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Abstract 

Increasing evidence has shown that the expression of circular RNAs (circRNAs) can affect the drug sensitivity of cells 
and significantly influence drug efficacy. Therefore, research into the relationships between circRNAs and drugs can 
be of great significance in increasing the comprehension of circRNAs function, as well as contributing to the discovery 
of new drugs and the repurposing of existing drugs. However, it is time-consuming and costly to validate the function 
of circRNA with traditional medical research methods. Therefore, the development of efficient and accurate computa-
tional models that can assist in discovering the potential interactions between circRNAs and drugs is urgently needed. 
In this study, a novel method is proposed, called DHANMKF , that aims to predict potential circRNA-drug sensitivity 
interactions for further biomedical screening and validation. Firstly, multimodal networks were constructed by DHAN-
MKF using multiple sources of information on circRNAs and drugs. Secondly, comprehensive intra-type and inter-type 
node representations were learned using bi-typed multi-relational heterogeneous graphs, which are attention-based 
encoders utilizing a hierarchical process. Thirdly, the multi-kernel fusion method was used to fuse intra-type embed-
ding and inter-type embedding. Finally, the Dual Laplacian Regularized Least Squares method (DLapRLS) was used 
to predict the potential circRNA-drug sensitivity associations using the combined kernel in circRNA and drug spaces. 
Compared with the other methods, DHANMKF obtained the highest AUC value on two datasets. Code is available 
at https:// github. com/ cuntjx/ DHANM KF.

Keywords circRNA-drug sensitivity associations, Multimodal networks, Bi-typed multi-relational heterogeneous 
graphs, Attention mechanism, Multi-kernel fusion

Introduction
Circular RNA (circRNA) is a unique type of RNA that 
differs from other RNAs in that it forms a covalently 
closed loop and is typically considered non-coding. With 
the advancement of high-throughput genomics technol-
ogy, circRNA has become a hot topic in RNA biology 
research [1]. Since the discovery of the first circRNA in 
RNA viruses in the 1970s [2], the advancement of bio-
medical technology has resulted in the discovery of an 
increasing amount of circRNAs. However, research into 
circRNA function has progressed very slowly over several 
decades, until 2013, when Memczak et  al. and Hansen 
et al. proved that the circular RNA of human cerebellar 
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degeneration-related protein has an important function 
in neural development [3, 4]. This discovery led to a great 
increase in the study of circRNA function. The most 
notable function of circRNAs is that they act as miRNA 
sponges, which regulates target gene expression by inhib-
iting miRNA activity. One circRNA can regulate one or 
multiple miRNAs through multiple miRNA binding sites 
in a circular sequence [5]. Previous studies have found 
that circRNA can regulate alternative splicing or tran-
scription [6, 7], as well as parental gene expression [8, 9]. 
The results of these studies have also indicated that cir-
cRNA plays an important role in physiological and path-
ological processes, and that the dysregulation of circRNA 
is closely related to many human diseases [10]. over the 
past two decades, several verified biological function 
experiments have shown that circRNA has potential as a 
new clinical diagnostic marker.

Over the years, an increasing number of studies have 
demonstrated that circRNA can significantly affect the 
drug sensitivity of cells. For example, Gao et  al. [11] 
screened 18 circRNAs from 3093 circRNAs and then 
verified them in real-time by quantitative reverse tran-
scription PCR. Finally, hsa_circ_0006528 was found to 
play an important role in chemotherapy resistance in 
breast cancer patients. Peng et  al. [12] first used next-
generation sequencing (NGS) technology to identify 
the comprehensive circRNA expression profile of multi-
drug-resistant osteosarcoma(OS) cell lines and found 
that hsa_circ_ 0004674 was significantly elevated in OS-
resistant cells and tissues, and was associated with poor 
prognosis. This was then verified by quantitative real-
time PCR (qRT-PCR). A study by Wu et  al. [13] found 
that hsa_circ_0001546 is decreased in gastric cancer, 
which is associated with poor prognosis and also inhibits 
drug resistance via the ATM/Chk2/p53-dependent path-
way. Ruan et al. [14] used four identification algorithms 
to describe the expression profile of circRNA in approxi-
mately 1000 human cancer cell lines and observed a 
strong correlation between circRNA expression and drug 
response. That study systematically demonstrated the 
effect of circRNAs on drug sensitivity. However, research 
into the relationship between circRNA and drug sensitiv-
ity is a newly emerging field that has developed rapidly 
over the past decade, so our understanding of this rela-
tionship is still in its early stages.

The process of validating the relationships between 
circRNA and drug sensitivity using traditional biomedi-
cal methods is time-consuming and costly. Therefore, 
some researchers have developed computational mod-
els that can help to reveal the potential relationships 
between circRNA and drugs. For example, Deng et  al.
[15] proposed a computational model called GATECDA 
for predicting the association between circRNA and drug 

sensitivity. GATECDA is based on the Graph Attention 
Auto-encoder(GATE) [16]. First, sequence information 
data for circRNAs, structural data for drugs, and cir-
cRNA-drug sensitivity association data were collected. 
Then the similarity between circRNAs and drugs were 
each calculated and these data as well as circRNA-drug 
sensitivity association data were input into the GATE, in 
order to generate low-dimensional vector representations 
of circRNA and drug nodes. Finally, the low-dimensional 
vector representations generated by the GATE were input 
into a fully connected neural network for circRNA-drug 
sensitivity association prediction. Later, Yang et  al. [17] 
proposed a model called MNGACDA. The model con-
structs a multimodal network based on multiple informa-
tion sources on circRNAs and drugs. Then, a node-level 
attention Graph Auto-Encoder was used to obtain low-
dimensional embeddings of circRNAs and drugs from 
the multimodal network. Finally, the low-dimensional 
embeddings of circRNAs and drugs were input into an 
inner product decoder to score the association between 
circRNAs and drug sensitivity. To our knowledge, these 
were the first models to apply computational methods 
to predict the potential association between circRNAs 
and diseases. Thus far, no other new models have been 
applied in this field, and considerable advancement in 
the creation of new and improved models for this field of 
research is much needed.

Since Multiple Kernel Learning (MKL) [18] was pro-
posed, it has been widely applied to bipartite biological 
networks for the improvement of model performance. 
Specifically, the information contained in the sam-
ples were used by MKL to compute the multiple ker-
nel matrix, and then the optimal kernel matrix was 
obtained by fusing multiple kernel matrices. For example, 
MKGCN, which is based on MKL and GCN [19], was 
proposed by Yang et al. to infer novel microbe-drug asso-
ciations. Yan et al. [20] proposed a computational meth-
ods called MKLC-BiRW, based on MKL and Bi-random 
walk algorithm, to predict potential drug-target inter-
actions by integrating diverse drug-related and target-
related heterogeneous information.

In this study, we propose a novel method, called 
DHANMKF, that aims to predict potential circRNA-drug 
sensitivity associations for further biomedical screening 
and validation. Firstly, multimodal networks were con-
structed by DHANMKF using multiple sources of infor-
mation on circRNAs and drugs. Secondly, comprehensive 
intra-type and inter-type node representations were 
learned using multi-relational heterogeneous graphs, 
which are attention-based encoders under a hierarchical 
process. Thirdly, a multi-kernel fusion method was used 
to fuse intra-type embedding and inter-type embedding. 
Fourthly, the Dual Laplacian Regularized Least Squares 
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(DLapRLS) method was used to predict the potential 
circRNA-drug sensitivity associations by the combined 
kernel in circRNA and drug spaces. In order to evaluate 
the effectiveness of DHANMKF, it was compared with 
six state-of-the-art methods on a benchmark data set 
under 5-fold cross-validations (5-CV). Compared with 
the other methods, DHANMKF obtained the highest 
AUC. Furthermore, an ablation study was performed to 
compare the experimental results from different perspec-
tives. Finally, case studies were conducted to demon-
strate that the DHANMKF model can be a useful tool for 
helping with the study of circRNA-drug sensitivity asso-
ciations in real situations. To the best of our knowledge, 
DHANMKF is the first algorithm to use dual hierarchi-
cal attention networks for the prediction of circRNA-
drug sensitivity associations. Our main contributions, 
differing from previous approaches, are summarized as 
follows: (1) We classify nodes into two types, i.e., head 
nodes and tail nodes, based on the degree of the nodes, 
and then define the types of edges based on the associa-
tions between different kinds of nodes. (2) Based on the 
differences in types of edges, we use dual hierarchical 
attention networks to extract the information on circR-
NAs and drugs, use the multi-kernel fusion method to 
fuse this information, and then use the dual graph reg-
ularized least squares method to predict potential cir-
cRNA-drug associations. (3) We tested DHANMKF on 
two datasets, and the results show that multi-relational 
dual hierarchical attention networks perform better than 
the other methods in predicting potential circRNA-drug 
associations. These results can provide new insights for 
further research on circRNA-drug associations.

Materials and methods
Datasets
Two datasets, data271 and data251, were used in this 
study. Data271 is from Deng et  al. [15] and data251 
is from Deng et  al. [15] and Peng et  al. [21]. CircRNA-
drug sensitivity associations were collected from the 
circRic database [14] by Deng et  al. [15], where drug 
sensitivity data were obtained from the GDSC data-
base [22]. After Wilcoxon tests with a false discovery 
rate < 0.05 , these significant circRNA-drug sensitiv-
ity associations were extracted as the data271 dataset, 
which contains Nc = 271 circRNAs, Nd = 218 drugs and 
4134 circRNA-drug sensitivity associations. Integrating 
with the dataset of Peng et  al. [21], we removed circR-
NAs with host-gene interaction scores ≤ 0.5 and nodes 
with a degree of 0. This resulted in the data251 dataset, 
containing Nc = 251 circRNAs, Nd = 217 drugs, and 
3635 circRNA-drug sensitivity associations. Additional 
information on these two datasets can be found in the 
Supplementary file. In our experiment, circRNAs and 

drugs were represented as two different types of nodes 
in the network. The node set of Nc circRNAs was defined 
as C = {c1, . . . , cNc } . Similarly, the node set of Nd drugs 
was described as D = {d1, . . . , dNd

} . An adjacency matrix 
Y ∈ RNc×Nd was created for the storage of circRNA-drug 
associations. In this matrix, Nc rows represent the num-
ber of circRNAs and Nd columns represent the number 
of drugs. If circRNA ci(1 ≤ i ≤ Nc ) is associated with 
drug dj(1 ≤ j ≤ Nd ), Yij = 1 , otherwise Yij = 0 . During 
the training phase, all the Yij = 1 are treated as positive 
samples and the others are treated as negative samples. 
We randomly masked some positive samples from Y to 
get Ytrain . In order to calculate the similarity of circR-
NAs and drugs, the host gene sequences of circRNAs 
were downloaded from the National Center for Bio-
technology Information (NCBI) gene database [23] and 
the drug structure data were downloaded from NCBI’s 
PubChem database [24].

Sequence similarity of host genes of circRNAs
Applying methods similar to those of Deng et  al. [15] 
and Yang et  al. [17], we treated the sequence similar-
ity between host genes of circRNAs as the similarity 
between circRNAs. In this way, the similarity calculation 
between circRNAs became the sequence similarity cal-
culation between host genes of circRNAs. The sequence 
similarity between host genes of circRNAs was calculated 
based on the sequence Levenshtein distance, which was 
obtained using the ratio function of Python’s Levenshtein 
package. A similarity matrix CSS ∈ RNc×Nc was created 
for storing the circRNA sequence similarity.

Structural similarity of drugs
The structure of drugs has a great impact on their func-
tion. Therefore, it has become a common practice to 
measure the similarity of drugs based on their structure. 
As in previous studies [25, 26], RDKit [27] toolkit and the 
Tanimoto method were used to calculate the structural 
similarities between drugs. The specific process was as 
follows: first, the structural data on several drugs were 
obtained from the PubChem database. Then, RDKit was 
used to calculate the topological fingerprint of each drug. 
After that, the structural similarity between drugs was 
calculated using the Tanimoto method. Finally, the drugs 
structural similarity matrix DSS ∈ RNd×Nd was derived.

Gaussian interaction profile kernel similarity for circRNAs 
and drugs
The Gaussian Interaction Profile (GIP) kernel similar-
ity [28] algorithm is a collaborative filtering algorithm 
that has been widely used in previous studies for simi-
larity calculation [29, 30], and it helps to obtain topo-
logical information on circRNAs and drugs in relational 



Page 4 of 14Lu et al. BMC Genomics          (2023) 24:796 

graphs. Therefore, we calculated the GIP kernel similarity 
for circRNAs and drugs using the circRNA-drug asso-
ciation network. Firstly, based on the assumption that 
similar circRNAs are more likely to be associated with 
similar drugs, we utilized a binary vector BI(ci) , which 
is the ith row of the Ytrain matrix, representing the asso-
ciations between circRNAs ci and all drugs in the training 
matrix of Y . Then, the GIP kernel similarity for circRNAs 
CGS(ci, cj) between circRNA ci and cj was calculated as 
below:

Here, αc has been set to 1 referring to [28]’s studies. 
And similarly, we calculated the GIP of drug DGS(di, dj) 
between drugs di and dj as follows:

Here, the binary vector BI(di) is the ith column of the 
Ytrain matrix, representing the associations between 
drugs di and all circRNAs in the training matrix of Y . αd 
has been set to 1 referring to [28] studies.

Integrated similarity for circRNAs and drugs
Inspired by the study of Wang et al. [31], we used a non-
linear fusion method to integrate the circRNA similar-
ity and the drug similarity. With circRNA similarity, for 
example, we first normalized the sequence similarity of 
host genes of circRNAs using the following formula:

Then, the K Nearest Neighbors (KNN) algorithm was 
used to measure CSS ’s local affinity as follows:

N
′

i in Eq. (6) is the set of KNN of ci , including ci in CSS . 
This operation is based on the assumption that the higher 
the local similarity, the more reliable it is. Therefore, the 
near-end similarity is high while the far-end similarity 
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2
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is set to 0. Similarly, we repeated the process for CGS 
and then we obtained CGS

′
 and CKNN2 . After that, we 

updated the similarity matrix for each kind of data as 
follows:

After each iteration, CSS
′(t+1) is normalized by formula 

Eq. (5). Similarly, CGS
′(t+1) performs the same normali-

zation. The iteration does not stop until the convergence 
condition is met, and the convergence condition is met 
when the relative change in �CSS

′(t+1)−CSS
′(t)�

�CSS
′(t)�

 and 
�CGS

′(t+1)−CGS
′(t)�

�CGS
′(t)�

 is less than 10−6 . Assuming that the 
process involves t iterations, the overall comprehensive 
similarity matrix of circRNA can be obtained by Eq. (9) 
when the iteration ends.

Based on these rules, the similarity matrix Sc is 
an asymmetry matrix. Therefore, we calculated the 
Sc =

Sc+S
T
c

2
 as the circRNA comprehensive similarity 

matrix. For drugs, we applied the same rules to DSS 
and DGS , then we obtained the comprehensive drug 
similarity matrix Sd.

DHANMKF
Dual Hierarchical Attention Networks (DHAN) were 
proposed by Zhao et  al. [32] in 2022. Comprehensive 
node representations are learned with intra-type and 
inter-type attention-based encoders using a hierarchical 
process based on the bi-typed multi-relational hetero-
geneous graphs in DHAN. Specifically, DHAN uses two 
encoders, one to aggregate information on nodes of the 
same type and the other to aggregate node representa-
tions of different type neighbors. Then, the complex 
structure of the bi-typed multi-relational heterogeneous 
graph is captured by the model by a hierarchical process 
and dual-level attention operation. It is worth noting that 
the association matrix Y of circRNA-drug is a bi-typed 
single-relation heterogeneous graph. Therefore, in order 
to fully utilize the extraction ability of DHAN for node 
embedding, it is necessary to classify the relationships 
between nodes.

It is well-known that the adjacency matrix describing 
different objects in the biomedical field is sparse. This 
means that there are many nodes with small degrees. 
Histograms of the degree distributions of circRNAs and 
drugs can be found in the Supplementary file. It can be 
seen that most of the nodes have small degrees regardless 

(7)CSS
′(t+1) = CKNN1× CGS

′(t) × (CKNN1)T .

(8)CGS
′(t+1) = CKNN2× CSS

′(t) × (CKNN2)T .

(9)Sc =
CSS

′(t) + CGS
′(t)

2
.
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of whether they are circRNA nodes or drug nodes. Intui-
tively, the biomedical significance of a drug being associ-
ated with only a few circRNAs or a drug being associated 
with many circRNAs are different. Inspired by Liu et al. 
[33], we categorized the nodes into head nodes and tail 
nodes according to the value of their degrees. That is, for 
every node v ∈ V  , where V is the set of nodes in a graph. 
Nv is denoted by the set of neighboring nodes of v, and 
the number of elements in set Nv is defined as the degree 
of v. Here we let Vh and Vt denote the set of head and 
tail nodes, respectively. For some threshold K, we define 
tail nodes as nodes with a degree not exceeding K, i.e., 
Vt = {v : |Nv| ≤ K } , whereas head nodes are the com-
plement of tail nodes, that is, Vh = {v : |Nv| > K } . K is 
treated as a hyperparameter in our study. In this way, the 
association of circRNAs with drugs in dataset data271 
changes from being one type to being the following four 
types. 

1. Association between the head node of circRNA and 
the head node of the drug.

2. Association between the head node of circRNA and 
the tail node of the drug.

3. Association between the tail node of circRNA and 
the head node of the drug.

4. Association between the tail node of circRNA and 
the tail node of the drug.

Because the node types in the circRNA similarity net-
work and the drug similarity network are the same, that 
is, they are either all circRNA or all drugs, the following 
three types of associations will be in these two similarity 
networks. 

1. Associations between the head nodes.
2. Associations between head node and tail node.
3. Associations between tail nodes.

In summary, we represent intra-type relationships 
and inter-type relationships as Rintra = {1, 2, 3} and 
Rinter = {1, 2, 3, 4} , respectively. Whereas in the data251 
dataset, circRNAs were split into two types depending 
on whether the host gene of the circRNA was associated 
with a disease or not, which is analogous to splitting cir-
cRNAs into head nodes and tail nodes. Thus the same 
number of edge types can also be obtained, and the defi-
nition is more biologically meaningful in this way.

Intra‑type attention‑based encoder
After the computational process above, the associ-
ated network of circRNA and drug becomes a bi-type 
multi-relationship heterogeneous network, given a 

node pair (ni, nj) ∈ C that are connected via node 
intra-type relationship �k ∈ R

(c)
intra = {1, 2, 3} . Firstly, 

we initialized the representation matrix of circRNA to 
H

c

0
= ScYtrainW

c

intra
= [h

T
1
, . . . ,h

T
Nc
]
T . Where Wc

intra
∈ R

Nd×d
′ is a 

learnable parameter Hc

0
∈ R

Nc×d
′ , and hi ∈ R

d
′(1 ≤ i ≤ Nc ) 

is the feature vector of the node ni . Secondly, self-atten-
tion was performed on the circRNA nodes to formulate 
the importance e�k

ij  of a specific-relation based node pair 
(ni, nj) as follows:

Where || denotes the concatenate operation, and 
a�T

k
∈ R2d

′
×1 denotes the shared node-level attention 

weight vector under relation �k . LeakyRelu is the non-
linearity activation function, which is widely used in 
attention-based neural networks. In the third step, e�k

ij  
is standardized using the Eq. (11) to facilitate compari-
son of importance between different nodes.

Where N
�k
intra(ni) denotes specific relation-based 

neighbors of ni , the embedding h�k
1  of node ni under 

given relation �k is obtained as follows:

Where Norm�k
 denotes the relation-specific layer 

normalization operation; h
�k
i  is semantic-specific. 

Therefore, by using Eq. (12) to fuse the aggregated 
information of nodes with different specific relations, 
more comprehensive node embeddings can be obtained 
as follows:

Where q ∈ R2d
′
×1 is a trainable parameter. Similar to 

Eq. (11), we standardize g�k
i  by using the softmax func-

tion as follows:

Here β�k
ij  is used to measure the local importance of 

intra-relation �k . Finally, the intra-type attention-based 
representation of circRNA node ni can be obtained as 
follows:

(10)e
�k
ij = attlocal(hi ,hj;�k ) = LeakyRelu(a�T

k
� [hi||hj]).

(11)α
�k
ij = softmaxj(e

�k
ij ) =

exp(e
�k
ij )

∑

np∈N
�k
intra(ni)

exp(e
�k
ij )

(12)

h
�k
i = LeakyRelu
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�

nj∈N
�k
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α
�k
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.

(13)g
�k
i = qT

(

hi||h
�k
i

)

.

(14)β
�k
ij = softmaxk(g

�k
i ) =

exp(g
�k
i )

∑

�l∈N
(c)
intra

exp(g
�l
i )

.
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Where zci ∈ Rd
′
×1 , βφl

G  denotes how important intra-
type �l is for all circRNA nodes and can be regarded 
as a global importance parameter. The global and local 
importance of the intra-type relationship �l is smoothed 
by the parameter t. Both βφl

G  and t can be learned from 
training. The aggregated information for node ni under 
intra-type relation �l is represented by h�l

i  . Initialize the 
representation matrix of drug to Hd

0 = SdY
T
trainW

d
intra , 

where W
d

intra
∈ R

Nc×d
′

 is a learnable parameter and 
H

d

0
∈ R

Nd×d
′ . Using the same process above, we can get 

the intra-type attention-based representation of drug 
node ni , which can be represented as zdi ∈ Rd

′

× 1 . Let 
Zc
1 = [(zc1)

T , . . . , (zcNc
)T ]T and Zd

1 = [(zd1 )
T , . . . , (zdNd

)T ]T 
respectively represent the first layer output of the intra-
type attention-based encoder, that is, the node embed-
ding matrix of circRNAs and drugs. Assuming that the 
intra-type attention-based encoder has t layers, the out-
put of the previous layer is taken as the input of the next 
layer. Repeating this process can obtain t node embed-
ding matrices about circRNA and drugs as follows: 
Zc
1, . . . ,Z

c
t , Zd

1 , . . . ,Z
d
t .

Inter‑type attention‑based encoder
The purpose of the intra-type attention-based encoder is 
to learn node embeddings by aggregating the node infor-
mation of the same type neighbors, while the purpose of 
the inter-type attention-based encoder is to handle inter-
actions between different types of nodes. Let ni ∈ C and 
nj ∈ D , respectively. zci  and zdj  are the learned representa-
tions of the circRNA node ni and drug node nj by intra-
type attention networks, respectively. The node-level 
importance c�m

ij  can be calculated by Eq. (16) and nor-
malized by Eq. (17) as follows:

N
�m
inter(ni) denotes the neighbors of node ni under spe-

cific inter-relation �m . Wc
inter and Wd

inter ∈ Rd
′
×d

′

 are two 
type-specific matrices that map their features zci  and zdi  
into a common space. a�m ∈ R2d

′

 is a learnable weight 
vector. The relationship embedding of circRNA node ni 
can be aggregated from the embeddings of its neighbors 

(15)
zci =

∑

�l∈N
(c)
intra

(

tβ
φl
G + (1− t)β

φl
i

)

� h
�l
i .

(16)
c
�m
ij = attnode

(

zci , z
c
j ;�m

)

= LeakyRelu
(

aT�m
, �

[

Wc
interz

c
i ||W

d
interz

d
j

])

,

(17)

γ
�m
ij = softmaxj(c

�m
ij ) =

exp(cij
�m)

∑

nk∈N
�m
inter (ni)

exp(cij�m)
.

of different types(that is, the nodes of a drug), with cor-
responding coefficients as follows:

Norm�m denotes the layer normalization operation 
related to the inter-type relation. Then, the importance of 
relation embedding z�m

i  related to node ni are obtained 
by fusing all relational representations by Eq. (19), and it 
is normalized by Eq. (20) for making relation importance 
comparable within inter-type relations.

Finally, the representation ui of circRNA node ni is 
obtained by fusing these relation-specific representations 
as follows:

Similarly, we can get the inter-type attention-based 
representation of drug node nj , which can be rep-
resented as udj  . Let Uc

1 = [(uc1)
T , . . . , (ucNc

)T ]T and 
Ud
1 = [(ud1 )

T , . . . , (udNd
)T ]T respectively represent the 

first layer output of the inter-type attention-based 
encoder, that is, the node embedding matrix of circR-
NAs and drugs. Assuming the inter-type attention-based 
encoder has M layers, the output of the previous layer is 
taken as the input of the next layer. Repeating this pro-
cess can obtain M node embedding matrices about cir-
cRNA and drugs as follows: Uc

1, . . . ,U
c
M , Ud

1 , . . . ,U
d
M.

Multi‑kernel fusion
We can extract multiple embeddings from the intra-
type attention-based encoder and the inter-type atten-
tion-based encoder that represent the information on 
circRNA nodes and drug nodes of different types and dif-
ferent relationships. For all the embeddings of circRNA 
and drug, we used the GIP kernel similarity function to 
calculate the circRNA and drug kernel matrices in each 
layer as follows:

(18)z
�m
i = LeakyRelu






Norm�m







�

nj∈N
�m
inter (ni)

γ
�m
ij W

d
interz

d
j












.

(19)f
�m
i = q̃T

(

zci ||z
�m
i

)

,

(20)

ǫ
�m
i = softmaxm

(

f
�m
i

)

=
exp(f

�m
i )

∑

�n∈Ninter
exp(f

�n
i )

.

(21)uci =
∑

�m∈Ninter

ǫ
�m
i � z

�m
i .

(22)ICl(i, j) = exp
(

−γl�H
(l)
c (i)−H(l)

c (j)�2
)

,

(23)IDl(i, j) = exp
(

−γl�H
(l)
d (i)−H

(l)
d (j)�2

)

.
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Where ICl ∈ RNc×Nc , IDl ∈ RNd×Nd , H(l)
c (i) and H(l)

d (i) 
represent the i-th row of matrix H(l)

c  and H(l)
d  respectively; 

H
(l)
c  and H(l)

d  are the l-th element of the circRNA embedding 
matrix set Hc = {Hc

0,Z
c
1, . . . ,Z

c
t ,U

c
1, . . . ,U

c
M} and the drug 

embedding matrix set Hd = {Hd
0 ,Z

d
1 , . . . ,Z

d
t ,U

d
1 , . . . ,U

d
M} , 

respectively. γl denotes the corresponding bandwidth, 
we set γl = γ , l = 1, · · · ,K + 1 , and γ is a hyperparam-
eter, and K + 1 is the number of elements in the circRNA 
embedding matrix set Hc and the drug embedding matrix 
set Hd.

We integrated all the kernels above with multiple kernel 
fusion in order to fully utilize the information and improve 
the performance of predicting circRNA-drug associations, 
then the final kernel matrices of circRNA and drug were 
obtained as follows:

Where IC ∈ RNc×Nc , ID ∈ RNd×Nd , ωm
i = 1

K+1
 , and 

ωd
i = 1

K+1
 are the corresponding weight of circRNA ker-

nels and drug kernels, respectively.

Dual Laplacian regularized least squares model
Inspired by previous studies [34] and [35], the Dual 
Laplacian Regularized Least Squares (DLapRLS) method 
was adopted by us to predict circRNA-drug associations. 
Overfitting was avoided by adding graph regularization 
with DLapRLS. Thus, the loss function can be defined as 
follows:

Where � · �F is the Frobenius norm, αc and αT
d ∈ RNc×Nd 

are learnable matrices, φc and φd are regularization param-
eters.; Lc ∈ RNc×Nc and Ld ∈ RNd×Nd are the normalized 
Laplacian matrices, as follows:

Where Vc =
∑Nc

i=1
IC and Vd =

∑Nd
i=1

ID are diagonal 
degree matrix. Finally, the prediction F̂ for circRNA-drug 
associations from IC and ID is obtained as follows:

(24)IC =

K
∑

i=0

ωc
i ICi,

(25)ID =

K
∑

i=0

ωd
i IDi.

(26)
minJ = �ICαc + (IDαd)

T − 2Ytrain�
2
F

+ φctr
(

α
T
c Lcαc

)

+ φdtr
(

α
T
d Ldαd

)

.

(27)Lc = V−1/2
c �cV

−1/2
c ,�c = Vc − IC,

(28)Ld = V
−1/2

d �dV
−1/2

d ,�d = Vd − ID.

Training
Except for parameters αc and αd , the parameters of our 
model are updated by Adam [36]. The parameters of αc and 
αd are updated by calculating the partial derivatives for the 
parameters of DLapRLS. The specific calculation process is 
as follows: we first assume that αd is a constant matrix when 
αd is optimized. Thus, the partial derivative of the loss func-
tion Eq. (26) with respect to αc can be calculated as follows:

Let ∂J
∂αc

= 0 , then αc can be obtained as follows:

Similarly, the partial derivative of the loss function Eq. 
(26) with respect to αd can be calculated as follows:

Same as above, we let ∂J
∂αd

= 0 , and then αd can be 
obtain as follows:

αc and αd were randomly initialized at the beginning of our 
model training, and then they were calculated by Eqs. (31) 
and (33) directly in each iteration, while other parameters 
were optimized by Adam. The flowchart of our model is 
shown in Fig. 1. All experimentally verified circRNA-drug 
associations were treated as positive samples, and the 
unknown circRNA-drug associations were treated as neg-
ative samples, similar to the work of Deng et  al. [15] and 
Yang et al. [17]. Then, the same number of negative sam-
ples were randomly selected from all the the unknown 
circRNA-drug associations. Finally, the same number of 
positive and negative samples were selected for training.

Results
Implementation details and performance evaluation
The model used in this study was implemented based 
on PyTorch and PyG, and we evaluated the predictive 

(29)F̂ =
ICαc + (IDαd)

T

2
.

(30)

∂J

∂αc
= 2IC

(

ICαc + (IDαd)
T − 2Ytrain

)

+ 2φcLcαc

(31)
(IC+ φcLc)αc = IC

[

2Ytrain − α
T
d ID

T
]

,

αc = (IC+ φcLc)
−1IC

[

2Ytrain − α
T
d ID

T
]

.

(32)
∂J

∂αd

= 2ID

(

IDαd + (ICαc)
T − 2Y

T
train

)

+ 2φdLdαd .

(33)
(ID+ φdLd)αd = ID

[

2YT
train − α

T
c IC

T
]

,

αd = (ID+ φdLd)
−1ID

[

2YT
train − α

T
c IC

T
]

.
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performance of our model using 5-fold cross-validation 
(5CV). The training epochs were set to 40, the learning 
rate to 0.05 and the weight decay to 0.01. The number 
of layers for both the intra-type attention-based encoder 
and the inter-type attention-based encoder were set to 
1 and the output dimensions were both set to 16. The 
thresholds for distinguishing the head and tail nodes of 
circRNAs and drugs were set at 27 and 39, respectively. 
Multi-headed attention was set to 5, and the remain-
ing hyperparameters were set as follows: φc = φd = 1

120
 , 

γc = γd = γ = 1
75

.
During evaluation, we randomly divided all the sam-

ples into 5 folds. Four of these folds were used as a 
training set while the remaining fold was treated as a 
test set. Seven metrics are used to compare model per-
formance: AUC, AUPR, Accuracy, Precision, Recall, 
F1-Score, and Specificity. It is well-established that 
improved model performance is reflected by higher 
AUC and AUPR values. F1-Score is the average of 
accuracy and recall, while specificity measures the 
ability of the classifier to correctly identify negative 
cases.

Performance comparison with other methods under 5‑CV
The current computational methods for predicting cir-
cRNA-drug sensitivity associations are restricted. We 
found that GATECDA [15] and MNGACDA [17] are 
specifically designed for predicting circRNA-drug sen-
sitivity associations. Thus, like Ref. [15] and Ref. [17], 
we compared our model with seven state-of-the-art 
models from different domains, namely MNGACDA 
[17], GATECDA [15], MINIMDA [37], LAGCN [38], 
MMGCN [39], and GANLDA [40] . Brief descriptions 
of these models are provided below:

• MNGACDA [17] : a computational framework for 
predicting circRNA-drug sensitivity associations. 
This model uses multimodal networks to learn the 
embedded representations of circRNAs and drugs, 
then captures the internal information between 
nodes in the networks with node-level attention 
Graph Auto-Encoder.

• GATECDA [15] : a computational model based on 
Graph Attention Auto-encoder (GATE) for predict-
ing circRNA-drug sensitivity associations.

Fig. 1 The overview of our proposed method
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• MKGCN [35] : a computational model based on GCN 
and MKL for predicting microbe-drug associations.

• MINIMDA [37] : a method of predicting miRNA-
disease associations by constructing integrated simi-
larity networks and using multimodal networks to 
obtain embedding representations of miRNAs and 
diseases. These representations are then fed into a 
multilayer perceptron for prediction.

• LAGCN [38] : LAGCN integrates various associa-
tions into a heterogeneous network, learns embed-
dings of drugs and diseases by Graph Convolution 
operations, and then combines multiple layers by 
using an attention function.

• MMGCN [39] : MMGCN differs from simple multi-
source integration in that it uses a GCN encoder to 
obtain miRNA and disease features in different simi-
larity views and enhances the learned representations 
for association prediction by using multichannel 
attention that adaptively learns the importance of dif-
ferent features.

• GANLDA [40] : this method combines heterogene-
ous data of lncRNA and disease as original features 
and reduces noise by using Principal Component 
Analysis (PCA). Then the Graph Attention Network 
is used to extract information from the features. 
Finally, a multi-layer perceptron is used to predict 
lncRNA-disease associations.

The prediction performance of each method was evalu-
ated by a 5CV experiment using the same settings and 

optimal parameters recommended in their respective 
studies. From Table  1, it can be seen that DHANMKF 
achieved the highest AUC and AUPR values. This indi-
cates that DHANMKF performed better overall com-
pared to the other models.

Evaluation of parameters
The prediction performance of DHANMKF is affected 
by various parameter values. The parameters of DHAN-
MKF can be divided into four parts: the parameters in 
the inter-type attention-based encoder and the intra-
type attention-based encoder, bandwidth parameter γ in 
MKF, regularization parameters ( φc and φd ) in DLapRL, 
and degree threshold parameters ( Kc and Kd ) for distin-
guishing circRNA and drug nodes as head and tail nodes. 
Here, the process of parameter evaluation is demon-
strated using data271 as the baseline dataset.The param-
eter settings of DHANMKF on the data251 dataset have 
been put into the Supplementary file.

Optimizable parameters in the intra‑type attention‑based 
encoder and the inter‑type attention‑based encoder
 

• Learning rate and its weight decay. Learning rate and 
its weight decay are the same in the intra-type atten-
tion-based encoder and the inter-type attention-based 
encoder. Based on the research conducted by Zhao 
et al. [32], we set them as 0.05 and 0.01 respectively.

Table 1 Performance comparison based on five-fold cross-validation

Method F1‑Score Accuracy Recall Specificity Precision AUC AUPR

Dataset: data271

    DHANMKF(our) 0.8500 0.8520 0.8648 0.8636 0.8618 0.9178 0.9262
    MNGACDA [17] 0.8472 0.8424 0.8723 0.8155 0.8247 0.9139 0.9209

    GATECDA [15] 0.8224 0.8186 0.8404 0.7966 0.8054 0.8873 0.8915

    MKGCN [35] 0.8230 0.8208 0.8221 0.8193 0.8350 0.8768 0.8984

    MMGCN [39] 0.8190 0.8183 0.8231 0.8135 0.8156 0.8766 0.8664

    MINIMDA [37] 0.7988 0.7901 0.8331 0.7472 0.7684 0.8562 0.8534

    LAGCN [38] 0.7900 0.7786 0.8338 0.7233 0.7516 0.8505 0.8478

    GANLDA [40] 0.7936 0.7822 0.8384 0.7259 0.7542 0.8517 0.8468

Dataset: data251

    DHANMKF(our) 0.8597 0.8588 0.8655 0.8521 0.8552 0.9263 0.9286
    MNGACDA [17] 0.8444 0.8429 0.8528 0.8330 0.8362 0.9136 0.9211

    MKGCN [35] 0.8253 0.8247 0.8285 0.8208 0.8222 0.8941 0.9090

    MMGCN [39] 0.8065 0.8120 0.7836 0.8404 0.8308 0.8842 0.9049

    GATECDA [15] 0.8336 0.8287 0.8225 0.8354 0.8451 0.8802 0.9034

    MINIMDA [37] 0.8053 0.7950 0.8476 0.7424 0.7670 0.8575 0.8502

    LAGCN [38] 0.7880 0.7857 0.7966 0.7748 0.7796 0.8540 0.8615

    GANLDA [40] 0.7883 0.7956 0.8089 0.7823 0.7880 0.8539 0.8551
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• Dropout and number of model training epochs. We 
selected the dropout to be {0.02, 0.021, . . . , 0.03 }. 
When the value of the dropout is 0.026, the model 
performance reaches its optimum, and with an 
increase in the value of the dropout, the model per-
formance gradually declines. The loss of DHANMKF 
started converging at 40 training epochs, so the num-
ber of epochs for our model was set to 40.

• The number of attention heads. To have a more pow-
erful representation learning capacity, the multi-head 
attention mechanism was incorporated into the model. 
This parameters was tuned using 5CV. As shown in 
Fig. 2A, when the number of attention heads is equal to 
5, the model performance reaches its optimum.

• The output dimensions. We analyzed the output 
dimensions of the intra-type attention-based encoder 
and inter-type attention-based encoder, as shown 
in Fig.  2B. When the output dimension was 16, the 
AUC performance was best.

• The number of layers of the intra-type attention-based 
encoder and the inter-type attention-based encoder. 
As shown in Fig.  3A, when the number of layers of 
the intra-type attention-based encoder and the inter-
type attention-based encoder are both 1, the AUC of 
DHANMKF reaches its optimal value.

Optimizable parameters in MKF and DLapRL
 

• The bandwidth parameter γ in MKF is actually 
the 1

2σ 2 of the Gaussian kernel function, that is, 
γ = 1

2σ 2 . Parameter σ determines the smoothness 
of the Gaussian filter. The larger σ is, the smoother 

it is. Therefore, by adjusting γ , a compromise can 
be reached between over-smoothing and under-
smoothing. As shown in Fig.  3B, when γ = 1

75
 , the 

AUC of DHANMKF reaches its optimal value.
• The parameters φc and φd play a regulating role in 

DLapRL, and they can be adjusted to balance under-
fitting and overfitting. From Fig. 4A, we can see that 
the AUC of the model reaches its maximum when φc 
and φd are both 1

120
.

Optimization of head and tail node thresholds
The threshold of the head and tail nodes can adjust 
the number of head and tail nodes and the number of 
associated types, thus affecting the embedding of cor-
responding nodes. As shown in Fig. 4B, the maximum 
AUC value of the model is achieved when the thresh-
olds of the circRNA node and drug node are 27 and 39, 
respectively.

Ablation tests
Ablation experiments were conducted from two perspec-
tives: 1. Analyzing the importance of the intra-type atten-
tion-based encoder and the inter-type attention-based 
encoder; 2. Analyzing the effects of multiple relation-
ships. Therefore, we constructed three ablation experi-
ments. The first one is called DHANMKF-intra, which 
means that DHANMKF removes the embedding pro-
duced by the intra-type attention-based encoder when 
doing Multi-Kernel Fusion. The second one is called 
DHANMKF-inter, which means that DHANMKF 
removes the embedding produced by the inter-type 
attention-based encoder when doing multi-core fusion. 

Fig. 2 DHANMKF’s attention heads and output dimensions
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The third one is called DHANMKF-multi, which means 
that the model no longer divides the relationships 
between nodes into multiple categories.

Table  2 shows the comparison results of the 5CV. 
From Table 2 we can see that DHANMKF performs bet-
ter than all other models. This shows that: (1) Compared 
with DHANMKF-intra and DHANMKF-inter, DHAN-
MKF performs better, which means that the embeddings 
produced by the intra-type attention-based encoder 
and the inter-type attention-based encoder improve the 
performance of the model. (2) Compared with DHAN-
MKF-multi, DHANMKF can generate node embeddings 
corresponding to different relationships between nodes. 

In summary, there are two main reasons why DHAN-
MKF can outperform other models. The first reason is 
that our model can fully capture the complex structures 

Fig. 3 DHANMKF’s layers and γ

Fig. 4 φ1 and φ2 in DLapRL, the thresholds for the circRNA node and drug node

Table 2 Ablation experiment

Model Dataset: data271 Dataset: data251

AUC AUPR AUC AUPR

DHANMKF 0.9178 0.9262 0.9263 0.9286
DHANMKF-intra 0.9143 0.9238 0.9230 0.9245

DHANMKF-inter 0.9150 0.9228 0.9238 0.9227

DHANMKF-multi 0.9131 0.9226 0.9186 0.9212
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of the bi-typed multi-relational heterogeneous graphs. 
The second reason is that biological networks in real-
ity are sparse, so it is reasonable to divide the nodes in 
biological networks into head nodes and tail nodes for 
analysis.

Case studies
To further evaluate the predictive performance of our 
model, we selected two drugs, PAC-1 and Vorinostat, for 
case studies. Similar to Deng et al. [15] and Yang et al. [17], 
we used the circRNA-drug associations in the GDSC data-
base as the training set and those in the CTRP database 
as the testing set. For each drug, we chose the top 20 cir-
cRNAs with the highest predicted scores from our model’s 
circRNA-drug association prediction outputs for validation.

PAC-1 is the first known small molecule drug that 
directly activates procaspase-3 to caspase-3 [41]. It not 
only enhances procaspase-3 activity but also induces 
cancer cell apoptosis. Vitro experiments have shown that 
PAC-1 exhibits cytotoxicity against lymphoma, multiple 
myeloma, and many other cancer cells [42]. Currently, 
PAC-1 has been used in clinical trials for the treatment of 
various tumors, including but not limited to lymphoma, 
melanoma, solid tumors, breast cancer, and lung cancer 
[43]. As shown in Table  3, among the top 20 circRNAs 
predicted by our method to be associated with PAC-1, 16 
have been identified in CTRP.

Belinostat is a small-molecule hydroxamate-type 
inhibitor that can inhibit the activity of class I, II and IV 
histone deacetylase enzymes. It has been used to treat 
relapsed or refractory peripheral T-cell lymphoma [44]. 
Table 4 shows that 17 of the top 20 circRNAs predicted 
by our method have been confirmed in circRic.

In order to demonstrate the performance of DHAN-
MKF in predicting the potential association between 

new drugs and circRNA, we chose two drugs for ab 
initio testing, both of which had only one known cir-
cRNA-drug association. During the training phase, we 
removed the unique association between these two 
drugs and circRNA. At this point, these two drugs 
were not associated with any circRNAs and were 
treated as new drugs during training. These two drugs 
were Bortezomib and MS-275 (Entinostat). Bort-
ezomib is a novel proteasome inhibitor with potent 
chemo/radio-sensitizing effects that can overcome the 
traditional resistance of tumors when used in combi-
nation with chemotherapy [45]. In addition, existing 
clinical applications have shown that Bortezomib can 
improve clinical outcomes in the treatment of hemato-
logic malignancies [46].

MS-275, also known as Entinostat, is effective in 
human leukemia cells and lymphoma cells. It can reduce 
the level of Bcl-XL in cells, induce p21 protein expres-
sion, cause cell cycle arrest (G1 phase), and induce cell 
apoptosis [47]. In addition, when used in combination 
with other drugs, entinostat can enhance the activity of 
some anticancer drugs, including Rituximab, Gemcit-
abine, Doxorubicin, Sorafenib and Bortezomib. Cur-
rently, Entinostat is undergoing phase III clinical trials 
and its clinical data shows that it has great potential for 
treating breast cancer [48].

As shown in Table 5, 6 of the top 10 predicted circR-
NAs associated with Bortezomib have been confirmed in 
circRic, and 7 of the top 10 circRNAs related to MS-275 
have been confirmed in circRic.

Conclusions
Recent research over the past twenty years has shown 
that circRNA plays an important role in drug sensi-
tivity. Therefore, predicting the potential association 
between circRNA and drug sensitivity can be helpful 
in drug development and utilization, thus benefiting 

Table 3 Top 20 circRNAs related to PAC-1 predicted by 
DHANMKF

Ranking circRNA Evidence Ranking circiRNA Evidence

1 SPARC CTRP 11 MEF2D CTRP

2 ARID1B CTRP 12 PEA15 CTRP

3 LTBP4 Nonsignifi-
cant

13 PTMS CTRP

4 VIM CTRP 14 CRIM1 CTRP

5 POLR2A CTRP 15 TCOF1 Nonsignificant

6 SPINT2 Nonsignifi-
cant

16 ANP32B CTRP

7 CTTN CTRP 17 ENO2 Nonsignificant

8 ASPH CTRP 18 NCL CTRP

9 COL1A2 CTRP 19 COL1A1 CTRP

10 THBS1 CTRP 20 ADPGK CTRP

Table 4 Top 20 circRNAs related to Belinostat predicted by 
DHANMKF

Ranking circRNA Evidence Ranking circiRNA Evidence

1 ASPH CTRP 11 CTSD CTRP

2 CTTN CTRP 12 MEF2D CTRP

3 THBS1 CTRP 13 ILF3 CTRP

4 CRIM1 CTRP 14 FBLN1 CTRP

5 ANXA2 CTRP 15 PHF21A CTRP

6 LTBP3 CTRP 16 MYC CTRP

7 PTMS Nonsignificant 17 GSE1 CTRP

8 POLR2A Nonsignificant 18 PEA15 CTRP

9 MGAT4B CTRP 19 COL18A1 CTRP

10 KRT19 Nonsignificant 20 NOP53 CTRP
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patients. In this study, we proposed a method, based 
on intra-type attention and inter-type attention called 
DHANMKF, for discovering potential circRNA-drug 
sensitivity associations. To verify the effectiveness of 
the model, DHANMKF was compared with six state-
of-the-art methods based on 5CV on benchmark data-
sets. The results showed that DHANMKF achieved the 
best performance. In addition, to further evaluate the 
ability of the model to discover new drugs, a case study 
was conducted and the model’s prediction results were 
validated using an independent database. The valida-
tion results clearly demonstrate that DHANMKF is an 
effective tool for predicting new circRNA-drug sensi-
tivity associations.

The results show that our model outperforms the 
baseline models. We believe the main reasons are the 
following: (1) We classify the nodes into head and tail 
nodes, which in turn defines the types of edges connect-
ing these two types of nodes. This allows our model to 
extract node embeddings from the circRNA-drug hetero-
geneous graph based on different types of edges. (2) The 
intra-type attention-based encoder can efficiently aggre-
gate information from nodes of the same type. (3) The 
inter-type attention-based encoder adequately extracts 
node representations from different types of nodes . (4) 
The MKL method fuses the multi-relational heterogene-
ous graph information captured by the two encoders in 
order to improve the overall performance of the model. 
In future studies, we plan to integrate more biomedical 
data, in order to generate more comprehensive circRNA 
and drug kernels and further improve model perfor-
mance. Currently, there are few studies that use computa-
tional methods to predict potential associations between 
circRNA and drug sensitivity, so further investigation in 
this field is merited.
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