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Abstract 

Genomic dissection of genetic effects on desirable traits and the subsequent use of genomic selection hold great 
promise for accelerating the rate of genetic improvement of forest tree species. In this study, a total of 661 offspring 
trees from 66 open-pollinated families of Japanese larch (Larix kaempferi (Lam.) Carrière) were sampled at a test 
site. The contributions of additive and non-additive effects (dominance, imprinting and epistasis) were evaluated 
for nine valuable traits related to growth, wood physical and chemical properties, and competitive ability using three 
pedigree-based and four Genomics-based Best Linear Unbiased Predictions (GBLUP) models and used to determine 
the genetic model. The predictive ability (PA) of two genomic prediction methods, GBLUP and Reproducing Kernel 
Hilbert Spaces (RKHS), was compared. The traits could be classified into two types based on different quantita-
tive genetic architectures: for type I, including wood chemical properties and Pilodyn penetration, additive effect 
is the main source of variation (38.20-67.46%); for type II, including growth, competitive ability and acoustic veloc-
ity, epistasis plays a significant role (50.76-91.26%). Dominance and imprinting showed low to moderate contribu-
tions (< 36.26%). GBLUP was more suitable for traits of type I (PAs = 0.37–0.39 vs. 0.14–0.25), and RKHS was more 
suitable for traits of type II (PAs = 0.23–0.37 vs. 0.07–0.23). Non-additive effects make no meaningful contribution 
to the enhancement of PA of GBLUP method for all traits. These findings enhance our current understanding 
of the architecture of quantitative traits and lay the foundation for the development of genomic selection strategies 
in Japanese larch.
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Introduction
 Genetic improvement of economically and ecologically 
important species depends on accurate decomposition of 
phenotypic variation and prediction of breeding values 
for traits of interest. Phenotypic variation can be decom-
posed into genetic, environmental, and interaction vari-
ance according to quantitative genetic theory [1]. Genetic 
variance can be further decomposed into additive and 
non-additive variance (dominance, imprinting and 
epistasis). Traditionally, the genetic effects are estimated 
upon pedigree information. For instance, the additive 

*Correspondence:
Xiaomei Sun
xmsun@caf.ac.cn
1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory 
of Tree Breeding and Cultivation of State Forestry and Grassland 
Administration, Research Institute of Forestry, Chinese Academy 
of Forestry, Beijing 100091, China
2 Key Laboratory of National Forestry and Grassland Administration 
on Plant Ex situ Conservation, Beijing Floriculture Engineering Technology 
Research Centre, Beijing Botanical Garden, Beijing 100093, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09891-4&domain=pdf


Page 2 of 15Dong et al. BMC Genomics           (2024) 25:11 

effect can easily be obtained from a half-sib progeny test. 
In contrast, the analysis of non-additive variance requires 
the establishment of a more complex family structure 
(e.g., full-sib families) [2]. Typically, full-sib families are 
derived from crossbreeding, which is time-consuming 
and logistically challenging, especially in the early stages 
of breeding cycles, or impractical for some species in the 
early stages of breeding, such as many forest trees. Pedi-
gree reconstruction is an alternative method to complete 
the unknown male-parent information by molecular 
markers and paternity analysis on half-sib families [3]. 
However, the expected theoretical relationships between 
members of half- or full-sib families may bias the esti-
mates of variance component, breeding value, and expect 
genetic gain for the Mendelian sampling effect [4]. Fortu-
nately, the use of Genomic-based Best Linear Unbiased 
Prediction (GBLUP) and the reduced cost of genotyping 
provide the opportunity not only to estimate the non-
additive effect [5–7] but also to obtain more accurate 
genetic parameters [8–10] using the realized relationship 
matrix constructed by molecular markers, facilitating 
a better understanding of the genetic basis of key traits. 
Moreover, the non-additive effects could be selectively 
considered into genomic selection models based on their 
contributions.

Genomic selection (GS), introduced by Meuwis-
sen et  al. in 2001 [11], uses the developed models and 
genomic markers to predict genomic breeding values 
of selection candidates, offering the potential to sig-
nificantly shorten the breeding cycle and increase gains 
per unit time. These advantages make GS attractive for 
improving the traits of animals (e.g. [12, 13]), crops (e.g. 
[14]), and especially long-lived forest trees (e.g. [15, 16]). 
Typically, non-additive effects and prediction methods 
are important aspects that need to be carefully consid-
ered when developing GS models. Both simulation and 
empirical studies have been carried out to evaluate the 
impact of non-additive effects on the predictive ability of 
the models [17–20]. Dominance improved the prediction 
of complex traits in plants, such as grain production and 
drought tolerance in maize hybrids [21], yield in sorghum 
[22], or growth in hybrid Eucalyptus [23]. Epistasis can 
influence the accuracy of GS for complex traits in plants. 
Jiang et al. [24] found that epistatic effects played a more 
prominent role in grain-yield heterosis in wheat using 
GS. Raffo et al. [25] showed that epistatic models can be 
useful to enhance predictions of total genetic merit for 
wheat grain yield. However, the inclusion of epistasis in 
GS models may reduce the accuracy of the models [26]. 
In addition, few studies have been focused on imprinting 
in GS [7, 27], although this non-additive effect has been 
shown to play a role in the expression of several pheno-
types in plants [28] and animals [29]. It also should be 

noted that the influence of non-additive effects on GS 
may depend on factors such as the type of trait under 
consideration, the genetic architecture of the trait, and 
the size and structure of the population being analyzed. 
A number of prediction methods have been proposed 
for GS, such as Genomic Best Linear Unbiased Predic-
tion (GBLUP), Ridge Regression, Bayesian-based mod-
els, and Reproducing Kernel Hilbert Spaces (RKHS) [30, 
31], and the performance of these methods needed to be 
evaluated in a GS programme. Previous empirical stud-
ies have shown that for traits genetically regulated by a 
large number of genes with small effects, there is no sta-
tistically significant difference in performance between 
GBLUP and Bayesian-based models [32–37]. The Repro-
ducing Kernel Hilbert Space (RKHS) model is a power-
ful mathematical framework used in machine learning 
and statistical learning theory that provides a way to 
represent and analyze data in a high-dimensional feature 
space using kernel functions [30, 31]. When non-additive 
effects, particularly epistasis, play a role in a trait, Repro-
ducing Kernel Hilbert Spaces (RKHS), which combine 
features of non-parametric kernel regression with mixed-
effect linear models [38], usually have a better predic-
tive ability [39–41]. Therefore, it is both necessary and 
promising to determine the contribution of non-additive 
effects and then to assess the predictive ability of RKHS 
models using GBLUP as a benchmark for those traits that 
are significantly regulated by non-additive effects.

Japanese larch (Larix kaempferi (Lam.) Carrière) is an 
economically and ecologically important tree character-
ized by rapid juvenile growth rate and wide environmen-
tal adaptability. It is one of the most successful exotic 
species and is rapidly becoming the preferred conifer for 
lumber and pulpwood production in northern China and 
the southern sub-alpine region. In 1965, a 14.7 ha clonal 
seed orchard was established at the Dagujia Tree Farm in 
Liaoning Province, China (42.3–42.4°N latitude, 124.8-
125.2°E longitude, with an altitude of 200–600 m). Plan-
tations established in the northeastern China in the early 
twentieth century provided the clones with outstand-
ing growing performance. For many years, these clones 
have been the subject of progeny testing through open-
pollinated and control-pollinated crosses. The genetic 
material for this study came from one of the progeny 
tests, which was established in 1988, which consists of 
94 open-pollinated (OP) and 55 control-pollinated (CP) 
families. Based on this population, we have investigated 
the additive and dominant effects, spatial patterns and 
competition for growth traits [42, 43], implemented pedi-
gree reconstruction using microsatellite markers [44], 
and evaluated the influence of pedigree reconstruction 
on genetic parameter estimation [45]. In this study, the 
genetic research and the GS model development were 
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carried out on a sample of 661 trees from 66 OP families. 
Individual trees were phenotyped for nine valuable traits 
related to growth traits, wood physical and chemical 
traits, and competition index and were genotyped using 
11,333 high-quality SNPs captured by the Genotyping 
by Sequencing (GBS). The main objectives of this study 
were to (1) compare the model fitting and parameter esti-
mates between the OP-pedigree and full-sib (FS) pedi-
gree reconstructed in our previous study; (2) determine 
the contribution of additive, dominance, imprinting, and 
first-order epistasis using the GBLUP method and con-
struct a GS model for each trait based on the importance 
of non-additive components; and (3) assess the predictive 
ability of the RKHS models using GBLUP as a bench-
mark for each trait, and select the better one for further 
application.

Materials and methods
Genetic material
The data used in this study are from a progeny trial of 
the Japanese larch tree improvement programme in the 
Temperate Breeding Zone, China. The field trial, trans-
planted to the field in 1988 with 2-year-old seedlings, 
compromises 94 open-pollinated families. The seeds of 
the open-pollinated families were collected from the 
first-generation seed orchard of Japanese larch in China, 
established with 152 maternal clones [44]. The field 
design was a randomized complete block design with 5 
replications for each family. The number of trees per fam-
ily varied from 5 to 15 per replications and the number 
of 5-tree row plot per family varied from 1 to 3. 5-tree 
row plots with 1–3 columns due to seedling availability 
and 2 × 2  m spacing. This study involved 661 randomly 
selected trees from 66 open-pollinated families with 
9–12 trees per family.

Phenotypic data
Growth
In autumn of 2005 (age 19), all trees in the trial were 
assessed and measured for growth traits. Tree height 
(H, m) was measured using a Vertex III sonic clinometer 
(Haglöf Sweden AB, Västernorrland, Sweden). Diameter 
at breast height (DBH, cm) was measured using a diam-
eter tape. Tree stem volume (V,  dm3) was calculated by 
the following equation developed for larch trees in east-
ern Liaoning Province (Liao Q1667-83):

Competition index
DBH data were used to calculate competition indices to 
characterize the competitive ability of individuals to their 

(1)V = 0.0592372× DBH
2 ×H

0.98098926

neighbors. The Hegyi index, proposed by Hegyi in 1974 
[46], is the most classical spatial competition index used 
in forest research to quantify the competitive pressure of 
trees in forests [47] Hegyi’s competition index depends 
on the size and distance of neighboring trees, and was 
calculated as follows:

where i is the i th tree, j is the j th neighbor of this tree, 
1 ≤ n ≤ 8 , Dij is the distance between the i th tree with its 
j th neighbor. The first-order neighbors were considered 
in this study, so Dij=2 m (in row or column direction) or 
2
√
2 m (in diagonal direction).

Wood physical traits

Pilodyn penetration The Pilodyn 6 J Forest penetrom-
eter (PROCEQ, Switzerland) with a 2.0 mm diameter pin 
was inserted into each stem twice, without removing the 
bark, in the southern and northern directions at approxi-
mately 1.3 m above ground. The average Pilodyn penetra-
tion (PILODYN) was used as a surrogate for the wood 
density characteristic.

Acoustic assessment Acoustic velocity (AV) is directly 
related to dynamic wood stiffness or modulus of elas-
ticity (MOE) in conifers and has been widely used as a 
proxy [48–50]. The AV of each selected and sampled tree 
was measured using the Fakkop Microsecond Timer tool 
(Fakopp Enterprise, Ágfalva, Hungary) to substitute the 
dynamic modulus of elasticity estimate at age 32. Two 
probes were inserted lengthwise into the tree trunks at 
heights of 0.3 and 1.3 m. Two measurements taken from 
both the north and south sides of the trunk and averaged 
before analysis.

Wood chemical traits

Sample preparation In winter 2017 (age 27), one to 
three 5  mm increment cores were extracted from each 
sampled tree at breast height ± 10 cm from bark to bark 
with an increment borer to meet the needs of subsequent 
NIR scanning. Cores without bark were air dried to con-
stant weight (wood samples were dried to an equilibrium 
moisture content of 12%), ground to wood meal, filtered 
through a 60-mesh sieve and stored in sealed plastic bags 
for subsequent NIR spectra scanning.

(2)CI =
n

j=1

DBHj/DBHi /Dij
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Spectra collection Near infrared (NIR) spectra were 
recorded using a Field Spec® spectrophotometer (ASD 
Inc., Boulder, CO) with wavelengths between 350 and 
2500  nm at 1  nm intervals. The room temperature and 
humidity were kept constant. The spectrophotometer 
was pre-run for 30  min before each regular measure-
ment. Three measurements of NIR spectra were taken 
per sample and averaged before statistical analysis. The 
contents of three wood chemical properties, including 
holo-cellulose, hemi-cellulose and lignin, were predicted 
using NIR-PLS models developed for L. kaempferi [51] 
and denote by HOLOCEL, HEMICEL and LIGNIN.

Pedigree reconstruction
Because we have previously reported the results of the 
pedigree reconstruction [44], the material, methods and 
results are briefly outlined here. A total of 17 simple 
sequence repeat (SSR) markers were used for genotyp-
ing 647 progenies from 63 open-pollinated families and 
140 existing maternal clones. 62 families were shared 
between the previous and the present studies. The CER-
VUS software (version 4.0) [52] was used to perform 
paternity analysis with a strict confidence level (CL) of 
95% and a relaxed CL of 80% in 10,000 simulation cycles. 
572 progenies were implicitly assigned to 97 paternal 
clones, of which 223 were at the strict CL and the rest 
at the relaxed CL, generating 433 full-sib families with a 
mean number of trees of 1.21 (SD = 0.63) per full-sib fam-
ily. The limited number of trees per full-sib family may 
bias genetic parameter estimates [53, 54]. Therefore, the 
reconstructed pedigree provides preliminary estimates of 
the genetic parameters of various traits.

SNP genotyping
DNA extraction was performed on fresh needles from 
the sample trees using a CTAB procedure modified from 
Doyle and Doyle [55]. To generate a high-density SNP 
profile for the 661 DNA extracts, we conducted a mul-
tiplexed, high-throughput Genotyping-by-Sequencing 
(GBS) following Elshire et al. [56]. A 48-plex GBS library 
containing 47 DNA samples and a negative control (no 
DNA) was prepared and each of the 47 DNA extracts 
was barcoded. Briefly, each DNA extract (500 ng) was 
digested with the restriction enzyme ApeKI for 2 h. Liga-
tion products from each DNA extract were pooled and 
purified using the QIAquick PCR purification kit (Qia-
gen). The amplified 48-plex libraries were diluted and 
sequenced twice (single-end reads only) on the Illumina 
HiSeq 2000 to achieve the sequencing coverage equiva-
lent to 24-plex. Raw DNA short-read sequences were 
analyzed with a pipeline, the Universal Network Ena-
bled Analysis Kit (UNEAK), tailored to species lacking 

reference genome information. To reduce sequencing 
errors in genotyping, we set the error tolerance rate to 
0.03 (to exceed the expected Illumina sequencing error 
rate of 0.4%). The resulting SNP table was further fil-
tered using the minimum value of inbreeding coeffi-
cient (mnF = 0.05) and minimum minor allele frequency 
(mnMAF = 0.05), and SNPs that are present in less than 
40% of the samples were eliminated from further analy-
sis. Finally, a total of 11,333 SNPs was used for geno-
typing the individual trees (see Additional file  1: Table 
S1). Accuracy validation of SNP calling was performed 
using conventional PCR and Sanger-based sequencing 
(see Additional file 1: Table S2) in 30 progenies. A total 
of eight fragments containing 69 SNPs were randomly 
selected and 54 SNPs (78.3%) were validated. The mean 
missingness of genotypic data was 17.7%. Missing data 
were imputed using random imputation method imple-
mented in the R package synbreed [57] in the R environ-
ment (version 4.0.2) [58].

Statistical models
For each trait, three pedigree-based individual tree mod-
els (ABLUP-OP, ABLUP-FS-A and ABLUP-FS-AD) and 
four genomic-based individual tree models (GBLUP-A, 
GBLUP-AD, GBLUP-ADI, GBLUP-ADIE) were fitted.

For the pedigree-based models, ABLUP-AD was the 
full model, and the rest were reduced models. The form 
of ABLUP-AD was as follows:

where y is the vector of phenotypic observations of a sin-
gle trait; β is the vector of fixed effects, including a grand 
mean and block effects; p , a , d , and ∈ are the vectors of 
random plot, additive, dominance, and residual effects, 
respectively; X , Zp , Za , Zd and Ze are the incidence matri-
ces for p , a , d , and ∈ , respectively.

Assuming that the random effects in formula (3) follow 
a joint distribution as:

where AA and AD are pedigree-based relationship matri-
ces for additive and dominance effects, respectively; 
I is the identical matrix; σ 2

p  , σ 2
a  , σ 2

d  , and σ 2
∈ are vari-

ances of plot, additive, dominance, and residual effects, 
respectively.

The matrices AA and AD were constructed by the kin 
function in the R package synbreed [57].

(3)y = Xβ + Zpp+ Zaa+ Zdd+ ∈

(4)
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For the genomic-based models, GBLUP-ADIE was 
the full model, and the rest were reduced models. The 
form of GBLUP-ADIE was as follows:

where i and e are the vectors of random imprinting and 
additive-by-additive epistatic effects, respectively; Zi and 
Ze are the incidence matrices for i and e , respectively. The 
other terms are as defined in formula (3).

Assuming that the random effects in formula (5) fol-
low a joint distribution as:

where GA , GD , GI , and GE are genomic-based relationship 
matrices for additive, dominance, imprinting, and addi-
tive-by-additive epistatic effects, respectively; σ 2

i  and σ 2
e  

are variances of imprinting and additive-by-additive epi-
static effects, respectively. The other terms are as defined 
in formula (4).

The genomic-based relationship matrices GA , GD , GI , and 
GE were constructed from SNP data as follows [59, 60]:

where MA , MD and MI are n× p matrices, n and p are the 
number of individuals and SNPs, respectively. pj is the 
observed minor allele frequency of the jth SNP. The ele-
ments of MA , MD and MI for the i th individual at the j th 
SNP are calculated as follows:

(5)y = Xβ + Zpp+ Zaa+ Zdd + Zii + Zee+ ∈

(6)
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∈





































(7)GA =
MAM

′
A

2
∑

pj
(

1− pj
)

(8)GD =
MDM

′
D

∑
(

2pj
(

1− pj
))2

(9)GI =
MIM

′
I

∑
(

2pj
(

1− pj
))2

(10)MAij =







0− 2pj (A1A1)

1− 2pj (A1A2andA2A1)

2− 2pj (A2A2)

The first-order epistatic relationship matrix GAA was 
computed using the Hadamard product (cell by cell mul-
tiplication, denoted by #). The additive-by-additive term 
is GAA = GA#GA . These matrices were constructed using 
the sommer-R package (version 4.0) [58, 61].

For ABLUP and GBLUP model analyses, restricted 
maximum likelihood (REML) estimates of (co)variance 
components were obtained by using the average infor-
mation (AI) algorithm, implemented in the sommer-R 
package (version 4.0) [61]. All (co)variance component 
estimates were positively constrained.

The coefficient of variation CV was calculated as 
follows:

where σP and X  are the square root of the phenotypic 
variance and the grand mean, respectively.

The narrow and broad sense heritability were estimated 
as follows:

where σ 2
a  is the estimated additive genetic variance; 

σ 2
g  is the sum of all the genetic effect variances; σ 2

P , 
the phenotypic variance, is the sum of all the vari-
ances of the random effects. Both σ 2

g  and σ 2
P were dif-

ferent in different models. In model (5), for example, 
σ 2
g = σ 2

a + σ 2
d + σ 2

i + σ 2
e  , σ 2

P = σ 2
p + σ 2

g + σ 2
∈ . In the 

remaining models, the term for genetic effect variance 
was specifically omitted from the formular according to 
the form of the model.

The Akaike Information Criterion (AIC, [62]) and 
Schwarz Bayesian Information Criterion (BIC, [63]) 

(11)MDij =











−2p2j (A1A1) (A1A1)

2pj
�

1− pj
�

(A1A2andA2A1)

−2
�

1− pj
�2

(A2A2)

(12)MIij =











0 (A1A1)

1 (A1A2)

−1 (A2A1)

0 (A2A2)

(13)CV = σP/X × 100%

(14)h2 =
σ 2
a

σ 2
P

(15)H2 =
σ 2
g

σ 2
P
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were used to compare the relative quality of the good-
ness-of-fit of the different models with a threshold of 2. 
AIC = −2logL+ 2ρ , BIC = −2logL+ 2log(n)ρ , where 
logL is the REML log-likelihood, ρ is the number of esti-
mated parameters, n is the number of observations. A 
smaller AIC or BIC value indicates a better quality of fit.

Based on the estimates of the (co)variance compo-
nents and the information criteria values, we omitted the 
genetic terms that provide a negligible contribution to 
the phenotypic variance and re-fitted the GBLUP models 
and RKHS models, i.e. the optimal model for each trait.

RKHS models assume that the random effects in for-
mula (5) follow a joint distribution as:

each of KA , KD , KI , and KE depends on a reproduc-
ing kernel function with a smoothing semi-parameter h, 
which controls how quickly the prior covariance function 
declines with increasing genomic distance between geno-
types and can be interpreted as a correlation matrix [64]. 
The other terms are as defined in formula (6). The RKHS 
models were implemented using the BGLR function from 
the BGLR package in R [65]. The Gibbs chain length was 
20,000 iterations with the first 2000 iterations discarded 
as burn-in and a thinning interval set to 100.

A 10-fold cross-validation scheme with 10 replicates 
was used to assess accuracy and predictive ability (PA). 
The PA of the models was evaluated as the Pearson cor-
relation coefficient between the predicted breeding val-
ues of the validation trees and the phenotypes adjusted 
for block effects and was compared using GBLUP-A as a 
benchmark.

Results
Phenotypic variation
Descriptive statistics for each trait are presented in 
Table 1. The CV of wood chemical traits were generally 
lower than those of growth and wood physical traits. Esti-
mates of CV for HOLOCEL and LIGNIN were 4.14% and 
7.44%. HEMICEL had the highest CV among the wood 
chemical attributes (11.12%). In wood physical proper-
ties, CV for PILODYN was 11.42%, higher than that for 
AV (CV = 9.24%). Estimates of CV for H, DBH and V 
were 11.37%, 14.55% and 34.97%, respectively. The CV of 
CI was the highest of all traits, at 44%.

(16)



















p

a

d

i

e

∈



















∼ N





































0

0

0

0

0

0



















,



















Iσ 2
p 0 0 0 0 0

0 KAσ
2
a 0 0 0 0

0 0 KDσ
2

d 0 0 0

0 0 0 KIσ
2

i 0 0

0 0 0 0 KEσ
2
e 0

0 0 0 0 0 Iσ 2
∈





































Model comparison
AIC and BIC values obtained from the 7 models are 
presented in Table  2. The AIC values were generally in 
agreement with the BIC values of the same model. The 
comparison of ABLUP-OP and ABLUP-FS showed that 
ABLUP-OP outperformed ABLUP-FS for growth and 
wood chemical properties except for DBH. ABLUP-OP 
and ABLUP-FS showed no differences for CI and wood 
physical properties. The comparison of ABLUP and 
GBLUP showed that ABLUP outperformed GBLUP for 
wood chemical properties, while GBLUP performed bet-
ter than ABLUP for CI and wood physical properties; 
the patterns for growth were irregular. The comparison 
of GBLUP showed that GBLUP-A and other models 
showed no differences for wood chemical properties; 
GBLUP-ADIE was generally the best for growth, CI and 
AV. These results showed that (1) the performance of 
ABLUP was generally better than GBLUP-A for wood 
chemical traits, (2) epistasis played a more important 
role in model fitting for growth, CI and AV, and (3) dom-
inance and imprinting contributed slightly to model fit-
ting for almost all traits.

Genetic variance components
The proportions of variance components (additive σ 2

a  , 
dominance σ 2

d  , imprinting σ 2
i  , epistatic σ 2

e  , plot σ 2
p  and 

residual effects σ 2
∈ ) obtained from the 7 models are pre-

sented in Fig. 1.
The comparison of ABLUP-OP and ABLUP-FS showed 

that the proportions of σ 2
a  estimated from ABLUP-OP 

(7.88-100%) were larger than those from ABLUP-FS 
(0-81.41%) for all traits, indicating that they were esti-
mated upwards from ABLUP-OP; σ 2

d  was observed in 
ABLUP-FS-AD (8.48-35.61%) for growth and AV, as 
well as in GBLUP-AD (6.48-34.30%). The comparison 

Table 1 Descriptive statistics for the analyzed traits

Note: H Tree height, DBH Diameter at breast height, V Stem volume, 
CI Competition index, PILODYN Pilodyn penetration, AV Acoustic velocity, 
HOLOCEL Holo-cellulose, HEMICEL Hemi-cellulose, LIGNIN Lignin, Max Maximum 
value, Min Minimum value, SD Standard deviation, CV Coefficient of variation

Traits Mean SD Min Max CV/%

H/m 17.72 2.02 10.50 24.00 11.37

DBH/cm 16.66 2.42 9.10 31.10 14.55

V/dm3 195.68 68.43 43.16 621.68 34.97

CI 1.08 0.47 0.22 3.23 43.49

PILODYN 20.20 2.31 13.00 26.00 11.42

AV 232.67 21.50 186.00 399.00 9.24

HOLOCEL/% 70.81 2.93 63.53 82.04 4.14

HEMICEL/% 29.94 3.33 17.79 39.42 11.12

LIGNIN/% 27.35 2.04 21.16 32.98 7.44



Page 7 of 15Dong et al. BMC Genomics           (2024) 25:11  

of ABLUP-OP and GBLUP-A showed that the propor-
tions of σ 2

a  estimated from ABLUP-OP (95.48-100%) 
were larger than those from GBLUP-A (38.20-67.46%) for 
wood chemical properties; in contrast, for CI and wood 
physical properties, σ 2

a  contributed more of the vari-
ance from GBLUP-A (38.17-54.11%) than ABLUP-OP 
(7.88-30.67%).

The comparison of GBLUP showed that additive effect 
is the main source of variation for wood chemical prop-
erties (38.20-67.46%). Except for growth and AV, σ 2

d  had 
contribution to CI and HOLOCEL in ABLUP-FS-AD and 
to PILODYN and LIGNIN in GBLUP-AD. Dominance 
variances were generally separated from the residual var-
iances in ABLUP-FS-AD. However, in GBLUP-AD, the 
dominance variances were more from additive genetic 
variances and a small part of residual variance: up to 
half of σ 2

a  was reduced for AV, and almost all of σ 2
a  was 

reduced to near zero for DBH, V and PILODYN. These 
results indicated that σ 2

a  estimated from GBLUP-A may 
confounded with the σ 2

d  , and that including dominance 
effect could improve the explanation of residual vari-
ance for those traits that are considerable genetically 

controlled by dominance effect. The imprinting effects 
had contributions to CI, PILODYN and HOLOCEL, with 
proportions estimated by GBLUP-ADI of 17.33%, 19.71% 
and 7.08%, respectively. The imprinting effect variances 
were dissected from the residual variances. For growth, 
CI and AV, when epistasis was considered, a surprisingly 
significant proportion of the variance was explained by 
this effect (50.76-91.26%), which was decomposed from 
other sources of variation, particularly the residual vari-
ance. These results were generally consistent with the 
AIC values. Therefore, the traits could be classified into 
two types: for type I, including wood chemical properties 
and PILODYN, additive effect is the main source of vari-
ation; for type II, including growth, CI and AV, epistasis 
plays a significant role.

Heritability estimates
Narrow and broad sense heritability ( h2 and H2 ) exhib-
ited similar trends as additive and total genetic vari-
ance respectively from different models and are shown 
in Fig.  2. h2 estimates from ABLUP-FS were lower than 
those from ABLUP-OP for all traits. For growth traits, 

Table 2 AIC and BIC values of the 7 models (3 ABLUP and 4 GBLUP models) for the analyzed traits

Note: See Table 1 for full description of traits. AIC: Akaike Information Criterion; BIC: Schwarz Bayesian information criterion; ABLUP-OP: the OP pedigree-based 
individual tree model (using the additive relationship matrix AA estimated from the OP pedigree with known maternity only); ABLUP-FS-A: the FS pedigree-based 
individual tree model (using the additive relationship matrix AA matrix estimated from the FS pedigree reconstructed using paternity assignment analysis); ABLUP-
FS-AD: the FS pedigree-based individual tree model (using the additive and dominance matrices AA and AD estimated from the FS pedigree reconstructed using 
paternity assignment analysis); GBLUP-A: the genomic selection model (using the realized additive genomic relationship matrix GA estimated from SNPs); GBLUP-AD: 
the genomic selection model (using the realized additive and dominance genomic relationship matrices GA and GD estimated from SNPs); GBLUP-ADI: the genomic 
selection model (using the realized additive, dominance and imprinting genomic relationship matrices GA , GD and GI estimated from SNPs); GBLUP-ADIE: the genomic 
selection model (using the realized additive, dominance, imprinting and additive-by-additive epistatic genomic relationship matrices GA , GD,GI and GE estimated from 
SNPs); NA: not available due to due to failure of the model to reach convergence

Traits Information 
criterion

ABLUP-OP ABLUP-FS-A ABLUP-FS-AD GBLUP-A GBLUP-AD GBLUP-ADI GBLUP-ADIE

H AIC 380.95 383.44 383.38 380.22 380.15 380.15 377.81

H BIC 434.85 437.35 437.29 434.13 434.06 434.06 431.72

DBH AIC 540.30 542.43 541.89 545.82 544.99 544.99 543.83

DBH BIC 594.20 596.34 595.80 599.72 598.90 598.90 597.73

V AIC 507.72 510.19 510.17 510.42 509.18 509.18 507.23

V BIC 501.79 564.09 564.07 501.09 500.12 500.12 492.84

CI AIC 587.40 587.98 587.93 583.46 583.46 580.73 578.08

CI BIC 640.94 641.52 641.47 637.00 637.00 634.27 631.62

PILODYN AIC 529.82 528.30 528.30 514.51 514.42 510.97 NA

PILODYN BIC 559.86 558.34 558.34 544.55 544.46 541.01 NA

AV AIC 522.91 524.02 523.30 518.65 516.46 516.46 502.68

AV BIC 576.78 577.89 577.17 572.52 570.33 570.33 556.55

HOLOCEL AIC 366.71 440.06 438.85 463.51 463.51 462.90 462.90

HOLOCEL BIC 414.26 487.60 486.40 511.06 511.06 510.44 510.44

HEMICEL AIC 390.52 459.08 NA 469.59 469.59 469.59 469.59

HEMICEL BIC 438.07 506.62 NA 517.14 517.14 517.14 517.14

LIGNIN AIC 363.73 423.96 423.96 462.94 462.56 462.56 NA

LIGNIN BIC 411.27 471.51 471.51 510.49 510.10 510.10 NA
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h2 estimates from ABLUP-OP indicated that these traits 
were moderately controlled by additive effects, ranging 
from 0.20 to 0.27, which were slightly higher than those 
from GBLUP-A (0.16–0.20). For wood physical proper-
ties and CI, h2 estimates from GBLUP-A, 0.38–0.54, were 
much higher than those from ABLUP-OP (0.08–0.31).

As the number of genetic terms increased, the σ 2
a  were 

partitioned into other components, thus h2 were gradu-
ally reduced to zero for traits such as DBH. On the other 
hand, the H2 were increased from 0.17 to around 0.80, 
due to the inflating non-additive components, which are 
mainly epistatic effects.

The wood chemical properties showed the highest h2 
estimates in this study. h2 estimates from ABLUP-OP 
were almost one seemingly unrealistic. The h2 and H2 
estimates did not show much fluctuation when more 
genetic effects were included in the GBLUP models, 
ranging from 0.38 (HOLOCEL) to 0.67 (HEMICEL). 
The h2 and H2 estimates from ABLUP-OP and ABLUP-
FS had higher standard errors than those from GBLUP-
A in most cases, indicating that more accurate h2 and 
H2 estimates could be obtained using the GBLUP 
method.

Fig. 1 The proportion of variance for analyzed traits from the 7 genetic models fitted. See Table 1 for full description of traits. See Table 2 for full 
description of models. a , d , i  , e , p , and ∈ are the variance proportion of additive, dominance, imprinting, additive-by-additive epistatic effects, plot, 
and residual effects, respectively
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Predictive ability
The PAs from the three models for each trait are pre-
sented in Fig. 3 using box plots combining the results of 
the hypothesis tests.

No significant difference was found between the PAs of 
GBLUP-A and the corresponding GBLUP models consid-
ering non-additive effects (GS-GBLUP) for all the traits 
except for DBH and HOLOCEL. For growth-related 
traits, the PAs of GS-RKHS were significantly higher than 
those of GBLUP-A and GS-GBLUP (p < 0.01). The PAs of 
GS-RKHS for H, DBH, and V were ~ 0.29, 89.30-148.26% 
higher than those of GS-GBLUP, which were 0.15, 0.10, 

and 0.15, respectively. For CI, the PA of GS-RKHS was 
0.35, 149.08 times higher than that of GS-GBLUP. For 
PILODYN, a wood physical trait, the PA of GS-RKHS 
was 0.05, significantly lower than 0.18 of GS-GBLUP and 
0.22 of GBLUP-A. For AV, the pattern of PAs of the GS 
models was similar to that of the growth-related traits. 
The PA of GS-RKHS was 0.27, significantly higher than 
the 0.13 of GS-GBLUP. For wood chemical traits, GS-
GBLUP and GS-RKHS were not successfully fitted for 
HEMICEL. The PAs of GS-RKHS were 0.20 and 0.26 for 
HOLOCEL and LIGNIN respectively, significantly lower 
than those of GS-GBLUP and GBLUP-A (0.30 and 0.38). 

Fig. 2 The narrow and broad sense heritability for each trait from the 7 genetic models fitted. h2 and H2 are the narrow and broad sense heritability, 
respectively. Error bars above each bar indicate standard errors (SE). See Table 1 for full description of traits. See Table 2 for full description of models
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There was no significant difference between the last two 
models. The PA of GBLUP-A for HEMICEL was 0.38.

Discussion
Unraveling the genetic control of economically and 
adaptively important traits in forest tree species will 
help meet the growing global demand for high quality 
wood and the increasing challenges posed by chang-
ing climates and environments. OP progeny testing is 
the most efficient and widely used approach to genetic 
analysis and screening of large numbers of individu-
als in terms of low cost and less time. However, under 
this family structure, only the additive genetic variance 

component can be obtained, the estimate of which is 
somewhat biased due to the common violation of the 
true half-sib assumption [45, 66]. The considerable 
available DNA-marker information and GS models pro-
vided us with an unprecedented opportunity to under-
stand the genetic control of key traits of Japanese larch, 
which is extremely important for decision making of 
breeding strategy and facilitating a better exploitation 
of the available inherent variation for these traits in 
breeding programmes. This study is the first compre-
hensive assessment of contribution of the additive and 
non-additive effects on growth, wood and competitive 
traits of Japanese larch using a realized-genetic based 

Fig. 3 Distribution of predictive abilities for each trait. Each panel contains box plots showing the distribution of predictive abilities from the base 
models (GBLUP-A), and the optimal models (without genetic terms that provide a negligible contribution to the phenotypic variance) considering 
non-additive effects fitted by the GBLUP (GS-GBLUP) and RKHS (GS-RKHS) approaches. ns represents non-significance; * and ** indicate significant 
at p = 0.05 and p = 0.01. Hollow circles represent outliers. The black solid points and bars represent means and medians. See Table 1 for full 
description of traits
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model that has been proven effective in animal and 
plant breeding (e.g. [67, 68]).

Genetic control of growth, wood and competitive traits
For forest tree species used for pulp production, much 
attention has been paid by breeders to wood chemical 
properties such as cellulose and lignin content, which 
can be readily predicted by NIR-based calibrations. In 
this study, cellulose and lignin content and Pilodyn pen-
etration are mainly controlled by additive effects in both 
ABLUP-OP ( h2=0.95-1.00) and GBLUP-A ( h2=0.38–
0.67), which have been reported in various forest tree 
species in both conventional and GS studies [36, 69–73]. 
Therefore, it is promising to achieve significant genetic 
gain through GS-based recurrent selection. Meanwhile, 
the minimal contribution of non-additive effects on 
these traits also demonstrated the efficacy of the previ-
ous studies that did not consider non-additive effects. 
Additionally, the moderate to high narrow-sense herit-
ability indicates that the discovery of the genes underly-
ing the biosynthesis of these traits is prospective using 
genome-wide association mapping studies (GWAS). In 
Japanese larch, 77 SNPs were significantly associated 
with cellulose and lignin content and were located in 54 
genes (unpublished data). In Populus tomentosa Carrière, 
Li et  al. [74] reported that selection of specific SNPs in 
functional genes could regulate the cellulose and lignin 
content. In Picea abies L. Karst, Chen et al. [75] detected 
four SNPs associated with Pilodyn penetration. Alter-
natively, the genetic gain could be increased by manipu-
lating the genetic elements involved using molecular 
biology approaches.

For growth, AV and CI, additive-by-additive epistatic 
effects play more important role (50.76-91.26%, Fig.  1). 
For AV, the measurement of acoustic velocity, which 
represents the mechanical stiffness of wood, was mod-
erately controlled by the additive effect from the model 
ABLUP-OP ( h2=0.31) and GBLUP-A ( h2=0.39) consider-
ing only the additive effect, which is consistent with other 
tree species reports [37, 76, 77]. However, when the epi-
static effect was accounted for, almost all the phenotypic 
variation was explained by the epistatic and dominance 
effects, 91.26% and 6.08% respectively. No similar results 
have not been found. Epistasis showed no effect on wood 
stiffness in Scots pine (Pinus sylvestris L.) with 695 prog-
eny trees from 184 full-sib families [9] and in control-
pollinated Norway spruce (Picea abies (L.) Karst.) with 
1370 progeny trees from 128 full-sib families [78]. Fur-
ther research is required to identify the specific reasons 
for this result in Japanese larch. The significant contri-
bution of epistatic effects was also found for growth and 
competitive traits and has also been reported in other 
tree species. Tree height was controlled by a significant 

additive-by-additive epistatic effect in an open-pollinated 
white spruce (Picea glauca (Moench) Voss) trial of 214 
families [79]. In contrast, the epistatic effect could be 
ignored for tree height Norway spruce trials [78] and in 
an open-pollinated interior spruce (Picea glauca x engel-
mannii) test of 25 families [19]. Furthermore, an opposite 
contribution by epistatic effect was shown for wood den-
sity in spruce, Scots pine and hybrid Eucalyptus [9, 23, 
79]. These inconsistent results may hinder their imple-
mentation in breeding programs.

The dominance variance was mainly absorbed by the 
additive variance and a small amount by the residual vari-
ance. The imprinting variance was fully extracted from 
the residual variance. Furthermore, the proportions of 
these two effects were reduced when epistasis was taken 
into account due to its strong capacity to absorb vari-
ance from other components [19, 80]. The dominance 
effect has a contribution for AV and LIGNIN (6.08% 
and 13.02% respectively). Dominance contributed 9.8–
18.1% of phenotypic variation for tree height in Norway 
spruce [78] and 16.4% and 5.7% of phenotypic variation 
for LIGNIN and cellulose content in loblolly pine [81]. 
In contrast, Lenz et al. [37] reported that the dominance 
effect was not significant for all traits including weevil 
resistance, growth, and wood quality traits in Norway 
spruce and did not improve the model fit.

As in traditional pedigree-based genetic analysis, the 
population-specific genetic analysis still shown incon-
sistent contributions of additive and non-additive effects 
for the same traits in most cases in the GS period [23, 78, 
82]. For those traits that are primarily controlled by non-
additive effects, short-term genetic gains could be cap-
tured through vegetative propagation of individuals with 
high genetic values by rooted cuttings or grafts. Although 
somatic embryogenesis is a more efficient method for 
conifers, its practical application in Japanese larch is 
not yet well developed. For long-term genetic gain, indi-
viduals with additional genetic variation and superior 
characteristics should be introduced into this breeding 
population. Alternatively, the systematic introduction 
of germplasm from other larch species into the current 
breeding population through hybridization is a promis-
ing approach.

RKHS with epistatic genetic effects improves predictive 
ability
Maximizing the predictive ability (PA) of predictive 
models is one of the main goals in GS, and PA has been 
influenced by several factors. Recent studies have shown 
that the PA can be improved when additive and non-
additive effects are considered simultaneously in a pre-
dictive model [17–20]. In the present study, the influence 
of statistical model and non-additive effects on the PAs 
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of predictive models was evaluated. The results showed 
that using the GBLUP approach, non-additive effects 
have no significant contribution to the improvement of 
PA for all the traits (Fig.  3), suggesting that GBLUP as 
a linear model may not capture complex patterns like 
additive-by-additive epistatic effects. In contrast, the PAs 
from RKHS models were significantly higher than those 
from GBLUP models considering additive effects only 
(GBLUP-A), and accounting for additive and non-addi-
tive effects simultaneously (GS-GBLUP) for those traits 
controlled by epistatic effects. These results showed that 
the main advantage of the RKHS is on its superiority in 
capturing epistatic effects [64, 83]. However, for traits not 
significantly controlled by epistatic effects but by other 
non-additive components, holo-cellulose and lignin con-
tent, the PAs from RKHS models were remarkably lower 
than those from GBLUP models, which could be attrib-
uted to the inappropriate definition of a kernel [64]. Simi-
larly, Tan et  al. [84] reported that RKHS was the worst 
performing method for pulp yield in two Eucalyptus 
species and their  F1 hybrids. Therefore, for these types 
of traits, GBLUP models are more suitable for predict-
ing GEBVs, in addition to their speed of fast computa-
tion. Most of the previous empirical studies showed that 
there was a slight difference in prediction performance 
for quantitative traits between GBLUP and RKHS mod-
els [32, 84–86], which could be caused by the negligible 
contribution of epistasis on the traits analyzed or by not 
accounting for epistasis in the models.

Some issues affecting the efficiency of genomic prediction
Sample size is primarily considered in genetic research 
for its critical role in statistical power [87, 88]. The sam-
ple size in this study, consisting of 661 trees from 66 OP 
families (~ 10 individuals/family), can be considered rela-
tively small for generating highly reliable estimates of 
genetic effects and genomic predictions, particularly for 
traits with low narrow-sense heritability (Figs. 2 and 3). 
In addition, the sample size is not sufficient to obtain an 
optimal number of individuals per full-sib family after 
pedigree reconstruction to precisely estimate genetic 
parameters for low heritability traits such as height 
(Fig.  2). Therefore, the reconstructed pedigree provides 
preliminary estimates of the genetic parameters of vari-
ous traits. It is expected that the statistical power would 
further improve with a larger sample size [37]. However, 
we would like to emphasize that practical constraints, 
such as limited financial resources, often impose limi-
tations on sample sizes in genetic research involving 
molecular genotyping. Achieving a balance between sam-
ple size and available budget is a challenge faced by many 
breeders [87].

Accuracy of phenotypes has significant impact on the 
efficiency of genomic prediction. Various non-destruc-
tive evaluation methods have been used to assess wood 
properties in standing trees [89]. We used Pilodyn pen-
etration, acoustic velocity and spectroscopy techniques 
to proxy the wood physical and chemical properties. 
The Pilodyn penetration may not be a good surrogate 
for wood density in tree species with very high varia-
tion between earlywood and latewood densities within 
a growth ring, such as radiata pine (Pinus radiata D. 
Don) and Larix kaempferi, as the pin penetration may be 
affected by the number of latewood bands encountered 
[90]. There was also a relatively large measurement error 
in Pilodyn penetration, which could be caused by differ-
ences in bark thickness between trees of Larix kaempferi. 
In contrast, the Resistograph can overcome some of the 
limitations of Pilodyn and can serve as a more efficient 
alternative tool for evaluating wood density in standing 
trees [91] and will be used in our future investigations in 
Larix kaempferi to collect more accurate data.

Conclusions
Genomic-based models (GBLUP) provide a more com-
prehensive and accurate estimate of the contribution of 
the additive and non-additive effects than pedigree-based 
models (ABLUP). In the GBLUP model with all non-
additive effects, the traits considered in this study could 
be divided into two types based on different quantitative 
genetic architectures: type I, additive controlling traits, 
including wood chemical traits and Pilodyn penetra-
tion; type II, epistatic controlling traits, including growth 
traits, competitive ability and acoustic velocity. Domi-
nance and imprinting showed low contributions to the 
phenotypic variance of the traits. The GBLUP and RKHS 
methods were preferred in terms of predictive ability for 
type I and type II traits, respectively.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864- 023- 09891-4.

Additional file 1: Table S1. Genotyping data of 11,333 SNPs. Table S2. 
Validation of SNP calling accuracy by Sanger sequencing

Acknowledgements
We would like to thank Dr. Weibo Xiang, Dr. Xingbin Chen and Dr. Chao Sun 
for their excellent technical assistance in preparing the genotype data. We 
sincerely acknowledge the editor and two anonymous referees for their 
constructive criticism and helpful comments, which have greatly improved 
the manuscript.

Authors’ contributions
L.D. and X.S. designed the study and wrote the manuscript. L.D. and Y.X. col-
lected the phenotypic measurements. L.D. and R.W. performed the statistical 

https://doi.org/10.1186/s12864-023-09891-4
https://doi.org/10.1186/s12864-023-09891-4


Page 13 of 15Dong et al. BMC Genomics           (2024) 25:11  

analysis. Y.Z. prepared all figures. All authors contributed to the article and 
approved the final manuscript.

Funding
This study was supported by the National Key R&D Program of China 
(2022YFD2200302), the Beijing Natural Science Foundation (6224061) and the 
Special Funds of Research Institute of Forestry (LYSZX202002).

Availability of data and materials
The raw DNA short-read sequences generated in this paper are not publicly 
available due to the large file size (~ 8 TB) but are available from the cor-
responding author on reasonable request. The original genotype and pheno-
type data and results were included in the article and its additional files.

Declarations

Ethics approval and consent to participate
All field studies and experimental research conducted on plants, including 
the procurement of plant materials, were carried out in strict accordance 
with institutional, national, and international guidelines and regulations. 
The corresponding author, Xiaomei Sun, is the head of the Conifer Genetic 
Improvement Team at the Institute of Forestry, Chinese Academy of Forestry, 
and possesses the necessary authorization to gather plant materials.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 June 2023   Accepted: 11 December 2023

References
 1. Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. 4th ed. 

Harlow: Longman Group; 1996.
 2. Foster GS, Shaw DV. Using clonal replicates to explore genetic variation in 

a perennial plant species. Theor Appl Genet. 1988;76:788–94.
 3. Lambeth C, Lee B-C, O’Malley D, Wheeler N. Polymix breeding with paren-

tal analysis of progeny: an alternative to full-sib breeding and testing. 
Theor Appl Genet. 2001;103:930–43.

 4. Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artificial selec-
tion by using the realized relationship matrix. Genet Res. 2009;91:47–60.

 5. Nishio M, Satoh M. Including dominance effects in the genomic BLUP 
method for genomic evaluation. PLoS ONE. 2014;9: e85792.

 6. Lopes MS, Bastiaansen JWM, Janss L, Knol EF, Bovenhuis H. Estimation of 
additive, dominance, and imprinting genetic variance using genomic 
data. G3 (Bethesda, Md). 2015;5:2629–37.

 7. Guo X, Christensen OF, Ostersen T, Wang Y, Lund Mogens Sandøand Su 
G. Genomic prediction using models with dominance and imprinting 
effects for backfat thickness and average daily gain in Danish duroc pigs. 
Genet Selection Evol. 2016;48:67.

 8. Morley KI, Martin NGA, Visscher PM, Medland SE, Ferreira MAR, Morley KI, 
et al. Assumption-Free estimation of heritability from genome-wide iden-
tity-by-descent sharing between full siblings. PLoS Genet. 2006;2:e41.

 9. Calleja-Rodriguez A, Chen Z, Suontama M, Pan J, Wu HX. Genomic predic-
tions with Nonadditive effects Improved estimates of Additive effects 
and Predictions of Total Genetic Values in Pinus sylvestris. Front. Plant Sci. 
2021;12:666820.

 10. Beaulieu J, Lenz P, Bousquet J. Metadata analysis indicates biased estima-
tion of genetic parameters and gains using conventional pedigree 
information instead of genomic-based approaches in tree breeding. Sci 
Rep. 2022;12:3933.

 11. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

 12. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: 
genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 
2009;92:433–43.

 13. Goddard ME, Hayes BJ. Genomic selection. J Anim Breed Genet. 
2007;124:323–30.

 14. Jannink J-L, Lorenz AJ, Iwata H. Genomic selection in plant breeding: 
from theory to practice. Brief Funct Genomics. 2010;9:166–77.

 15. Grattapaglia D. Breeding forest trees by genomic selection: current 
progress and the Way Forward. In: Genomics of plant genetic resources. 
Dordrecht: Springer Netherlands; 2014. p. 651–82.

 16. Isik F. Genomic selection in forest tree breeding: the concept and an 
outlook to the future. New For. 2014;45:379–401.

 17. Muñoz PR, Resende MFR, Gezan SA, Resende MDV, Campos G, de los, 
Kirst M, et al. Unraveling additive from nonadditive effects using genomic 
relationship matrices. Genetics. 2014;198:1759–68.

 18. de Almeida Filho JE, Guimarães JFR, Fonsceca e Silva F, Vilela de Resende 
MD, Muñoz P, Kirst M, et al. Genomic prediction of additive and non-
additive effects using genetic markers and pedigrees. G3 (Bethesda Md). 
2019;9:2739–48.

 19. Gamal El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, El-Kassaby YA. 
Multienvironment genomic variance decomposition analysis of open-
pollinated Interior spruce (Picea glauca x Engelmannii). Mol Breeding. 
2018;38:26.

 20. Varona L, Legarra A, Toro MA, Vitezica ZG. Non-additive effects in genomic 
selection. Front Genet. 2018;9:1–12.

 21. Dias KODG, Gezan SA, Guimarães CT, Nazarian A, Da Costa E, Silva L, 
Parentoni SN, et al. Improving accuracies of genomic predictions for 
drought tolerance in maize by joint modeling of additive and dominance 
effects in multi-environment trials. Heredity. 2018;121:24–37.

 22. Hunt CH, Hayes BJ, van Eeuwijk FA, Mace ES, Jordan DR. Multi-environ-
ment analysis of sorghum breeding trials using additive and dominance 
genomic relationships. Theor Appl Genet. 2020;133:1009–18.

 23. Tan B, Grattapaglia D, Wu HX, Ingvarsson PK. Genomic relationships reveal 
significant dominance effects for growth in hybrid Eucalyptus. Plant Sci. 
2018;267:84–93.

 24. Jiang Y, Schmidt RH, Zhao Y, Reif JC. A quantitative genetic framework 
highlights the role of epistatic effects for grain-yield heterosis in bread 
wheat. Nat Genet. 2017;49:1741–6.

 25. Raffo MA, Sarup P, Guo X, Liu H, Andersen JR, Orabi J, et al. Improvement 
of genomic prediction in advanced wheat breeding lines by including 
additive-by-additive epistasis. Theor Appl Genet. 2022;135:965–78.

 26. Lorenzana RE, Bernardo R. Accuracy of genotypic value predictions for 
marker-based selection in biparental plant populations. Theor Appl 
Genet. 2009;120:151–61.

 27. Jiang J, Shen B, O’Connell JR, VanRaden PM, Cole JB, Ma L. Dissection of 
additive, dominance, and imprinting effects for production and repro-
duction traits in Holstein cattle. BMC Genomics. 2017;18:425.

 28. Bai F, Settles AM. Imprinting in plants as a mechanism to generate seed 
phenotypic diversity. Front Plant Sci. 2015;5:1–10.

 29. Reik W, Walter J. Genomic imprinting: parental influence on the genome. 
Nat Rev Genet. 2001;2:21–32.

 30. Gianola D. Priors in whole-genome regression: the bayesian alphabet 
returns. Genetics. 2013;194:573–96.

 31. Campos G, de los, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. 
Whole-genome regression and prediction methods applied to plant and 
animal breeding. Genetics. 2013;193:327–45.

 32. Chen Z-Q, Baison J, Pan J, Karlsson B, Andersson B, Westin J, et al. Accu-
racy of genomic selection for growth and wood quality traits in two 
control-pollinated progeny trials using exome capture as the genotyping 
platform in Norway spruce. BMC Genomics. 2018;19:946.

 33. Ratcliffe B, El-Dien OG, Klápště J, Porth I, Chen C, Jaquish B, et al. A 
comparison of genomic selection models across time in Interior spruce 
(Picea engelmannii × glauca) using unordered SNP imputation methods. 
Heredity. 2015;115:547–55.

 34. Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, et al. 
Genomic prediction accuracies in space and time for height and wood 
density of Douglas-fir using exome capture as the genotyping platform. 
BMC Genomics. 2017;18:930.

 35. Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J. Accuracy of 
genomic selection models in a large population of open-pollinated 
families in white spruce. Heredity. 2014;113:343–52.



Page 14 of 15Dong et al. BMC Genomics           (2024) 25:11 

 36. Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, Sanchez L, et al. 
Genomic selection in maritime pine. Plant Sci. 2016;242:108–19.

 37. Lenz PRN, Nadeau S, Mottet M, Perron M, Isabel N, Beaulieu J, et al. Multi-
trait genomic selection for weevil resistance, growth, and wood quality in 
Norway spruce. Evol Appl. 2020;13:76–94.

 38. Gianola D, Fernando RL, Stella A. Genomic-assisted prediction of genetic 
value with semiparametric procedures. Genetics. 2006;173:1761–76.

 39. Jiang Y, Reif JC. Modeling epistasis in genomic selection. Genetics. 
2015;201:759–68.

 40. Bandeira e Sousa M, Cuevas J, de Oliveira Couto EG, Pérez-Rodríguez P, 
Jarquín D, Fritsche-Neto R, et al. Genomic-enabled prediction in Maize 
Using Kernel Models with genotype × environment Interaction. G3 
(Bethesda Md). 2017;7:1995–2014.

 41. Olatoye MO, Hu Z, Aikpokpodion PO. Epistasis detection and modeling 
for genomic selection in Cowpea (Vigna unguiculata L. Walp). Front 
Genet. 2019;10:1–14.

 42. Dong L, Xie Y, Sun X. Full-diallel-based analysis of genetic parameters for 
growth traits in Japanese larch (Larix kaempferi). New For. 2020;51:261–71.

 43. Dong L, Xie Y, Wu HX, Sun X. Spatial and competition models increase 
the progeny testing efficiency of Japanese larch. Can J for Res. 
2020;50:1373–82.

 44. Chen X, Sun X, Dong L, Zhang S. Mating patterns and pollen dispersal in 
a Japanese larch (Larix kaempferi) clonal seed orchard: a case study. Sci 
China Life Sci. 2018;61:1011–23.

 45. Dong LM, Zhang SG, Sun XM. Impact of pedigree reconstruction on 
estimates of genetic parameters for growth traits and wood properties of 
open-pollinated progeny of Japanese Larch. For Res. 2018;31:27–35.

 46. Hegyi F. A simulation model for managing jack-pine stands. In: Fries J, 
editor. Growth models for tree and stand simulation. Royal College of 
Forestry: Royal College of Forestry; 1974. p. 74–90.

 47. Sun Z, Wang Y, Pan L, Sun Y. Hegyi competition index decomposition 
to improve estimation accuracy of Larix olgensis crown radius. Ecol Ind. 
2022;143: 109322.

 48. Lenz P, Auty D, Achim A, Beaulieu J, Mackay J. Genetic improvement of 
White Spruce Mechanical Wood traits—early screening by means of 
Acoustic Velocity. Forests. 2013;4:575–94.

 49. Chen Z-Q, Karlsson B, Lundqvist S-O, García Gil MR, Olsson L, Wu HX. 
Estimating solid wood properties using Pilodyn and acoustic velocity on 
standing trees of Norway spruce. Ann for Sci. 2015;72:499–508.

 50. Walker TD, Isik F, McKeand SE. Genetic variation in acoustic time of flight 
and drill resistance of juvenile wood in a large loblolly pine breeding 
population. For Sci. 2019;65:469–82.

 51. Zhang S, Sun X, Chen D, Xie Y, Liu C. Method for detecting wood chemi-
cal properties of Japanese Larch. Applied spectroscopy. 2022;61:882–8.

 52. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer 
program CERVUS accommodates genotyping error increases success in 
paternity assignment. Mol Ecol. 2007;16:1099–106.

 53. Robertson A. Experimental design in the evaluation of genetic param-
eters. Biometrics. 1959;15:219.

 54. Isik F, Boos DD, Li B. The distribution of genetic parameter estimates and 
confidence intervals from small disconnected diallels. Theor Appl Genet. 
2005;110:1236–43.

 55. Doyle JJ. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.
 56. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. 

A robust, simple genotyping-by-sequencing (GBS) approach for high 
diversity species. PLoS ONE. 2011;6: e19379.

 57. Wimmer V, Albrecht T, Auinger HJ, Schön CC. synbreed: a framework 
for the analysis of genomic prediction data using R. Bioinformatics. 
2012;28:2086–7.

 58. R Core Team. R: a language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing; 2014.

 59. VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91:4414–23.

 60. Nishio M, Satoh M. Genomic best linear unbiased prediction method 
including imprinting effects for genomic evaluation. Genet Selection 
Evol. 2015;47:32.

 61. Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits 
using the R Package Sommer. PLoS ONE. 2016;11: e0156744.

 62. Akaike H. Information theory and an extension of the maximum likeli-
hood principle. In: Petrov BN, Csáki F, editors. 2nd international sympo-
sium on information theory. Budapest: Akademai Kiado; 1973.

 63. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4.
 64. de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J. Semi-para-

metric genomic-enabled prediction of genetic values using reproducing 
kernel Hilbert spaces methods. Genetics research. 2010;92:295–308.

 65. Pérez P, Campos G. De Los. genome-wide regression and prediction with 
the BGLR Statistical Package. Genetics. 2014;198:483–95.

 66. Namkoong G. Inbreeding effects on estimation of genetic additive vari-
ance. For Sci. 1966;12:8–13.

 67. Heslot N, Jannink JL, Sorrells ME. Perspectives for genomic selection 
applications and research in plants. Crop Sci. 2015;55:1.

 68. Aliloo H, Pryce JE, González-Recio O, Cocks BG, Hayes BJ. Accounting for 
dominance to improve genomic evaluations of dairy cows for fertility 
and milk production traits. Genet Selection Evol. 2016;48:8.

 69. Apiolaza LLA, Raymond CA, Yeo BJJ. Genetic variation of physical and 
chemical wood properties of Eucalyptus globulus. Silvae Genetica. 
2005;54:160–6.

 70. Ukrainetz NK, Kang K-Y, Aitken SN, Stoehr M, Mansfield SD. Heritability 
and phenotypic and genetic correlations of coastal Douglas-fir (Pseudot-
suga menziesii) wood quality traits. Can J for Res. 2008;38:1536–46.

 71. Esteban LG, Gril J, De Palacios PDP, Casasús AG. Reduction of wood hygro-
scopicity and associated dimensional response by repeated humidity 
cycles. Ann for Sci. 2005;59:563–75.

 72. Marco de Lima B, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, 
Grattapaglia D. Quantitative genetic parameters for growth and 
wood properties in Eucalyptus “urograndis” hybrid using near-infrared 
phenotyping and genome-wide SNP-based relationships. PLoS ONE. 
2019;14:e0218747.

 73. Bouvet J-M, Makouanzi Ekomono CG, Brendel O, Laclau J-P, Bouillet J-P, 
Epron D. Selecting for water use efficiency, wood chemical traits and 
biomass with genomic selection in a Eucalyptus breeding program. For 
Ecol Manag. 2020;465: 118092.

 74. Li P, Xiao L, Du Q, Quan M, Song Y, He Y, et al. Genomic insights into selec-
tion for heterozygous alleles and woody traits in Populus tomentosa. Plant 
Biotechnol J. 2023;21:2002–18.

 75. Chen Z-Q, Zan Y, Milesi P, Zhou L, Chen J, Li L, et al. Leveraging breeding 
programs and genomic data in Norway spruce (Picea abies L. Karst) for 
GWAS analysis. Genome Biol. 2021;22:179.

 76. Hong Z, Fries A, Wu HX. High negative genetic correlations between 
growth traits and wood properties suggest incorporating multiple traits 
selection including economic weights for the future scots pine breeding 
programs. Ann for Sci. 2014;71:463–72.

 77. Beaulieu J, Nadeau S, Ding C, Celedon JM, Azaiez A, Ritland C, et al. 
Genomic selection for resistance to spruce budworm in white spruce 
and relationships with growth and wood quality traits. Evol Appl. 
2020;2:eva.13076.

 78. Chen ZQ, Baison J, Pan J, Westin J, García Gil MR, Wu HX. Increased 
prediction ability in Norway spruce trials using a marker x environment 
interaction and non-additive genomic selection model. J Hered. 2019;40 
C:1–30.

 79. Gamal El-Dien O, Ratcliffe B, Klápště J, Porth I, Chen C, El-Kassaby Y. Imple-
mentation of the realized genomic relationship matrix to open-pollinated 
white spruce family testing for disentangling additive from nonadditive 
genetic effects. G3 (Bethesda, Md). 2016;6:743–53.

 80. Jannink J-L. Identifying quantitative trait locus by genetic background 
interactions in association studies. Genetics. 2007;176:553–61.

 81. Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand 
S, et al. SNP markers trace familial linkages in a cloned population of 
Pinus taeda—prospects for genomic selection. Tree Genet Genomes. 
2012;8:1307–18.

 82. Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, et al. 
Genomic prediction in CIMMYT maize and wheat breeding programs. 
Heredity. 2014;112:48–60.

 83. Gianola D, van Kaam JBCHM. Reproducing Kernel Hilbert spaces regres-
sion methods for genomic assisted prediction of quantitative traits. 
Genetics. 2008;178:2289–303.

 84. Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson 
PK. Evaluating the accuracy of genomic prediction of growth and wood 
traits in two Eucalyptus species and their F1 hybrids. BMC Plant Biol. 
2017;17:110.



Page 15 of 15Dong et al. BMC Genomics           (2024) 25:11  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 85. Kadam DC, Lorenz AJ. Evaluation of nonparametric models for 
genomic prediction of early-stage single crosses in Maize. Crop Sci. 
2019;59:1411–23.

 86. Juliana P, Singh RP, Singh PK, Crossa J, Huerta-Espino J, Lan C, et al. 
Genomic and pedigree-based prediction for leaf, stem, and stripe rust 
resistance in wheat. Theor Appl Genet. 2017;130:1415–30.

 87. Isidro y Sánchez J, Akdemir D. Training set optimization for sparse phe-
notyping in genomic selection: a conceptual overview. Front Plant Sci. 
2021;12:715910.

 88. Wang M, Xu S. Statistical power in genome-wide association studies and 
quantitative trait locus mapping. Heredity. 2019;123:287–306.

 89. Schimleck L, Dahlen J, Apiolaza LA, Downes G, Emms G, Evans R, et al. 
Non-destructive evaluation techniques and what they tell us about 
Wood Property Variation. Forests. 2019;10: 728.

 90. Cown DJ. Comparison of the Pilodyn and torsiometer methods for 
the rapid assessment of wood density in living trees. N Z J Forest Sci. 
1978;8:384–91.

 91. Isik F, Li B. Rapid assessment of wood density of live trees using the 
Resistograph for selection in tree improvement programs. Can J for Res. 
2003;33:2426–35.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Genomic dissection of additive and non-additive genetic effects and genomic prediction in an open-pollinated family test of Japanese larch
	Abstract 
	Introduction
	Materials and methods
	Genetic material
	Phenotypic data
	Growth
	Competition index
	Wood physical traits
	Wood chemical traits

	Pedigree reconstruction
	SNP genotyping
	Statistical models

	Results
	Phenotypic variation
	Model comparison
	Genetic variance components
	Heritability estimates
	Predictive ability


	Discussion
	Genetic control of growth, wood and competitive traits
	RKHS with epistatic genetic effects improves predictive ability
	Some issues affecting the efficiency of genomic prediction

	Conclusions
	Anchor 25
	Acknowledgements
	References


