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Abstract 

Background Genomic rearrangements in cancer cells can create fusion genes that encode chimeric proteins or alter 
the expression of coding and non‑coding RNAs. In some cancer types, fusions involving specific kinases are used 
as targets for therapy. Fusion genes can be detected by whole genome sequencing (WGS) and targeted fusion pan‑
els, but RNA sequencing (RNA‑Seq) has the advantageous capability of broadly detecting expressed fusion transcripts.

Results We developed a pipeline for validation of fusion transcripts identified in RNA‑Seq data using matched WGS 
data from The Cancer Genome Atlas (TCGA) and applied it to 910 tumors from 11 different cancer types. This resulted 
in 4237 validated gene fusions, 3049 of them with at least one identified genomic breakpoint. Utilizing validated 
fusions as true positive events, we trained a machine learning classifier to predict true and false positive fusion 
transcripts from RNA‑Seq data. The final precision and recall metrics of the classifier were 0.74 and 0.71, respectively, 
in an independent dataset of 249 breast tumors. Application of this classifier to all samples with RNA‑Seq data 
from these cancer types vastly extended the number of likely true positive fusion transcripts and identified many 
potentially targetable kinase fusions. Further analysis of the validated gene fusions suggested that many are created 
by intrachromosomal amplification events with microhomology‑mediated non‑homologous end‑joining.

Conclusions A classifier trained on validated fusion events increased the accuracy of fusion transcript identification 
in samples without WGS data. This allowed the analysis to be extended to all samples with RNA‑Seq data, facilitating 
studies of tumor biology and increasing the number of detected kinase fusions. Machine learning could thus be used 
in identification of clinically relevant fusion events for targeted therapy. The large dataset of validated gene fusions 
generated here presents a useful resource for development and evaluation of fusion transcript detection algorithms.
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Background
Mutational processes in cancer cells create unique 
genomes with genetic changes that range from single 
base pairs to larger structural variants such as copy-
number changes and translocations of chromosome seg-
ments. Structural alterations that lead to juxtaposition of 
sequences from two different genes can result in a fusion 
gene. These can encode chimeric proteins or alter the 
regulation of gene expression through promoter-swap-
ping. We have previously shown that non-coding and 
out-of-frame fusions can deregulate the expression of 
intronically encoded small non-coding RNAs including 
microRNA (miRNA) and small nucleolar RNA (snoRNA) 
[1–3]. There are many well-established examples of 
oncogenic gene fusions and some have been successfully 
exploited as targets for therapy. This includes BCR-ABL 
in chronic myelogenous leukemia (CML), ALK and ROS1 
kinase fusions in non-small cell lung cancer, as well as 
TRK fusions in solid cancers [4–7]. The highly specific 
presence of gene fusions in cancer cells can also be used 
as somatic tumor fingerprints to trace residual disease or 
developing therapy resistance in cancer patients by PCR-
based methods [8].

Gene fusions can be detected using high-throughput 
methods including RNA sequencing (RNA-Seq) and 
whole genome sequencing (WGS) or using commercially 
available panels for known clinically relevant fusion part-
ners. Identification of fusion transcripts in RNA-Seq data 
offers advantages over WGS such as functional informa-
tion about gene and fusion transcript expression, as well 
as a lower cost per sample. However, fusion detection 
algorithms often output false positive fusion predictions 
due to, e.g., misalignment of RNA-Seq data [9, 10]. Fur-
thermore, genomic breakpoints in the introns of fusion 
partners cannot be identified from spliced fusion tran-
scripts. WGS can provide information about the exact 
location of genomic breakpoints but does not distin-
guish between expressed and non-expressed gene fusion 
events and may therefore identify many non-functional 
genomic rearrangements. The combination of RNA-Seq 
and WGS can be used to accurately identify genuine 
gene fusion events; if the chimeric mRNA sequence of a 
fusion transcript is supported by discordant read pairs at 
the genomic level this is a strong indicator that it is a true 
fusion. Additional support can be added by detection of 
the exact genomic breakpoints.

Next-generation sequencing is gradually becoming 
a part of clinical practice in oncology. Efforts include 
tumor profiling by transcriptome analysis in breast and 
bladder cancer [11, 12] and combined analysis of DNA 
and RNA for cancer gene panels to select treatment in 
metastatic cancer [13]. Although the combination of 
WGS and RNA-Seq could provide important prognostic 

and treatment-predictive information, these methods 
are still costly and the data analysis is time-consuming. 
New methods for data analysis continue to be devel-
oped and there is not always a consensus as to the best 
way to perform analyses. This may be especially true for 
fusion transcripts, where a large number of tools have 
been developed but produce very different results when 
applied on the same dataset [9, 10, 14]. When RNA-Seq 
is included in clinical routine for profiling of tumor sub-
type, prognostication, or other purposes, it produces 
data that should be put to the best possible use for the 
patient. Better fusion prediction algorithms with lower 
rates of false positives and false negatives are needed to 
accurately and rapidly identify clinically relevant fusions. 
Better methods for prediction would also improve the 
analysis of rearrangements in cancer sample cohorts for 
research purposes. Currently it is unclear what the main 
sources of false positive fusion transcript predictions are, 
how much they each contribute, and how this knowledge 
could best be used for accurate and sensitive identifica-
tion of fusion genes.

Here, we have analyzed to what extent reads support-
ing fusion transcripts detected in RNA-Seq data can be 
found in WGS data and which features characterize these 
expressed gene fusion events. We have used this knowl-
edge to construct machine learning classifiers to predict 
true positive fusions from features available from fusion 
transcript predictions based exclusively on RNA-Seq 
data. We furthermore show that this can improve fusion 
transcript predictions and impact the biological interpre-
tation of fusion transcript data. Mechanistic clues from 
the validated fusions suggest that many gene fusions are 
created by intrachromosomal amplification events where 
the genomic breakpoints are characterized by micro-
homology. Finally, we propose that the combination of 
fusion transcript prediction from RNA-Seq data with 
machine learning-based filtering to increase the rate of 
true positives could facilitate the detection of clinically 
relevant gene fusion events.

Results
Fusion transcript validation in whole genome sequencing 
data
To create a dataset where we could identify true and false 
positive gene fusion events, we ran the fusion prediction 
software FusionCatcher for sensitive fusion detection on 
4760 RNA-seq samples from 11 diverse cancer types in 
The Cancer Genome Atlas (TCGA) cohort. Included tis-
sues were BRCA, breast invasive carcinoma; BLCA, blad-
der urothelial carcinoma; CESC, cervical squamous cell 
carcinoma and endocervical adenocarcinoma; ESCA, 
esophageal carcinoma; GBM, glioblastoma multiforme; 
KICH, kidney chromophobe carcinoma; KIRC, kidney 
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renal clear cell carcinoma; KIRP, kidney renal papillary 
cell carcinoma; LGG, brain lower grade glioma; LUAD, 
lung adenocarcinoma, and OV, ovarian serous cystad-
enocarcinoma. Matched WGS data was available for 910 
(19%) of these samples (Fig. 1A). FusionCatcher identified 
approximately 4.9 million fusion transcripts correspond-
ing to 1.9 million unique sample-partner gene combi-
nations across all RNA-Seq samples. After filtering to 
remove fusion transcripts flagged as likely false positives 
(see Methods), approximately 865,000 putative fusions 
remained in samples with matched WGS data (Fig. 1B).

In order to estimate the rates of true and false posi-
tive fusion transcripts, we developed a bioinformatic 
pipeline to validate gene fusions found in mRNA at the 
DNA level using matched WGS data [15]. The pipeline 
consists of a series of scripts that extract, filter and pro-
cess discordant read pairs in WGS data which support 
fusion transcripts that were found in RNA-Seq data by 
FusionCatcher. When discordant read pairs were found, 
we also attempted to identify a genomic breakpoint by 
searching for nearby reads with high-quality soft-clipped 
ends. Soft-clipped ends that passed filtering were locally 
aligned to the region of the other fusion partner that 
contained the discordant read. We applied this pipe-
line to WGS data for validation of the predicted fusion 
transcripts. We found discordant read pairs supporting 

4237 fusion transcripts, and 3049 (72%) of these vali-
dated fusion events were further supported by at least 
one identified breakpoint (Fig.  1C, D, Additional files 
1-2). On average, 4.7 fusions were validated per sam-
ple with large differences between cancer types. Kidney 
cancer had the fewest validated fusions per sample (0.8) 
and glioblastoma had the most (21.6). This observation 
was not reflected in the number of predicted fusion tran-
scripts per sample, indicating that certain cancer types 
have higher levels of false positive fusions than others.

To validate the accuracy of our pipeline, we also applied 
it to putative fusion transcripts detected in normal tis-
sue samples from TCGA. As fusions typically arise from 
the unstable nature of cancer genomes, we expected to 
find few or no genuine fusion transcripts in normal tis-
sue. Only 12 of 26,847 putative fusions detected in RNA-
Seq data for 85 normal tissue samples had supporting 
discordant read pairs in matching WGS data. Among 
these, 3 were detected in a single esophageal sample and 
2 were detected in a single breast sample. Overall, fusions 
detected in normal tissue samples were 20x less likely to 
be supported by matching WGS data. These results indi-
cate that the validation pipeline is highly specific, with 
few false positives.

To demonstrate that the discordant read pairs we iden-
tified were not stochastic, we also conducted an unbiased 

Fig. 1 Overview of tumor samples and predicted and validated fusion transcripts. A Number of samples that have RNA‑Seq data with and without 
matched WGS data for validation of fusion transcripts. B Detected fusion transcripts per sample and cancer type after removing fusions flagged 
by FusionCatcher as likely false positives. C Distribution of the number of validated gene fusions per sample and cancer type. D Fraction 
of the validated fusion genes that had discordant read pairs and at least one determined genomic breakpoint. The three different types of kidney 
cancer were pooled for plotting
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search for similar read pairs in WGS data for all genes, 
regardless of whether or not they were implicated in 
fusion events. An average of 203 discordant read pairs 
were detected per tumor sample, but the genes involved 
in these discordant read pairs had a much lower diver-
sity index compared to fusion transcripts validated with 
our pipeline (Shannon-Wiener diversity index 0.02 vs 
2.01). For comparison, the diversity index of the non-
validated fusion transcripts was 0.57. The TCGA breast 
cancer cohort has WGS data for 104 matched normal tis-
sue samples, and we applied the unbiased search to those 
as well, hypothesizing that discordant read pairs found in 
normal tissues would likely be false positives. Approxi-
mately 45% of all unbiased gene pairs linked by discord-
ant reads in tumor WGS data were also found in the 
matched normal sample. Similarly, 67% of all unbiased 
gene pairs detected in normal tissues were also found in 
the matched tumor sample. Together, these results sug-
gest that discordant read pairs that do not necessarily 
represent true genomic rearrangements can be found in 
tumor WGS data. They are dominated by a few reoccur-
ring gene combinations and caution should be exercised 
when interpreting discordant read pairs as gene fusions 

based on WGS data only. As a contrast, the average 
intersection over union for fusion transcripts detected 
in matched normal and tumor RNA-Seq samples was 
only 2.7% with a standard deviation of 1.7. RNA-Seq data 
from matched normal tissue is therefore insufficient as a 
filter to remove likely false positive fusion transcripts.

The fraction of validated fusion transcripts does 
not depend on WGS depth
As shown above, the fusion transcript validation rate was 
strikingly low and varied considerably between different 
cancer types. The sequencing depth of the WGS data also 
differed between samples and cancer types, from ~7x for 
bladder cancer to ~60x for kidney cancer. To test how 
sensitive the WGS validation pipeline is to sequencing 
depth, we subsampled reads from high-coverage (>40x) 
breast cancer WGS samples at a rate of 0.25, 0.5 and 
0.75 of the original coverage and used those for valida-
tion. Approximately 73% of all validated fusion tran-
scripts were still detected at the lowest subsampling rate, 
simulating a sequencing depth of ~13x (Fig. 2A). We also 
examined the fusion validation ratio of each sample and 
compared it to the sequencing depth (Fig. 2B). Although 

Fig. 2 WGS depth has a limited effect on fusion transcript validation rate. A Reads from breast tumors with high‑coverage WGS were subsampled 
to 0.25, 0.5 and 0.75 of the original coverage and used for validation. Most validated fusions are still detected at a low coverage of 13x. B Fraction 
of fusion transcripts validated per sample plotted against WGS sequencing depth showing a weak positive correlation. C Compared to cancer type, 
sequencing depth has a negligible effect on the fraction of validated fusion transcripts in linear modeling
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there was a weak positive correlation between fusion 
validation rates and sequencing depth (r = 0.13, p = 1.5 
x  10-4, Pearson’s product moment correlation), this trend 
vanished when we included the effect of each cancer type 
in a linear model (Fig.  2C). Similarly, we saw no added 
effect from tumor purity. Sequencing depth therefore 
appears to have a relatively small effect on the sensitivity 
of our fusion validation pipeline.

Comparison of validated fusion transcripts to established 
fusion databases
To further evaluate the performance of our validation 
pipeline, we compared our results to the TumorFusions 
database [16]. This database lists high-confidence fusion 
events detected in TCGA and includes WGS validation 
status where available. The overlap between this database 
and our FusionCatcher results consisted of 585 fusion 
events in 210 samples with WGS data (Table  1). Our 
fusion validation pipeline found WGS evidence support-
ing 405 of these fusion transcripts, but only 161 of them 
(40%) were previously reported as validated by WGS. 
Comparing these two groups of fusion events, we found 
that genes in fusion events labeled as validated in the 
TumorFusions database had significantly lower expres-
sion than genes in non-validated events (p = 0.049 and 
p = 1.4 x  10-9 for 3’ and 5’ partners respectively, Stu-
dent’s t-test). The 3’ fusion partners were also signifi-
cantly shorter in genes in non-validated events (p = 2 x 
 10-3, Student’s t-test). The TumorFusions database con-
tains 180 fusions that were detected by FusionCatcher 
in the RNA-Seq data but could not be validated in WGS 
data by our pipeline. Strikingly, only 22 of these were 
labeled as being validated by WGS data in the Tumor-
Fusions database. Our analysis found an additional 1704 
fusion transcripts in these samples that were validated at 
the DNA level but were not listed in the TumorFusions 
database. Furthermore, 107 fusion events listed in the 
TumorFusions database were filtered out in our analy-
sis due to their high probability of being false positives. 
These results demonstrate that our validation pipeline 
is highly sensitive, and suggest that it can provide valu-
able information to complement existing gene fusion 
databases. The discrepancies between our set of fusion 
transcripts and the TumorFusions database likely depend 

on a number of factors including differences in soft-
ware, filtering criteria, genome assembly, and transcript 
annotation.

A supervised machine learning model can predict true 
positive fusion transcripts
To identify possible ways to improve the accuracy of 
fusion transcript prediction we then compared the char-
acteristics of true and false positive fusion events in 
TCGA samples with paired RNA-Seq and WGS data. 
While there was no single feature that could discrimi-
nate perfectly between true and false positive fusion 
transcripts, they did differ in many ways. Unsurprisingly, 
validated fusions generally had greater support at the 
transcript level. This was apparent in the average num-
ber of supporting read pairs (Fig. 3A) and anchor length 
(Fig.  3B) being significantly larger for validated fusions 
(both p < 2 x  10-16, Student’s t-test). Of the transcripts 
detected by FusionCatcher, approximately 12% were 
events between genes located on the same chromosome 
(intrachromosomal events). In contrast, 71% of validated 
events were found to be intrachromosomal (Fig. 3C, p < 
2 x  10-16, χ2 test). In addition, validated fusions had on 
average lower expression than non-validated (Fig. 3D). As 
we have previously reported miRNA and snoRNA host 
genes to be enriched in fusion events [2, 3], we modeled 
the probability of a gene being part of a validated fusion 
event against its status as miRNA host, snoRNA host, 
and gene length in a logistic regression model. Because 
of the large differences in expression and gene length 
between protein-coding and non-coding genes, the anal-
ysis was limited to genes annotated by GENCODE as 
protein-coding. The host status of a gene positively influ-
enced its likelihood of being part of a validated fusion 
event, with size-adjusted odds ratios of 1.37 for miRNA 
hosts and 1.67 for snoRNA hosts (p = 3.6 x  10-4 and p = 
1.5 x  10-8, respectively).

Based on these observed differences, we hypothe-
sized that it may be possible to use machine learning to 
train a classifier for prediction of true and false positive 
fusions. To be a useful addition to conventional soft-
ware for identification of fusion transcripts, such a clas-
sifier should only use information that is available also 
for samples without WGS data. After evaluating different 
machine learning algorithms, we constructed a light gra-
dient-boosting machine (LightGBM) classifier. The clas-
sifier was trained on fusion transcripts in samples with 
matched WGS and RNA-Seq data using only features 
available on the RNA level or from common sources of 
genomic annotation, so that the predictor could later be 
applied to samples without WGS data. The WGS valida-
tion status of each fusion event was used as the ground 

Table 1 Overlap between fusion events detected by our 
validation pipeline and the TumorFusions database

TumorFusions database

Validated Not validated

Validated by pipeline 161 244

Not validated by pipeline 22 158
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truth for the fusion status. The features used to train the 
model can be broadly divided into three categories:

1. Chimeric mRNA features, e.g. number of spanning 
reads detected and longest anchor found.

2. Expression information for the mRNA, frag-
ments per kilobase of exon model and million reads 
(FPKM), and relative expression between the two 
fusion partners.

3. General genetic features including spatial informa-
tion, gene status in the COSMIC database, overlap-
ping repetitive regions, and miRNA host status.

The full list of features used is available in Additional 
file 3. The model was only trained on fusions that passed 
initial filtering criteria, i.e. did not include banned tags or 
common mapping reads between the two partner genes. 
Since the data was highly imbalanced with only around 
~1% true positives, we trained the model for an optimal 
combination of area under the precision-recall curve 
and f1 score when tuning hyperparameters. Model per-
formance in training was evaluated using a leave-one-
group-out cross-validation, with each cancer type in a 
separate group. This was done to ensure robust perfor-
mance across multiple cancer types where the fusion 
validation rates differed greatly. The winning model’s pre-
cision and recall metric estimates were similar, reaching 
0.86 and 0.85, respectively, at a classification threshold 

of 0.2. To measure of the robustness of the classifier, 
the final model was evaluated on an independent tumor 
cohort. We used a set of 249 triple-negative breast cancer 
(TNBC) samples from the SCAN-B study with matched 
RNA-Seq and WGS data [17]. The model achieved an 
area under the precision-recall curve of 0.78 on the test 
data (Fig. 3E) and an f1 score of 0.73 with precision 0.74 
and recall 0.71. A Cohen’s Kappa value of 0.71 for the 
test data indicates strong agreement between the classi-
fier and the results of the WGS validation pipeline. The 
confusion matrix is shown in Table 2. Extracting feature 
importance revealed that the number of spanning read 
pairs supporting a fusion transcript contributed the most 
to the classification, but that features from all three cat-
egories contributed to the prediction (Fig. 3F).

A machine learning‑based filtering approach outperforms 
classical filtering methods
To assess the benefits of using a machine learning-based 
approach to filter fusion transcripts, we trained a second 

Fig. 3 Characteristics of validated fusions and classifier performance for prediction of true positive fusion transcripts. A Compared to non‑validated 
fusion transcripts (n= 861593), validated fusion transcripts (n=4237) had more supporting read pairs in RNA‑Seq data, B longer anchor 
length for RNA‑Seq reads mapped to the fusion junction, C a higher fraction of intrachromosomal fusions, and D lower average expression. E 
Precision‑recall curve for classifier performance in prediction of true positive fusion transcripts for an independent cohort of 249 breast tumors. F 
Top predictive features color‑coded by source of information

Table 2 Confusion matrix for the breast cancer test dataset

Prediction

True False

Truth True 864 350

False 308 26072
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classifier on fusions detected by Arriba in the BRCA 
and LUAD TCGA cohorts (see Methods). The classi-
fier achieved an area under the ROC curve of 0.90 and 
an area under the precision-recall curve of 0.83 in the 
test dataset, and precision and recall metrics of 0.68 and 
0.84 respectively at an optimal classification threshold 
of 0.23 as determined by Youden’s J statistic (Fig. 4A-D). 
We applied this classifier to fusions detected by Arriba 
in the same set of 249 TNBC SCAN-B samples that 
were used for evaluation of the previous model. In this 
dataset the model achieved an area under the precision-
recall curve of 0.79 and an area under the ROC curve of 
0.76 (Table 3). This demonstrates that the models can be 
applied to cohorts that are independent of the training 
data and still have robust performance, and that this is 
also true for fusion transcripts from two different fusion 
callers.

To determine the usefulness of our machine learning-
based filtering approach, we compared our Arriba-based 

model to the performance metrics of several different 
“classical” filtering approaches:

1. Keeping fusion events labeled as “high” confidence by 
Arriba

2. Keeping “high” and “medium” confidence fusions
3. Keeping fusion transcripts supported by 3 or more 

discordant mates
4. Keeping fusion events that pass 2. and 3.
5. Keeping only in-frame fusions

These filtering methods were applied to the combined 
training and test data of the model (Table 3) and to the 
TNBC SCAN-B data (Table 4), and performance metrics 
derived in the same manner as the ML classifier. Prob-
ability-based metrics such as ROC AUC were excluded 
as standard filtering produces no probability value. Our 
machine learning classifier outperformed all approaches 
in nearly every metric in both TCGA and SCAN-B 

Fig. 4 Performance of a machine learning classifier for fusions detected by Arriba in the BRCA and LUAD TGA cohorts. A The classifier achieved 
an area under the ROC curve of 0.90 and B area under the precision‑recall curve of 0.83. C Predicted classification probability of each fusion event vs 
actual WGS validation status, at a classification threshold of 0.23. D Confusion matrix of the classifier when applied to testing data at a classification 
threshold of 0.23
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cohorts. The classical filtering approach that performed 
the best was to keep fusions tagged as high or medium 
confidence by Arriba which achieved an f1 score of 0.54 
in the TCGA data and 0.70 in the SCAN-B data. The 
corresponding f1 scores for our classifier were 0.75 and 
0.72, respectively. For all other performance metrics, our 
model performed on-par with or better than the best 
classical filtering approach. The FusionCatcher-based 
model similarly outperformed classical filtering meth-
ods (Additional file  4). These results show the benefits 
of choosing a data-driven approach to fusion transcript 
filtering.

Predicted true positive fusion transcripts reflect 
the biology of validated fusions
Having demonstrated that machine learning classifi-
ers can be used to improve fusion transcript prediction 
with good precision and recall as judged by WGS data 
validation, we applied our FusionCatcher-based model 

to fusions detected in TCGA tumors with only RNA-
Seq data. This expanded the set of tumor samples avail-
able for analysis from 910 to 4760. After pre-filtering as 
before, we applied our classifier to 3.5 million fusion tran-
scripts detected in these samples. The classifier tended to 
be conservative, with lower ratios of fusions predicted 
to be true compared to the WGS validation. To evaluate 
if the resulting 13,376 predicted true fusion transcripts 
resembled the smaller set of validated fusions in terms 
of genes and pathways, we performed a gene set over-
representation analysis on the genes involved in these 
events. To take recurring fusion genes into account, we 
based the over-representation analysis on the binomial 
distribution (see Methods). The 5’ and 3’ fusion partners 
were analyzed separately within each cancer type. A prin-
cipal component analysis (PCA) of the enriched gene sets 
revealed that validated fusion events and those predicted 
by the machine learning classifier in the same samples 
generally clustered close together in a high-dimensional 

Table 3 Performance metrics for machine learning‑based filtering compared to classical filtering methods on fusions detected with 
Arriba in the BRCA and LUAD TCGA cohorts

Metric Classifier
(testing data)

High confidence High+med 
confidence

RNA disc.
mates > 2

High + med 
confidence and
RNA disc. mates > 2

In‑frame only

precision 0.68 0.43 0.44 0.37 0.47 0.53

recall 0.84 0.46 0.71 0.83 0.63 0.16

specificity 0.80 0.69 0.54 0.27 0.64 0.93

accuracy 0.81 0.61 0.60 0.46 0.64 0.67

f1 score 0.75 0.45 0.54 0.51 0.54 0.24

kappa 0.60 0.15 0.22 0.08 0.25 0.11

log loss 0.39 ‑ ‑ ‑ ‑ ‑

roc auc 0.90 ‑ ‑ ‑ ‑ ‑

pr auc 0.83 ‑ ‑ ‑ ‑ ‑

brier score 0.12 ‑ ‑ ‑ ‑ ‑

Table 4 Performance metrics for machine learning‑based filtering compared to classical filtering methods on fusions detected with 
Arriba in an independent fusion dataset of 249 TNBC samples from the SCAN‑B cohort

Metric Classifier High confidence High+med 
confidence

RNA disc. mates 
> 2

High + med confidence and 
RNA disc. mates > 2

In‑frame only

precision 0.74 0.70 0.68 0.63 0.72 0.69

recall 0.70 0.54 0.72 0.69 0.54 0.20

specificity 0.67 0.68 0.55 0.46 0.72 0.88

accuracy 0.69 0.60 0.64 0.59 0.62 0.49

f1 score 0.72 0.61 0.70 0.66 0.62 0.31

kappa 0.37 0.22 0.27 0.15 0.25 0.07

log loss 0.83 ‑ ‑ ‑ ‑ ‑

roc auc 0.76 ‑ ‑ ‑ ‑ ‑

pr auc 0.79 ‑ ‑ ‑ ‑ ‑

brier score 0.26 ‑ ‑ ‑ ‑ ‑
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space. We then expanded the analysis to include pre-
dicted true positive fusion transcripts from all samples, 
including fusion events in samples that only had RNA-
Seq data. These results were compared to enrichment 
results for the total, unselected FusionCatcher output. 
The enrichment results for both groups of predicted true 
fusion transcripts clustered closer to validated fusions 
and further away from the total FusionCatcher output 
(Additional file 5). This indicates that enrichment analy-
sis of fusions that our classifier predicts to be true posi-
tive events gives results that are biologically more similar 
to validated fusions – a potentially critical feature when 
looking at the functions of fusions.

Identified breakpoints in validated fusions provide 
mechanistic information
The pipeline we developed for validation of fusion tran-
scripts also identified a genomic breakpoint in a major-
ity of the cases. This type of information is important for 
guiding experimental validation of fusion events, and can 
also be used to explore the mechanisms that create gene 
fusions. The majority of breakpoints (81%) were found 
within introns, but this percentage was lower than what 
would be expected based on intron length alone. Notably, 

breakpoints located within coding sequences were more 
common than expected when considering their length, 
while breakpoints inside untranslated regions (UTRs) 
were less common than expected (p < 2 x  10-16, χ2 test). 
Approximately 70% of breakpoints overlapped repeti-
tive elements, the most common of those being L1 and 
L2 long interspersed nuclear elements (LINEs). Previ-
ous studies have suggested that a significant portion of 
fusions might arise due to alternative non-canonical 
end-joining (Alt-NHEJ) [18]. We analyzed the genomic 
sequences immediately up- and downstream of genomic 
breakpoints for validated fusion events with at least 
one identified breakpoint. As a control we simulated 
additional breakpoints in the same genomic regions as 
observed breakpoints and compared the levels of micro-
homology found there (Fig.  5A). We observed signifi-
cantly more microhomologous sequences at the observed 
breakpoints compared to simulated breakpoints in every 
cancer type (p < 2 x  10-16, Mann-Whitney U test). This 
is a pattern that would be compatible with Alt-NHEJ as 
a DNA repair mechanism for creation of gene fusions 
[19]. Gene fusions can be a result of chromosomal trans-
locations or, alternatively, amplification or deletion of 
chromosome segments. Intrachromosomal fusions were 

Fig. 5 Genomic breakpoints provide information about mechanisms creating gene fusions. A Microhomology between fusion partners 
was significantly more common at genomic breakpoints than in control regions. B Nucleotide positions flanking genomic breakpoints had higher 
sequencing depth in WGS data relative to the genome average with a distinct drop on the side of the breakpoint that was not in the fusion 
transcript. C The higher relative sequencing depth was especially pronounced in intrachromosomal fusions, indicating amplification as a possible 
mechanism. D Exons included in validated fusion transcripts (n=1295) had higher expression than excluded exons of the same gene and sample 
in the SCAN‑B cohort where exon‑level expression was available
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common among the validated fusion transcripts, and 
these could be created by amplification or deletion. To 
explore possible mechanisms, we calculated the mean 
sequencing depth for each nucleotide in the vicinity of 
fusion breakpoints as a ratio to the global sequencing 
depth. Nucleotides flanking the breakpoint had on aver-
age higher sequencing depth than rest of the genome, 
with a distinct drop in depth on the side of the break-
point that was not part of the fusion transcript (Fig. 5B, 
Additional file  6). This was especially pronounced in 
intrachromosomal fusions, indicating that these fusions 
arise from genomic amplification events (Fig.  5C). The 
TNBC cohort from SCAN-B that we used to validate 
the fusion transcript classifier had available exon-level 
expression data that we used to compare expression 
up- and downstream of breakpoints. We observed that 
the exons involved in fusion transcript had consider-
ably higher expression than the other exons in the same 
gene. Interestingly, this effect was only observed for the 
3’ fusion partners, which had on average a 5-fold differ-
ence in expression of exon in- and out of fusions (p < 
2 x  10-16, paired Student’s t-test, Fig.  5D). Although we 
did observe a statistically significant difference in the 5’ 
fusion partners as well (p = 1.95 x  10-5, paired Student’s 
t-test), the mean difference was considerably smaller 
(1.16-fold). This effect was strand-independent. The dif-
ference in exon expression of 3’ fusion genes may indicate 
altered transcriptional regulation by the promoter of the 
5’ partner gene.

Kinase fusions are frequently detected among predicted 
true positive fusions
Kinase fusions are of particular interest in clinical oncol-
ogy due to their potential to promote oncogenic activa-
tion and cancer progression. Multiple recurrent kinase 
fusions have previously been identified and are candi-
dates for targeted therapy. We analyzed validated fusion 
events involving kinases and focused on potentially 
protein-coding fusions that were either in-frame or had 
a promoter-swapping event with the kinase as 3’ part-
ner. Lung cancer had the highest number of validated in-
frame kinase fusions, whereas breast cancer had the most 
putative promoter-swapping events (Fig.  6A). Fusions 
involving tyrosine kinases (TK) were overall the most 
abundant and had a notably higher ratio in glioblastoma 
samples (Fig. 6B). Interestingly, our analysis revealed that 
each cancer type had a unique set of kinases in recurrent 
fusions, with little overlap between cancer types (Fig. 6C). 
This suggests that the molecular mechanisms that pro-
mote the development of kinase fusions are specific to 
each cancer type, something to take into consideration 
in the development of targeted therapies. Our analysis 
pipeline found kinase fusions that could be validated in 

WGS data which had not previously been reported in 
these samples, and when our classifier was applied to 
samples with only RNA-Seq data it greatly expanded the 
number of potentially actionable kinase fusions. We also 
analyzed the validated and predicted true positive fusion 
events with Oncofuse, a software designed to help iden-
tify candidate driver fusions [20] (Fig. 6D). The validated 
and predicted true positive fusion events have a higher 
fraction of predicted driver fusions than the total set of 
fusion transcripts (Fig.  6E) and similar distributions of 
driver probability scores for fusions involving kinases 
(Fig. 6F).

Discussion
Gene fusions can create proteins with new properties 
or alter the expression of both coding and non-coding 
genes. In clinical management of cancer, identified gene 
fusions can be used for targeted therapy or to monitor 
the presence of residual tumor cells or progression. A 
large number of bioinformatic tools have been developed 
for identification of fusion transcripts in tumor RNA-Seq 
data, but the results overlap between these methods is 
often small and the fractions of false positives and false 
negatives can be high [9, 10]. This limits the usefulness 
of fusion transcript predictions for both research and 
clinical use. Here we have combined independent sup-
port from RNA-Seq and WGS data for 910 tumors from 
TCGA to create a very large set of validated fusion events 
from 11 different cancer types. We have used these 
validated fusions to show that 1) true and false posi-
tive fusion events have different properties, 2) machine 
learning classifiers can outperform standard filtering 
strategies and predict true positive fusion transcripts 
with high precision and recall, 3) predicted true positive 
fusion transcripts contain many previously unreported 
kinase fusions, and 4) identified genomic breakpoints can 
provide mechanistic information about the creation of 
fusion genes.

For comparison of true and false positive fusions we 
focused on features that did not require WGS data, and 
which could therefore be applied to any set of fusion 
transcripts. This included expression level, genomic 
annotation, and information from the fusion predic-
tion software such as supporting reads and inclusion in 
fusion databases. It is important to note that we removed 
all fusion transcripts that had been flagged as likely false 
positives by FusionCatcher already before performing 
this comparison. This includes e.g. fusions previously 
found in healthy samples and fusions between adjacent 
or paralogous genes [21]. Many features differed between 
true and false positive fusions. For example, true posi-
tive fusions had a higher number of supporting reads, 
lower partner gene expression, and a larger fraction of 
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intrachromosomal fusions. However, none of these dif-
ferences by themselves were sufficient to allow hard fil-
tering of false positive fusion transcripts.

We therefore developed machine learning classifiers 
that could integrate many different sources of annotation. 
With a LightGBM classifier trained on fusion transcripts 
detected by FusionCatcher we achieved precision and 
recall metrics of 0.74 and 0.71, respectively, when it was 
tested on an independent cohort of 249 TNBC samples 
[17]. These tumors are molecularly heterogenous but are 
characterized by genomic instability with frequent chro-
mosomal rearrangements [22]. Since false positives out-
number true positives in both datasets this implies that 
it can drastically reduce the number of predicted fusion 
transcripts while retaining a majority of the real fusion 
events. When the classifier was applied to the larger set 
of TCGA samples that only had RNA-Seq data, the gene 

sets enriched among predicted true positive fusions were 
similar to validated fusions while both differed from the 
total set of fusion transcripts. This indicates that machine 
learning can be used as a complement to improve fusion 
transcript prediction, also in datasets that only have 
RNA-Seq data. Excluding likely false positive fusion 
predictions would facilitate experimental validation of 
fusion events and improve the quality of any biological 
interpretation.

The TCGA RNA-Seq and WGS data that were used 
here are available upon application, but hosting these data 
requires substantial storage space (approximately 200 TB 
just for WGS data for 910 samples from 11 cancer types) 
and the time needed for data download is a limiting fac-
tor. With the resources available to us we had to resort to 
downloading and analyzing the data in batches and delet-
ing data in between. In the end, we also had to cap data 

Fig. 6 Occurrence of in‑frame and promoter‑swapping kinase fusions in different cancer types. A Number of validated and predicted true positive 
fusion transcripts involving kinases per cancer type. B Number of fusions per kinase family and cancer type for validated and predicted fusion 
events (see Methods for kinase family abbreviations). C In‑frame and promoter‑swapping kinases involved in 3 or more validated fusion events 
per cancer type. D Number of driver fusions predicted by Oncofuse in validated and predicted true positive fusion events. E Percent of fusion events 
with a high probability (>95%) of being drivers. F Driver probability distribution of predicted and validated kinase fusions
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download before we could analyze all available cancer 
types to be able to finalize a manuscript. For this reason, 
some interesting cancer types with known driver fusions, 
such as prostate cancer, were not included in this work. 
Fusion transcripts from the two newer algorithms Arriba 
[23] and STAR-Fusion [14] have later become available 
for TCGA samples through the Genomic Data Commons 
(GDC) Data Portal [24]. We were therefore able to com-
pare the performance of FusionCatcher with these tools 
for a limited number of samples. As shown in Additional 
file  7 the three tools differ in performance with Arriba 
clearly being the most sensitive software. Fusion predic-
tion algorithm development continues, however, and 
there are considerable differences between the version 
of Arriba that was used to generate these publicly avail-
able predictions (v1.1.0) and the latest version (v2.4.0). 
For example, information about fusion transcript read-
ing frame is now available in the output. To evaluate the 
usefulness of adding a machine learning-based classifier 
also for another fusion prediction algorithm we therefore 
ran Arriba v2.4.0 and trained a classifier on BRCA and 
LUAD, two of the largest TCGA cohorts. When applied 
to the TNBC cohort, the precision and recall were 0.68 
and 0.84, respectively, indicating that machine learning 
could be broadly applied to improve the quality of fusion 
transcript predictions. Our comparison with different fil-
tering strategies also showed that a data-driven approach 
can perform better than classical filters such as number 
of supporting read pairs or Arriba confidence score.

Since the number of datasets with validated fusion 
genes is still relatively small, especially for fusions with 
identified genomic breakpoints, simulated fusion data 
have been used as an alternative for evaluation of soft-
ware [9, 10, 14]. Simulated data does not capture all 
aspects of actual RNA-Seq data, such as artifacts from 
cDNA synthesis and PCR amplification, read-through 
transcription, transcribed pseudogenes, or intronic and 
intergenic reads. With limited real-world data it is also 
not clear how well simulated fusions reflect the proper-
ties of real fusion transcripts. A complementary approach 
that has been used in other studies is ensemble predic-
tion in RNA-Seq data [10, 14]. The assumption is that 
true fusions will be detected by more methods and that 
requiring repeated prediction by several methods will 
enrich for likely true positive fusion transcripts. Some-
times the matching criteria are quite flexible and include 
fusions with paralogous genes. This is problematic since 
such an approach could potentially also enrich for false 
positive fusion predictions. Our comparison of fusion 
transcripts from FusionCatcher, Arriba, and STAR-
Fusion shows that the ensemble approach can be overly 
conservative, excluding many true fusions, while not effi-
ciently removing false positives (Additional file  7). The 

precision for ensemble predictions based on the intersec-
tion of Arriba and STAR-Fusion is 62% for TCGA data 
(BRCA and LUAD combined) and 66% for the TNBC 
validation set.

Here we provide information on validated fusions as 
supplementary material, with the intention that they can 
be used as a valuable complement to simulated fusion 
transcripts for development and evaluation of fusion-
finding algorithms (Additional file 2).

Clinical applications for fusion genes mainly focus 
on identification of known fusions that involve kinases 
that can be targeted by available drugs, and screening 
is practice for some cancer types [25]. While targeted 
approaches may miss functional fusion events, WGS data 
is still comparatively expensive to generate and difficult 
to analyze. RNA-Seq is more amenable to large-scale 
clinical application and provides gene expression infor-
mation, which also confirms that identified gene fusions 
are expressed. Our results show that prediction of fusion 
transcripts can be combined with a machine learning 
classifier to accurately identify potentially actionable 
kinase fusions in tumors with only RNA-Seq data.

Conclusions
We have demonstrated that prediction of fusion tran-
scripts in RNA-Seq data can be combined with machine 
learning-based filtering to dramatically increase the rate 
of true positive fusion events. After training on a lim-
ited set of samples with available WGS data, the result-
ing classifier can be used to improve the accuracy of 
fusion transcript analyses for both research and clinical 
purposes. Based on our results, we suggest that this can 
facilitate studies of tumor biology and the identification 
of kinase fusions for targeted therapy. The large number 
of validated gene fusions presented here can also be used 
as a resource for development and evaluation of fusion 
transcript prediction software.

Methods
Fusion transcript prediction
We used FusionCatcher version 1.00 to analyze all avail-
able RNA-Seq data for 11 cancer types in the TCGA 
database. BAM files with coordinates in GRCh38 were 
downloaded using the GDC Data Transfer Tool Cli-
ent. We used custom parameters for FusionCatcher to 
detect as many putative fusion events as possible. We 
therefore changed the Length_anchor and Length_
anchor2 parameters to "13,14,14,14,14" and "22", respec-
tively, spanning_pairs and spanning_reads to "2,2,2,2,2" 
and "1,1,1,1,1", respectively, and mismatches_psl to 4. 
Fusion transcripts flagged by FusionCatcher as likely 
false positives with the following tags were removed: 
1000genomes, 1K<gap<10K, adjacent, ambiguous, 
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duplicates, ensembl_partially_overlapping, gap<1K, gen-
code_fully_overlapping, gencode_partially_overlapping, 
gencode_same_strand_overlapping, healthy, m0, multi, 
non_cancer_tissues, non_tumor_cells, refseq_partially_
overlapping, tcga-normal, ucsc_partially_overlapping, 
banned, bodymap2, cacg, conjoing, cta_gene, ctb_gene, 
ctc_gene, ctd_gene, distance1000bp, ensembl_fully_over-
lapping, ensembl_same_strand_overlapping, gtex, hpa, 
mt, pair_pseudo_genes, paralogs, readthrough, refseq_
fully_overlapping, refseq_same_strand_overlapping, rp_
gene, rp11_gene, rrna, similar_reads, similar_symbols, 
ucsc_fully_overlapping, ucsc_same_strand_overlapping. 
Additional fusion transcripts prediction for SCAN-
B TNBC data was performed using Arriba (v2.3) and 
STAR-Fusion (v1.11). Arriba and STAR-Fusion calls were 
retrieved for TCGA LUAD and BRCA samples using the 
GDC Data Transfer Tool Client.

Fusion transcript validation in WGS data
WGS BAM files for the TCGA project were downloaded 
from the GDC Legacy Archive using the GDC Data 
Transfer Tool Client. Fusion junction coordinates were 
converted to hg19 using LiftOver to match the TCGA 
WGS data. To validate fusion transcripts at the DNA 
level, we used our previously described pipeline [15]. In 
brief, search regions were defined for every fusion event 
based on the observed fusion junctions for each fusion 
partner together with the start and end coordinates of 
the genes. Discordant read pairs mapping to each of the 
two fusion partners were extracted from the defined 
regions and subjected to filtering to remove low-quality 
reads. Genomic breakpoints were subsequently located 
by extracting high-quality soft-clipped read ends in 
proximity to detected discordant read pairs, where the 
soft-clipped end aligns close to the mate read in the dis-
cordant pair.

Global sequencing depth and subsampling
Global sequencing depth of WGS samples was calculated 
using samtools by fetching the depth of every  100th base 
in the genome and calculating mean sequencing depth 
for each sample. Reads were subsampled from breast 
tumor samples that had depth >40x, at fractions of 0.25, 
0.50 and 0.75 of original reads. Subsampling was per-
formed before any other filtering steps using the samtools 
filtering options --subsample 0.[fraction] --subsample-
seed 123. Local sequencing depth was calculated for 
every nucleotide in a region of -100 to +100 bp flanking 
detected genomic breakpoints using samtools. Genomic 
coordinates were adjusted to reflect their location relative 
to the genomic breakpoint and the strand of the fusion 
gene.

Feature selection and machine learning
We constructed a supervised LightGBM model for fusion 
transcripts using their validation status in WGS data as 
proxy for the truth. Only features that were accessible in 
RNA-Seq data, such as fusion partner FPKM and spatial 
information, were selected. The full list of fusion features 
used for the classifier is available in Additional file 3. As 
the LightGBM framework can inherently handle miss-
ing and categorical data, relatively little preprocessing is 
required of the input data. The only preprocessing steps 
taken for our feature set were to encode multi-categorical 
list columns and to remove zero-variance features. Train-
ing was performed on the results of the WGS validation 
pipeline for each cancer type using a leave-one-group-out 
cross validation. The three kidney cancer groups (KICH, 
KIRP and KIRC) were merged into a single kidney group 
to increase group size. Hyperparameter configuration 
for all models can be found on GitHub. Hyperparameter 
combinations selected for tuning were generated via grid 
search using maximum entropy parameter grid. Hyper-
parameter tuning of the model was optimized for area 
under the precision-recall curve and the model with the 
best performance was selected. Each model was trained 
for 100 iterations with the early stopping rounds param-
eter set to 10. Final model performance was evaluated 
with the area under the precision-recall curve. The model 
was constructed in R using the tidymodels 1.0.0, bonsai 
0.2.1, finetune 1.0.0 and lightgbm 3.3.3 packages. The list 
of parameters that were tuned while training the fusion 
predictor, and their values in the final model.

Construction of an Arriba‑based machine learning 
classifier
We constructed an additional LightGBM classifier for 
13860 fusion events detected by Arriba v2.4 in 312 sam-
ples in the BRCA and LUAD TCGA cohorts using the 
results of the WGS validation pipeline as the outcome. 
During data preprocessing we attempted to use as many 
of the same features that were used in the FusionCatcher 
LightGBM classifier. Information specific to the Arriba 
output data was used as features instead of the Fusion-
Catcher-specific information used previously. A full list 
of features is included in Additional file 3. Model training 
was performed on 75% of the data (10394 fusion events). 
Model performance was assessed during training using a 
10-fold cross-validation resampling on the training data. 
A total of 250 models were trained. The final model was 
chosen for optimal PR AUC and Brier Score during resa-
mpling. Final model performance was assessed by fitting 
the model to the remaining untouched 25% (3466) fusion 
events. Hyperparameter configuration for all models can 
be found on GitHub.
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Exon expression
Exon level expression information was obtained for 249 
breast cancer samples in the SCAN-B cohort. For each 
gene involved in a validated gene fusion, the exons that 
were part of the fusion transcripts were tagged and their 
expression compared to the other exons in the gene using 
a paired Student’s t-test.

Microhomology analysis
To investigate the potential mechanisms underlying gene 
fusions, we analyzed the presence of microhomology 
flanking the breakpoint. The genomic sequence directly 
upstream of the 5’ partner breakpoint was compared to 
the sequence downstream of the 3’ partner breakpoint. 
Breakpoints were labelled as microhomologous if the 
sequences matched in the first 1 to 5 nucleotides, and as 
homologous if there were further matches. We also simu-
lated breakpoints randomly in the vicinity (within 1 kb) 
of both detected breakpoints and calculated homology as 
before.

Enrichment analysis
Enrichment analysis was performed for each cancer 
type and fusion partner separately. The analysis was 
performed by calculating the proportion of genes in 
a list that were associated with a particular pathway, to 
the proportion of all genes in the “universe” that had 
that annotation. Here, the universe was defined as all 
expressed genes in the respective cohorts, i.e., genes that 
had a  95th percentile FPKM expression of 1 or greater. 
Because the same gene can be involved in multiple fusion 
events, we based our enrichment test on the binomial 
distribution (sampling with replacement), as opposed to 
the traditional hypergeometric distribution (sampling 
without replacement). The method described in [26] 
was implemented in R using the pbinom() function and 
adjustment for multiple testing was done using Benja-
mini-Hochberg (FDR) correction.

Kinase fusion analysis
The validated and predicted true positive sets of gene 
fusions were analyzed to identify in-frame or promoter-
swapping fusions involving kinases. The list of human 
kinases was downloaded from KinHub [27]. Abbrevia-
tions for kinase groups: TK, tyrosine kinases; TKL, tyros-
ine kinase-like; CAMK, calcium/calmodulin-dependent 
kinases; AGC, kinase group AGC; RGC, receptor gua-
nylate cyclases; STE, sterile/ste20-related; CMGC, CDK/
MAPK/GSK3/CDK-Like; CK1, casein kinase 1. The 
tumor driver potential of these fusions was analyzed 
using Oncofuse [20].
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