels, like FPKM greater than 0.3 or 0.5, due 
to the methodology’s high sensitivity and inherent false-
positive rate [17]. The mechanical filtering process may 
lead to the exclusion of clinical-relevant targets with low 
abundance or insufficient full-length coverage. This may 
further compromise the ability of IL libraries to identify 
rare fusion events.

We then assessed the agreement between the protocols 
by calculating the Pearson coefficient with all the UHRR 

libraries and the TaqMan reference data [18]. The exome 
capture-based libraries exhibited lower correlation (rang-
ing from 0.66 to 0.76) than the RD libraries (exceeding 
0.87). When comparing the different protocols against 
each other, the gene expression values exhibited signifi-
cant protocol-specific biases, leading to a reduced agree-
ment (correlations ranging from 0.46 to 0.88). However, 
the consistency within replicates and multiplexing was 
ideal, with correlations greater than 0.99 (Fig. 2c).

Finally, we assessed the agreement between the pro-
tocols by calculating the Pearson coefficient of the 
fold-change values of the differentially expressed genes 
between the two samples (FFPE vs UHRR, Fig. 2d). The 
results demonstrated that the fold-change values cor-
related acceptably across the entire dynamic range of 
expression between the protocols (correlations ranging 
from 0.68 to 0.73), suggesting the possibility of compar-
ing the DEGs of paired samples using different meth-
ods when the consistency of the whole study cannot be 
guaranteed.

Fusion gene detection
Multiple bioinformatic pipelines have been developed to 
identify candidate fusion genes from RNA-Seq data [19]. 
Predicted fusions is typically supported by fragments found 
as junction reads that directly overlap the splicing site, or 
as spanning reads where each pair of reads maps to the 
opposite partner of the fusion genes (Fig. 3a). In this study, 

Fig. 3 Statistics of fusion genes detection. a Diagram of COSF1196 transcript, depicting spanning and junction reads used to identify fusion 
genes. b Statistics of fusion events and the corresponding supporting read counts of all FFPE libraries by different pipelines. The circular diameter 
represents the total read counts for the cumulative fusion events, while the color corresponds to the mean read counts supporting each individual 
fusion event. Enrichment of 6 fusions between exome capture-based and rRNA depleted libraries calculated by c Star-Fusion, d FusionCatcher, 
and e using reads of different lengths
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we assessed three most cited methods for fusion detection: 
EricScript [20], FusionCatcher, and Star-Fusion. EricScript 
and FusionCatcher called more fusion genes than Star-
Fusion (Fig. 3b), but for FFPE samples, EricScript reported 
only 1 of the 6 validated transcripts, while FusionCatcher 
and Star-Fusion reported all the 6 events (Table S3). 
Although it could be argued that these fusions represent a 
limited target reference for method comparison, EricScript 
exhibited lower sensitivity and higher false-positive rate. 
Notably, EricScript also reported fusion transcripts involv-
ing opposite partners of HLA-C and HLA-A with EricScore 
greater than 0.95, indicating a poor performance in distin-
guishing highly homologous genes. On the other hand, 
FusionCatcher reported more than 300 fusion candidates 
per library, although the majority of which were remarked 
as exonic or in-frame, researchers would face significant 
challenges in filtering and validating all these predictions.

We then examined the target enrichment rate of dif-
ferent protocols by comparing the Fusion Fragments 
Per Million mapped reads (FFPM) from exome capture-
based and rRNA depleted data (Table S3 and Fig. 3c, d), 
finding that Star-Fusion exhibited better reproducibility 
in replicate or multiplexed libraries, and achieved a mean 
1.75, 5.03, 5.63 and 4.65-fold enrichment for the IL, AG, 
NS and NP libraries respectively, illustrating the advan-
tage of exome capture-based protocols in fusion genes 
detection compared to the conventional methods, par-
ticularly for highly degraded samples [21].

Impact of read length
The length of the sequencing reads is a crucial factor to 
consider when conducting RNA-Seq experiments. Pre-
vious studies suggest that for generating a list of DEGs, 
50 bp single-end reads are generally sufficient [22]. How-
ever, for isoform detection, longer reads are preferred to 
capture comprehensive information, while longer reads 
are not necessarily significantly better than shorter reads 
for differential expression analysis.

The DNBSEQ series of sequencers, including DNB-
SEQ-T7, MGISEQ-2000, and DNBSEQ-G99, offer a 
range of sequencing throughputs and read lengths for 

various research applications. In clinical occasions, 
researchers often face the decision between PE100 and 
PE150 run cycles, considering factors like sample quality, 
experimental costs, turnaround time requirements, and 
the challenges of pooling adequate libraries to fulfill a 
sequencing run. To investigate the impact of read length 
on FFPE RNA-Seq outcomes, we performed an addi-
tional MGISEQ-2000 PE100 run for NP libraries, made 
up three groups of NP data with different read lengths: 
PE150, PE150 trimmed into PE100 (PE150Trim) and 
PE100. The overall statistics of the sequencing results are 
presented in Table S4.

As expected, the PE100 data exhibited improved per-
formance in terms of adapter contamination, reference 
alignment and number of genes detected. Nevertheless, 
it did not show significant changes in the accuracy of 
expression measurement (Fig. 2e) and the target enrich-
ment rate of fusion genes (Table S3 and Fig.  3e). These 
findings suggest that while PE100 data improvements 
are beneficial for certain aspects, they may not provide 
additional advantages for clinical study applications. At 
the meantime, when compare FFPE_PE150_1 vs FFPE_
PE100_1 (Table S5), there were 8904 specifically detected 
transcripts in PE150 data compared to PE100 data, hun-
dreds of longer isoforms of clinically relevant transcripts 
can only be detected in PE150 data with low to median 
abundance (FPKM≥1), suggesting the potential of longer 
reads in disease studies.

Conclusions
In this study, we present a comprehensive assessment 
that encompasses all crucial factors to be considered 
in RNA-Seq experiments to optimize the utilization of 
clinical FFPE samples. Researchers are provided with 
the opportunity to make informed decisions regarding 
the selection of capture probes, library preparation and 
multiplexing, sequencing parameters, and bioinformatic 
pipelines, especially when sample quality is severely com-
promised (Table  3). For fusion genes detection, prudent 
filtering techniques and critical experimental validations 
are imperative to ensure accuracy and reliability of the 

Table 3 Summary of the decisions in exome capture-based protocols

Protocols Parameters Pros Cons

Exome Panels Illumina Highest sense rate Lowest target enrichment

Agilent Most cited panel design Highest rRNA contamination

NardPrep Highest capture efficiency None

Library Preparation Strand-Specific Increased genome mapping rate Reduced transcripts identification

Multiplexing Comparable and low-cost libraries Pilot study needed before experiments

Sequencing Illumina High quality reads High duplication rate

DNBSEQ Flexibility of throughputs and read lengths None

Shorter Reads Increased reference alignment Elevated sequencing cost
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results [23]. We recommend the adoption of exome cap-
ture-based RNA-Seq protocols when the input sample 
are not suitable for conventional methods. Although the 
commercial kits offer advantages in the sequencing depth 
of coding regions, the considerations of inconsistent cap-
ture efficiency and rRNA residue merit careful attention 
and pre-experiment contemplation to ensure the optimal 
application of the selected protocols. We look forward that 
exome capture-based RNA-Seq methodologies will experi-
ence growing adoption in clinical settings for the diagnosis 
of fusion genes, further advancing our understanding of 
fusion gene biology, and enhancing cancer diagnostics.
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