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Abstract 

Background Copy number alteration (CNA) is one of the major genomic variations that frequently occur in cancers, 
and accurate inference of CNAs is essential for unmasking intra-tumor heterogeneity (ITH) and tumor evolution-
ary history. Single-cell DNA sequencing (scDNA-seq) makes it convenient to profile CNAs at single-cell resolution, 
and thus aids in better characterization of ITH. Despite that several computational methods have been proposed 
to decipher single-cell CNAs, their performance is limited in either breakpoint detection or copy number estimation 
due to the high dimensionality and noisy nature of read counts data.

Results By treating breakpoint detection as a process to segment high dimensional read count sequence, we 
develop a novel method called DeepCNA for cross-cell segmentation of read count sequence and per-cell inference 
of CNAs. To cope with the difficulty of segmentation, an autoencoder (AE) network is employed in DeepCNA to pro-
ject the original data into a low-dimensional space, where the breakpoints can be efficiently detected along each 
latent dimension and further merged to obtain the final breakpoints. Unlike the existing methods that manually 
calculate certain statistics of read counts to find breakpoints, the AE model makes it convenient to automatically learn 
the representations. Based on the inferred breakpoints, we employ a mixture model to predict copy numbers of seg-
ments for each cell, and leverage expectation–maximization algorithm to efficiently estimate cell ploidy by explor-
ing the most abundant copy number state. Benchmarking results on simulated and real data demonstrate our 
method is able to accurately infer breakpoints as well as absolute copy numbers and surpasses the existing methods 
under different test conditions. DeepCNA can be accessed at: https:// github. com/ zhyu- lab/ deepc na.

Conclusions Profiling single-cell CNAs based on deep learning is becoming a new paradigm of scDNA-seq data 
analysis, and DeepCNA is an enhancement to the current arsenal of computational methods for investigating cancer 
genomics.
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Background
Cancer genomes are often featured with extensive aber-
rations such as copy number alterations (CNA) and point 
mutations [1]. Accurate detection of the mutation pro-
files is essential for deciphering underlying intra-tumor 
heterogeneity (ITH) and elucidating tumor evolution-
ary history [2, 3]. Specifically, characterizing CNAs from 
high-throughput sequencing data has emerged as an 
important field of cancer related studies.
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Conventional bulk sequencing has spawned a num-
ber of computational methods for CNA calling based on 
read counts data [4–6]. A bulk sample contains the DNA 
of thousands or even millions of cells, therefore inferred 
CNAs are the weighted average of the mutational pro-
files of present tumor clones. To understand the clonal 
structure, one needs to deconvolve the mixed profile into 
distinct clones and simultaneously infer their respective 
mutations. A main challenge of this deconvolution comes 
from the ambiguity that the number of tumor clones, 
their relative sizes, their mutational states and their 
genealogy are all undetermined [7]. Nowadays single-
cell DNA sequencing (scDNA-seq) is becoming a pow-
erful means for profiling single-cell mutations [8], and 
makes it convenient to elucidate ITH based on single-cell 
CNAs. scDNA-seq uses whole-genome amplification 
(WGA) process to generate sufficient DNA material for 
sequencing from a single cell. The generated nucleotide 
sequences from WGA are often confounded by ampli-
fication bias and errors [9, 10], which results in over-
dispersed read counts and makes CNA calling methods 
originally designed for bulk data less effective to noisy 
scDNA-seq data.

To date, a number of computational methods [11–19] 
have been specifically developed to infer single-cell 
CNAs. These methods adopt a general pipeline that 
mainly consists of three steps: 1) divide the genome into 
bins and count reads within each bin (the size of bins can 
be fixed or variable); 2) preprocess read counts to cor-
rect bias caused by GC-content and mappability, remove 
outlier bins having extremely high or low read counts, 
and exclude cells that show significantly uneven cover-
age or are low in sequencing coverage; 3) identify break-
points that partition the genome into segments (any two 
adjacent segments have different copy numbers), and 
call absolute copy number for each segment [20]. Most 
of the approaches require normal cells or a composite 
normal sample as negative control. For instance, SCOPE 
[13] uses Gini coefficient to identify normal cells and 
remove outlier cells, then jointly segments the cells using 
a generalized likelihood ratio test as well as a modified 
Bayes information criterion (BIC). SCNV [12] uses nor-
mal cells to construct a composite control, and detects 
CNAs bases on a bin-free segmentation algorithm. 
Another interesting method SCICoNE [14] is developed 
to detect CNAs based on reconstruction of a CNA tree. 
By using SCOPE to preprocess the read counts, SCYN 
[15] employs a dynamic programming algorithm to seg-
ment the genomes. SeCNV [18] is developed to estimate 
copy number profiles from large scDNA-seq dataset, it 
needs to find normal cells from input data and uses them 
as the negative control. A recently proposed method 
SCONCE [17] uses hidden Markov model (HMM) to 

call copy number segments for tumor cells, and uses 
normal cells as controls to attenuate the effects of read 
counts fluctuation. Aforementioned advanced methods 
generally require normal cells to normalize read counts 
for better detection of CNAs, and how to accurately infer 
single-cell CNAs without negative controls is a hard chal-
lenge. To address this problem, rcCAE [19] employs a 
convolutional autoencoder to distill copy number infor-
mation from noisy read counts without normal cells as 
the controls, it can jointly infer tumor clones and single-
cell CNAs. However, rcCAE tends to over-segment the 
genome because it detects breakpoints under a cell-by-
cell manner, which may complicate downstream phylo-
genetic analysis. Cross-cell segmentation tends to deliver 
more accurate predictions of the breakpoints since break-
points are shared among single cells and could be treated 
as a process that identifies consecutive bins having highly 
similar read counts across cells. Considering current 
scDNA-seq data could contain thousands of cells, seg-
mentation over such a high-dimensional space may suffer 
from high computation intensity and degraded accuracy, 
therefore methods for this purpose is still highly required 
especially on large datasets.

Deep learning models have shown excellent performance 
in learning latent representations of high-dimensional sin-
gle-cell data. For instance, variational autoencoder models 
enable more accurate clustering of single cells over a latent 
space [21, 22]. The encoding–decoding process could be 
treated as a distillation process that fetches effective latent 
representations from noisy single-cell data by reconstruct-
ing the original data. For cross-cell segmentation of the 
read count sequence, each genomic bin could be encoded 
into a latent space using an autoencoder model, thus 
breakpoints could be found by efficient segmentation over 
the learned low-dimensional sequential data.

In this paper, we introduce a novel computational 
method called DeepCNA for inferring single-cell 
CNAs (as shown in Fig.  1). In DeepCNA, we use an 
autoencoder to learn low-dimensional latent repre-
sentation of each genomic bin, then apply the circu-
lar binary segmentation (CBS) algorithm [23] on each 
dimension of the latent data to find the breakpoints, 
and finally employ a mixture model to estimate copy 
numbers for each cell. We adopt several data filtering 
and normalization approaches to improve the quality 
of read counts data. By minimizing reconstruction loss 
between the recovered and original data, the autoen-
coder is encouraged to deliver effective representa-
tions of genomic bins. Given the inferred segments by 
the CBS algorithm, we formulate observed data with a 
mixture model where copy number state of each seg-
ment acts as a latent variable and is efficiently opti-
mized by using the expectation–maximization (EM) 



Page 3 of 15Liu et al. BMC Genomics           (2024) 25:25  

algorithm. Unlike previous methods in this field, 
DeepCNA performs cross-cell segmentation through 
encoding each genomic bin into a low-dimensional 
space, and thus makes it convenient to directly apply 
conventional segmentation approaches on the data. 
We comprehensively evaluate DeepCNA on both 
simulated and real datasets to show its effectiveness 

in detecting breakpoints and deciphering single-cell 
CNAs from complex scDNA-seq data.

Materials and methods
Single‑cell DNA sequencing datasets
Simulated datasets
To fully assess the effectiveness of DeepCNA, we gener-
ate various datasets by emulating different cell ploidy. 

Fig. 1 The workflow of DeepCNA. To improve read counts obtained from scDNA-seq data, DeepCNA takes several data correction 
and normalization procedures including correcting GC-content and mappability bias, eliminating outlier bins with extremely high or low read 
counts, and removing outlier cells with low sequencing quality. Given the normalized read counts, DeepCNA employs an autoencoder network 
to learn low-dimensional latent representation of each genomic bin, such that the breakpoints can be accurately detected along each latent 
dimension and merged together to form the final breakpoints. Finally, a mixture model is adopted to estimate copy numbers of the inferred 
segments for each cell
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The simulation pipeline is implemented by following our 
previous study [19]. Specifically, the simulation consists 
of three steps: 1) construct a clonal tree following the 
approach adopted in [24]; 2) generate genome sequence 
for each cell based on simulated CNAs; and 3) produce 
reads of each cell given biological and technological 
parameters. When generating the clonal tree, we assume 
the ancestral cell state is homogeneous with the defined 
ploidy and then all clones evolve from that state. Nodes 
of the clonal tree represent tumor clones and edges are 
labeled with CNAs. The size of simulated CNAs ranges 
between 3 and 20 Mb, the number of clones is set to 4, 
and the number of cells is set to 100. Given the CNAs of 
each cell, SCSsim [25] tool is employed to generate reads 
under sequencing coverage of 0.02. Read alignments are 
obtained using BWA [26] tool under default parameters, 
and further processed with SAMtools [27] to generate 
BAM files. We generate diploid, triploid and tetraploid 
datasets to examine the ability of DeepCNA in distin-
guishing between different tumor ploidy. For each tumor 
ploidy, the simulation is repeated 10 times, resulting in 30 
datasets for benchmarking.

Real datasets
Two real datasets are employed in this study. The first data-
set consists of 100 single cells from a breast ductal carci-
noma patient [28], and sequencing data can be downloaded 
from NCBI SRA under accession number SRA018951. 
The second dataset is a 10X Genomics dataset contain-
ing 2053 cells from a triple negative ductal carcinoma [16], 
and sequencing data are freely available at https:// suppo rt. 
10xge nomics. com/ single- cell- dna/ datas ets/1. 0.0/ breast_ 
tissue_ E_ 2k.

Fetch and preprocess read counts
Read alignments of cells could be stored in a merged 
BAM file or per-cell BAM files. When a merged BAM 
file as used in 10X genomics is provided, we use bar-
codes of the cells to fetch read alignments of each cell 
and calculate read counts. When per-cell BAM files are 
available, read counts of each cell are obtained from the 
corresponding BAM file. The read counts are measured 
in consecutive equal-sized bins along the genome. We 
have implemented a tool that uses the APIs of BamTools 
[29] software to fetch read alignment information from 
the BAM files. To improve data quality, we also calcu-
late GC-content and mappability of each bin from ref-
erence sequence, which are utilized to exclude outlier 
bins and correct read counts bias. Bins with < 10% GC 
percent, > 90% GC percent, or > 0.9 mappability score are 
marked as outliers [30] and excluded from downstream 
analysis. We then perform library size normalization 
for each cell by dividing read counts with the mean read 

count, which makes read counts comparable between 
cells. To further filter “bad” bins that have extremely high 
or low read counts, we exclude bins whose mean read 
counts are in the lower or upper 1% quantile. Moreover, 
cells with extensively fluctuated read counts should be 
eliminated as these cells may act as confounding outli-
ers. Specifically, Gini coefficient is calculated for each cell 
based on the read counts, and cells that have ≥ 0.3 Gini 
coefficient are excluded. Finally, we employ a median 
normalization approach [5] to correct read counts bias 
caused by mappability and GC-content for each cell:

where rk is the read count of the k-th bin, m is the median 
read count of all bins, mk is the median read count of 
bins that show same GC-content (mappability) as the k-
th bin, and r̂k is the corrected read count. We then cal-
culate log2 read counts (LRC) for downstream analysis. 
The resulted LRC data of N cells in M bins are stored in a 
N × M matrix X.

Learn low‑dimensional representations of genomic bins
Each genomic bin is represented by a feature vector y 
(one col of X) with size of N, and cross-cell segmenta-
tion of the LRC data could be treated as a process that 
identifies consecutive bins having highly similar features. 
As current scDNA-seq data frequently contain hundreds 
even thousands of cells, measuring similarity between 
bins over a high-dimensional space is challenging and 
requires appropriate selection of the distance metric. To 
obviate this inconvenience, we project the feature vector 
of each bin into a d-dimensional space where segmen-
tation of the bins could be efficiently conducted along 
each dimension and optimize the latent representation 
by reconstructing the original features. We use a func-
tion α to project y into a d-dimensional latent representa-
tion z, i.e. z = α y  , and employ a function β to recover 
y from z, i.e. ŷ = β(z) . Specifically, the function α and 
β are implemented as the encoder and decoder of an 
autoencoder network, respectively. The encoder consists 
of three fully-connected layers each with 256, 128 and 64 
neurons, while the decoder is composed of the mirrored 
structure. The network is trained by minimizing the fol-
lowing reconstruction loss:

we use gradient decent algorithm to update the network 
weights by minimizing the mean loss of a batch of sam-
ples in each iteration. After the model converges, we get a 
d-dimensional latent representation of each genomic bin 

(1)r̂k = rk ·
m

mk

(2)L(y, ŷ,α,β) = 1

2N
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by taking the LRC data of the bin as input of the encoder 
network, and latent features of M bins are denoted by a 
d × M matrix Z.

Perform segmentation on the learned low‑dimensional 
sequential data
Based on the learned representation Z, we employ the 
CBS algorithm [23] to segment each row of Z, and merge 
the breakpoints from all rows to get the final breakpoints. 
To minimize the number of false negative calls for the 
breakpoints, we set p-value to 0.1 in the CBS algorithm. 
This may tend to result in over-segmented results contain-
ing false positive calls of the breakpoints, while the results 
could be recalibrated by merging consecutive segments 
that have same copy number. We use K to denote the num-
ber of inferred segments, and Lk to represent the number 
of bins contained in the k-th segment.

Estimate copy numbers for each cell
We estimate absolute copy numbers of the segments for 
each cell by maximizing the likelihood of LRC data. With-
out loss of generality, we use x = (x1, x2, ..., xK ) to denote 
LRC data of a cell, where xk indicates LRC data of the bins 
in the k-th segment. Suppose there are S copy number 
states, the probability density of LRC in the k-th segment is 
formulated with a mixture model:

where we assume the segments are independent of each 
other, θ denotes model parameters, s is a copy number 
state, zk denotes copy number state of the k-th segment, 
πs is the proportion of the s-th component in the mixture 
model, and ωs represents parameters associated with the 
s-th component. The conditional likelihood f (xk |ωs ) can 
be formulated as 

∏Lk
i=1 f (xki|ωs ) , here xki is LRC of the i-

th bin of the k-th segment. For computational conveni-
ence, we assume xki follows a normal distribution:

with σ being standard deviation and µs being the mean 
value. Considering the mean value of LRC in copy-neu-
tral regions may deviate from 0 due to aneuploidy, we 
define µs by introducing a parameter o that quantifies 
baseline shift of LRC as adopted in [19]:

where cs is the copy number under state s . The complete 
likelihood of all segments is then computed as:

(3)

f (xk |θ ) =
S

∑

s=1

πsf (xk |zk = s, θ ) =
S

∑

s=1

πsf (xk |ωs )

(4)

f (xki|ωs ) = f (xki|µs, σ ) = 1√
2πσ

exp(− (xki − µs)
2

2σ 2
)

(5)µs = log2(0.5cs)+ o

To infer the hidden states z = (z1, z2, ..., zK ) and model 
parameters, we employ EM algorithm to train the 
model. During the n-th iteration of the EM algorithm, 
the posterior probability of zK  is measured as:

where θ(n−1) denotes the estimated parameters in the pre-
vious iteration. We then maximize the following objec-
tive function to update model parameters θ = (o, σ , π):

By solving the optimization problem, we get follow-
ing rule to update parameter o:

and then update σ with

We update parameter π under the constraint 
S
∑

s=1

πs = 1:

By initializing σ to the standard deviation of LRC 
data and performing a linear search of initial values of 
o, we iteratively update the model parameters until the 
algorithm converges and the optimal parameters are 
denoted by θ∗ . Copy number of each segment is then 
inferred from the state that has the largest posterior 
probability:

As the number of copy number states considered in 
the mixture model is limited, copy numbers of highly 
amplified segments are underestimated. To address this 
issue, we use the post-processing approach adopted in 
rcCAE [19] to recalculate copy number of each seg-
ment given the learned model parameters and mean of 
LRC data of the segment.

(6)

log(f (x|θ )) = log(

K
∏
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f (xk |θ )) =
K
∑
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log(f (xk |θ ))
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∣
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∑
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γ
(n)
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p(zk = s|xk ,θ∗)



Page 6 of 15Liu et al. BMC Genomics           (2024) 25:25 

Performance evaluation
We compare DeepCNA to six advanced methods includ-
ing SCOPE [13], SCYN [15], SCICoNE [14], SeCNV [18], 
SCONCE [17] and rcCAE [19] on the simulated datasets. 
CHISEL [16] is excluded from performance evaluation 
since it additionally exploits allele frequency to call allele-
specific CNAs, and phasing based on single nucleotide 
variations is critically challenging due to low coverage 
of scDNA-seq data. As data preprocessing strategy var-
ies across different methods and size of the resulted data 
may be inconsistent, we extract common cells and com-
mon bins from the results of all methods for performance 
evaluation. To evaluate the accuracy of breakpoint detec-
tion, we adopt two performance metrics that are similar 
to the ones adopted in SCONCE: 1) on each simulated 
dataset, we fetch the set of ground truth breakpoints, and 
measure the distance to the nearest predicted breakpoint 
for each real breakpoint, then sum the distances across 
the genome to indicate the breakpoint detection accu-
racy; 2) as inferring large number of false positive break-
points tends to decrease the breakpoint distance, we 
calculate w as the ratio between the number of inferred 
breakpoints and the number of real breakpoints, such 
that lower breakpoint distance and w closer to 1 indi-
cate higher detection accuracy. To evaluate copy number 
estimation performance of each method, we calculate 
mean of absolute differences (MAD) between real copy 
number and estimated copy number for each cell across 
the common bins [17]. To assess ploidy estimation per-
formance, average copy number (ACN) is calculated for 
each cell based on the inferred copy number profiles and 
compared to the ground truth [19]. We follow same strat-
egy as used in rcCAE to run each method, and specific 

parameters used to run each method are given in Supple-
mentary Table 1 (Additional file 1).

Results
Evaluation of DeepCNA on simulated datasets
We run DeepCNA on the simulated datasets to examine 
its ability of detecting breakpoints and single-cell CNAs. 
The read counts data are obtained from every 200 kb bins 
(∼3450 bins), and ∼2955 bins are remained after applying 
the preprocessing steps. For model training, we set the 
latent dimension d to 1, and train the autoencoder net-
work 500 epochs with learning rate of 0.0001 and batch 
size of 256. The maximum copy number is set to 10 when 
calling single-cell CNAs. The following sections give the 
detailed performance evaluation results.

DeepCNA shows better performance in inferring breakpoints
DeepCNA uses an autoencoder network to project the 
high-dimensional read counts into a low-dimensional 
latent sequence, then employs the CBS algorithm to seg-
ment the chromosomes into distinct regions. An example 
of inferred latent representation and breakpoints on the 
simulated datasets is depicted in Supplementary Fig. S1 
(Additional file  1). It is observed that breakpoints asso-
ciated with some small CNAs (located on chromosome 
2) are also effectively characterized in the latent space 
and thus accurately detected by the CBS algorithm. The 
autoencoder network is trained to automatically learn 
the representation of read count sequence, obviating the 
need for design and calculation of specific statistics for 
each bin as adopted in the existing methods. This distinc-
tive feature makes DeepCNA well identify the changes 
along the read count sequence.

Fig. 2 Breakpoint inference accuracy of the investigated methods on simulated datasets. Two performance metrics are calculated for evaluation: 
1) we measure the distance to the nearest predicted breakpoint for each real breakpoint, then sum the distances for all real breakpoints; 2) w 
is defined as the ratio between the number of inferred breakpoints and the number of real breakpoints. A lower breakpoint distance coupled 
with w closer to 1 indicate higher inference accuracy. Performance of each method on simulated diploid (Simulation A), triploid (Simulation B) 
and tetraploid (Simulation C) datasets are evaluated
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We make comparison between DeepCNA and other 
methods in inferring breakpoints, and the results are 
shown in Fig. 2 (lower breakpoint distance and w closer 
to 1 indicate better results). On datasets from Simula-
tion A, SCOPE and SCYN exhibit higher breakpoint 
distance than other methods, and the mean distances 
are 288.2 and 391.5, respectively. They may fail to find 
breakpoints that are only present in small proportion of 
cells. In addition, SCONCE shows the lowest breakpoint 
distance but yields many false positives (the mean of w 
is 8.6). Similarly, rcCAE achieves good performance (the 
mean distance is 1.5) in finding true breakpoints, never-
theless it produces high proportion of false positives (the 
mean of w is 3.2). As SCONCE and rcCAE detect break-
points under a cell-by-cell manner, they are sensitive to 
read count fluctuation occurring in single cells, and thus 
tend to over-segment the genome. Giving large number 
of false positive breakpoints complicates downstream 
ITH analysis such as inferring tumor subclones and phy-
logeny. Compared to the existing methods, DeepCNA 
achieves a good tradeoff between precision and recall, it 

yields the mean breakpoint distance of 3.2 and mean w 
of 1.0, which suggests DeepCNA successfully disentan-
gles real breakpoints from technically confounded fac-
tors, and effectively represents the read count sequences 
over the low-dimensional latent space. On datasets from 
Simulation B and Simulation C, we find each method 
shows similar performance as observed on Simulation A 
datasets, and DeepCNA generally surpasses other meth-
ods in either finding true breakpoints or suppressing false 
positives.

DeepCNA achieves competitive performance in estimating 
single‑cell copy numbers
Given the inferred breakpoints, we employ a mixture 
model to estimate copy numbers of segments for each 
cell. An example of copy number estimation results on 
the simulated datasets is shown in Fig.  3, which shows 
DeepCNA correctly identifies cell ploidy and precisely 
predicts copy number of each segment. As our method 
explicitly formulates the relationship between LRC and 
cell ploidy as well as copy number, it is able to find the 

Fig. 3 An illustration of copy number estimation results on simulated datasets. The top four sub-figures depict LRC data of four tumor clones (copy 
number deletion, neutral and amplification are marked by green, blue and red, respectively), and the bottom subfigure shows the inferred absolute 
copy numbers of each tumor clone
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ground truth ploidy through a line search for the param-
eter o as shown in Supplementary Fig. S2.

We evaluate the copy number and cell ploidy estima-
tion accuracy of all methods by calculating the MAD as 
well as difference between the ground truth and inferred 
ACNs (∆ACN). Lower MAD and ∆ACN closer to 0 
imply higher estimation accuracy. The copy number and 
cell ploidy estimation results are shown in Fig.  4 and 
Supplementary Fig. S3, respectively. On diploid datasets 
(Simulation A), SCOPE, SCYN, SeCNV and SCONCE 
exhibit good performance with mean MADs of 0.06, 0.03, 
0.02 and 0.09 respectively, while SCICoNE is less accu-
rate in calling absolute copy numbers (mean MAD is 
0.72) because it tends to overestimate cell ploidy (median 
∆ACN is -0.99). rcCAE accurately estimates copy num-
bers for most of the cells, but overestimates cell ploidy 
for 65 cells of which 39 cells are recognized to be tetra-
ploid and 21 cells are predicted to be pentaploid, there-
fore it produces mean MAD of 0.16. By comparison, our 
method presents high accuracy in identifying both cell 
ploidy (median ∆ACN is -0.002) and absolute copy num-
bers across different datasets, thus reaches the lowest 
mean MAD of 0.01. On triploid datasets (Simulation B), 
the mean MADs of SCOPE, SCYN, SCICoNE, SeCNV, 
SCONCE, rcCAE and DeepCNA are 0.59, 0.43, 0.23, 
0.15, 0.81, 0.20 and 0.02, respectively. The lower accuracy 
of existing methods results from their less effectiveness 
in estimating cell ploidy. For instance, given 915 com-
mon cells covered by the results of all methods, SCOPE 
erroneously predicts 360 cells as diploid, SCYN tends 
to underestimate cell ploidy and erroneously identifies 
378 cells as diploid, SCICoNE marks all normal cells as 
triploid, and SeCNV incorrectly labels 107 triploid cells 
either diploidy or tetraploidy. Despite that rcCAE explic-
itly takes cell ploidy into consideration in the copy num-
ber computation model, it still overestimates ploidy of 74 

normal cells. On tetraploid datasets (Simulation C), our 
method also gains better or comparable performance 
compared to existing methods. It achieves 0.02 mean 
MAD and accurately predicts cell ploidy on all datasets. 
SCOPE, SCYN, SCICoNE, SeCNV and SCONCE tend 
to underestimate cell ploidy, while rcCAE overestimates 
ploidy of 54 cells. These results demonstrate DeepCNA 
is robust to the change of cell ploidy and read count 
fluctuation.

DeepCNA performs robustly against the change 
of hyperparameters
There are several hyperparameters, such as bin size and 
latent dimension, that may affect the detection results 
of DeepCNA. To fully investigate DeepCNA’ robustness 
against the changes of these hyperparameters, we simu-
late various datasets for performance evaluation. First, 
we compare the results on Simulation A datasets by using 
different bin sizes in {100  kb, 200  kb, 500  kb, 1000  kb}. 
The results in Supplementary Fig. S4 suggest DeepCNA 
performs robustly in identifying cell ploidy and copy 
numbers of segments. Increasing the bin size tends to 
yield less breakpoints since more real breakpoints will 
locate inside the bins and thus are undetectable. Second, 
to assess the effects of latent dimension d on breakpoint 
inference, we compare the breakpoint distance and met-
ric w under different values of d, and the results in Sup-
plementary Fig. S5 imply the larger the value of d, the 
smaller the breakpoint distance and the larger the w. 
This is in concordance with the intuitive conviction that 
larger latent dimension will result in more breakpoints 
and thus probably decrease the breakpoint distance. In 
addition, Supplementary Fig. S6 shows example seg-
mentation results on three simulated datasets when the 
latent dimension is set to 2. The results suggest the first 
dimension well captures most of the breakpoints, while 

Fig. 4 Copy number estimation accuracy of the investigated methods on simulated datasets. We first extract common bins covered by the results 
of all methods, then calculate mean of absolute differences (MAD) between real copy number and estimated copy number for each cell 
across the common bins. Performance of each method on simulated diploid (Simulation A), triploid (Simulation B) and tetraploid (Simulation C) 
datasets are evaluated
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sometimes underrepresents the breakpoints that may 
be shared by only a few cells, and these breakpoints 
are detectable from the second dimension. It is also 
observed that some breakpoints can be simultaneously 
detected from both dimensions due to the fact that we 
do not introduce any constraints when learning the dif-
ferent latent dimensions with the autoencoder network. 
Our results indicate setting latent dimension to 1 or 2 is 
appropriate to capture local changes of LRC data, accu-
rately detect breakpoints and simultaneously suppress 
false positives.

DeepCNA shows good robustness against the change of data 
size and heterogeneity
We also assess DeepCNA’ ability of coping with varying 
data size and heterogeneity. To check if DeepCNA gener-
alizes well on different-sized datasets, we generate simu-
lation datasets by sampling the number of cells from {100, 
200, 300} and fixing the number of clones to 8. The evalu-
ation results (Supplementary Fig. S7) suggest our method 
scales well to larger datasets and performs consistently 
well in identifying cell ploidy as well as copy numbers. In 
addition, runtime performance analysis (Supplementary 
Table  2) shows our method is more efficient than other 
methods and requires less than 130 s to process a dataset 
with 300 cells. To further examine the effect of data het-
erogeneity, we compare detection results of DeepCNA on 
simulated datasets with different numbers of clones. Spe-
cifically, the number of clones changes from 4 to 8, and 
the number of cells is fixed to 100. The results (Supple-
mentary Fig. S8) show increasing the number of clones 
does not appreciably affect the performance of Deep-
CNA, suggesting our method can accurately disentangle 
copy number segments form noisy read counts regardless 
of the data heterogeneity. These results demonstrate the 
applicability of DeepCNA to complex datasets.

We proceed to check if our method can still accurately 
estimate copy number segments without normal cells 
mixed in the input data. To achieve this, we exclude nor-
mal cells from the simulated datasets (Simulations A-C), 
and run DeepCNA under same parameter configurations 
as used on full datasets. The results in Supplementary 
Fig. S9 demonstrate our method can still yield accurate 
results, which suggests DeepCNA is applicable to data-
sets containing only tumor cells.

Evaluation of DeepCNA on a breast cancer dataset
To further verify the effectiveness of DeepCNA, we apply 
it to a triple negative ductal carcinoma dataset (denoted 
as T10) consisting of 100 cells [28]. Sequencing data of 
the cells are obtained from NCBI SRA (accession num-
ber SRA018951), and further processed using BMA to 

generate read alignments. A previous study [28] has ana-
lyzed copy number profiles of the cells and identified 4 
subpopulations including D + P, H, AA and AB. The copy 
number profiles indicate D + P comprises mainly diploid 
cells, H is a tumor clone that undergoes hemizygous dele-
tions on multiple chromosomes, AA and AB are aneu-
ploid clones showing copy number amplifications across 
the chromosomes.

When running DeepCNA on this dataset, we use bin 
size of 500  kb to calculate the read counts, and finally 
obtain an LRC matrix with size of 100 × 5120 after apply-
ing the preprocessing steps. For training the autoen-
coder network, the latent dimension, number of epochs, 
batch size and learning rate are set to 2, 500, 256 and 
0.0001, respectively. We randomly select a cell from each 
subpopulation to compare the copy number profiling 
results of DeepCNA as shown in Fig. 5. As expected, cell 
“SRR053611” from the D + P subpopulation is a diploid 
cell that exhibits few CNAs across the genome, and cell 
“SRR053678” from the H clone has extensive hemizygous 
deletions on the chromosomes such as 1p, 4q, 5q, 13q 
and 14. Instead, cells “SRR054594” and “SRR054634” are 
mainly characterized with copy number gains on most of 
the chromosomes. The ploidy of the cells is similar to the 
previously reported results [19, 28].

We also run SCOPE, SCYN, SCICoNE and rcCAE 
on this dataset by setting bin size to 500  kb. SeCNV 
and SCONCE are excluded from evaluation as SeCNV 
throws runtime errors when calling CNAs, and SCONCE 
needs to be manually provided with normal cells to create 
negative control but we have no prior knowledge about 
which cells are normal cells. As the ground truth break-
points and copy number profiles are not available for the 
T10 dataset, we just perform a qualitative analysis of the 
results inferred by different methods. In general, Deep-
CNA yields results that better explains the observed data 
(Supplementary Figs. S10-13), and SCICoNE tends to 
overestimate the cell ploidy as observed on the simulated 
datasets. For instance, a copy number amplification on 
chromosome 7 of cell “SRR053675” is detected by Deep-
CNA (Supplementary Fig. S10), while SCOPE, SCYN 
and rcCAE predict it as normal copy number, and their 
predictions obviously deviate from the observed distri-
bution of depth or LRC data. In addition, our method 
detects a small copy number segment on chromosome 7 
of cell “SRR054618” that is missed by SCOPE, SCICoNE 
and rcCAE (Supplementary Fig. S11). Similarly, exist-
ing methods except SCYN underestimate the number 
of breakpoints on chromosome 2q of cell “SRR089402” 
(Supplementary Fig. S12), thus yield biased predictions of 
the copy numbers.
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Evaluation of DeepCNA on a 10X Genomics dataset
We also evaluate DeepCNA on a large dataset including 
1446 cells from a breast tumor tissue [16], and sequenc-
ing data of this 10X Genomics dataset (denoted as E) can 
be freely downloaded from https:// suppo rt. 10xge nomics. 
com/ singl ecell- dna/ datas ets/1. 0.0/ breast_ tissue_ E_ 2k. 
Sequencing coverage of each cell varies between 0.02X 
and 0.05X. The original BAM file contains read alignment 
results of 2053 cells, of which 607 cells are identified to be 
low sequencing coverage, doublets or with S-phase of the 
cell cycle [16], and therefore eliminated from CNA analy-
sis. For the remaining 1446 cells, CHISEL algorithm [16] 
has found one diploid subpopulation comprised of 388 
cells and also 5 tumor clones (labeled as I-V), of which 
each contains 168, 58, 20, 782 and 30 cells, respectively. 
We use DeepCNA to call breakpoints as well as estimate 
single-cell copy numbers from this dataset, and check 
if it could give reliable detection results. As the ground 
truth breakpoints and copy numbers are not available, 
we therefore use the results of CHISEL as the baseline 
to evaluate different methods. This is appropriate since 
the copy number profiles inferred by CHISEL are further 

verified by allele frequency data. CHISEL gives a CNA 
matrix with size of 1446 × 570 obtained from 5 Mb con-
secutive bins, and we find 104 breakpoints by scanning 
the columns of the matrix. For performance comparison, 
the existing methods except rcCAE are unable to process 
the merged BAM file, therefore we only obtain the results 
of rcCAE on this dataset.

Read counts in 500 kb bins are fetched from the BAM 
file and further preprocessed to improve the data quality, 
which results in an LRC matrix with size of 1446 × 5139. 
By setting the latent dimension d to 2, we train the 
autoencoder network 500 epochs with learning rate 
of 0.0001 and batch size of 256. We randomly select a 
cell from each subpopulation inferred by CHISEL and 
compare the breakpoints and copy number estimation 
results of DeepCNA as shown in Fig.  6. There are sig-
nificant differences between copy number profiles of dis-
tinct cell subpopulations. Cell with barcode “TAA GAG 
ATC AAG AAAC” is a diploid cell that presents neutral 
copy number across the genome. The distinctive feature 
of cell “ATT GGA CTC CCA AAGT” from tumor clone 
I is that it has copy number of 3 on chromosomes 2–3 

Fig. 5 Copy number estimation results of DeepCNA on the breast cancer dataset. A previous study [28] has clustered the cells into 4 
subpopulations, and we select four cells for comparison including “SRR053611” from D + P subpopulation, “SRR053678” from H clone, “SRR054594” 
from AA clone, and “SRR054594” from AB clone. Cell “SRR053611” is a diploid cell, and cell “SRR053678” shows hemizygous deletions on multiple 
chromosomes. Instead, cells “SRR054594” and “SRR054634” have copy number amplifications on most of the chromosomes

https://support.10xgenomics.com/singlecell-dna/datasets/1.0.0/breast_tissue_E_2k
https://support.10xgenomics.com/singlecell-dna/datasets/1.0.0/breast_tissue_E_2k
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while copy number of 4 on chromosome 4. By compari-
son, the corresponding copy numbers of cell “CTG GTC 
TGT TGC GGCT” from clone II are 4 and 3, respectively. 
Cell “GGC CGA TGT AAC CGAG” from clone III has very 
similar copy number profiles to the cell “CTG GTC TGT 
TGC GGCT” on most of the genome regions, but shows 
different copy number on chromosome 9q. Compared to 
the cell “GGC CGA TGT AAC CGAG”, the main difference 
of cell “TGA CTT TGT TTC CATT” from clone IV is that 
its copy number on chromosome 2 is 3, and cell “TGG 
CTG GGT TAC GCGC” from clone V shows copy number 
of 3 on chromosomes 2–3. Taken together, these results 
imply our method successfully deciphers the copy num-
ber profiles of underlying tumor clones.

To check if our method gains advantage over rcCAE 
in inferring breakpoints and estimating copy numbers, 
we calculate three performance metrics including break-
point distance, w and MAD by treating CHISEL results as 

the ground truth. Common bins covered by both meth-
ods are used for evaluation. rcCAE infers 450 breakpoints 
of which most are false positive calls and yields break-
point distance of 462 and w of 4.3. By comparison, Deep-
CNA infers 103 breakpoints, it shows larger breakpoint 
distance of 1270 while a lower w of 0.99. As CHISEL 
infers copy numbers in low-resolution 5 Mb bins, the real 
breakpoints may locate far from the bin boundaries, and 
this may explain why DeepCNA gives similar number 
of breakpoints but large breakpoint distance. The copy 
number estimation results may also give evidence that 
DeepCNA achieves better performance than rcCAE in 
suppressing false positive calls of breakpoints. The MADs 
of rcCAE and DeepCNA are 0.08 and 0.07, respectively, 
which suggests breakpoints inferred by DeepCNA are 
more likely to be real breakpoints and thus aid in accu-
rate estimation of copy numbers. We further investi-
gate if copy numbers shared by few cells are accurately 

Fig. 6 Copy number estimation results of DeepCNA on the 10X Genomics dataset. CHISEL algorithm [16] has clustered the cells into 6 subgroups, 
and we select one cell from each subpopulation for illustration. Copy number profiles of these cells exhibit significant differences. For instance, cell 
with barcode “TAA GAG ATC AAG AAAC” is a diploid cell that shows few CNAs across the genome; Cells “CTG GTC TGT TGC GGCT” and “GGC CGA TGT AAC 
CGAG” show different copy number on chromosome 9q; compared to cell “GGC CGA TGT AAC CGAG”, cell “TGA CTT TGT TTC CATT” has copy number 
of 3 on chromosome 2, and cell “TGG CTG GGT TAC GCGC” shows copy number of 3 on chromosomes 2–3
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detected by each method, and results of cell“AAG GCA 
GGT TCG CGTG” are given in Supplementary Fig. S14. 
rcCAE produces highly similar predictions to DeepCNA 
on all chromosomes except chromosome 2, while it prob-
ably yields biased predictions on chromosome 2 because 
the expected LRC mean deviates from the observed dis-
tribution of LRC. As the LRC data used in rcCAE are 
obtained from the outputs of an autoencoder network, 
and this distillation process may suppress LRC signal of 
low-prevalence copy numbers. By comparison, the copy 
numbers estimated by DeepCNA well match the distri-
bution of LRC data. Furthermore, we calculate Pearson 
correlation coefficient to compare DeepCNA with rcCAE 
by treating CHISEL results as the baseline. The results 
in Supplementary Fig. S15 show our method achieves 
a median Pearson correlation coefficient of 0.92, while 
rcCAE gets a median Pearson correlation coefficient of 
0.89. This gives enhanced evidence that our method per-
forms better than rcCAE on the 10X Genomics dataset.

Evaluation of DeepCNA on non‑tumor datasets
We further assess if DeepCNA can still accurately esti-
mate copy numbers from the scDNA-seq datasets that 
only contain normal/non-tumor cells. Such datasets can 
be used as negative controls to find somatic single-cell 
CNAs.

First, we apply DeepCNA to a composite control data-
set that is a subset of the 10X Genomics dataset. Specifi-
cally, as the diploid subpopulation of the 10X Genomics 
dataset is mainly composed of normal cells, we use the 
388 cells contained in this subpopulation to construct a 
negative control dataset, and run DeepCNA under the 
same parameters as used for the full dataset. The results 
show our method achieves high accuracy in measur-
ing copy numbers of the normal cells with mean MAD 
of 0.01. Despite that DeepCNA yields more breakpoints 
than the expected (78 vs. 45), copy numbers of the over-
segmented regions are still precisely estimated.

Next, we evaluate DeepCNA on a non-tumor dataset 
consisting of 1094 cells from BJ Fibroblast Euploid Cell 
Line, and the merged BAM file containing read align-
ments of all cells can be freely downloaded from https:// 
www. 10xge nomics. com/ resou rces/ datas ets/1- k- cells- 
from- bj- fibro blast- euplo id- cell- line-1- stand ard-1- 1-0. 
As the ground truth copy number profiles are not avail-
able for this dataset, we only perform qualitative analysis 
of the results of DeepCNA. Read counts are measured 
for 500  kb bins and preprocessed to filter outlier cells 
and bins, which results in an LRC matrix with size of 
1094 × 5120. We then train the autoencoder model 500 
epochs with learning rate of 0.0001, batch size of 256 
and latent dimension of 1. DeepCNA predicts all cells as 
diploidy with the minimum ACN of 1.931 and maximum 

ACN of 2.072, which suggests our method correctly iden-
tifies the ploidy of all cells. An example of the copy num-
ber estimation results as depicted in Supplementary Fig. 
S16 indicates the cells present broad copy neutral regions 
across the whole genome. These results demonstrate that 
our method can still yield reliable estimations of single-
cell copy number profiles from scDNA-seq datasets 
composed of only non-tumor cells, and thus help to find 
somatic single-cell CNAs.

Discussion
Breakpoint detection and copy number estimation for 
each segment are two basic tasks of single-cell copy num-
ber analysis. As tumor evolves by accumulating CNAs, 
breakpoints are shared among different cell subpopula-
tions, and cross-cell segmentation of high-dimensional 
read count sequence is essential for reducing false posi-
tive calls of the breakpoints caused by local fluctuation 
of read counts. Existing methods for breakpoint detec-
tion are usually based on manually designed statistics 
of read counts, and less sensitive to real breakpoints or 
less robust to local noise of read counts. In this paper, we 
develop a novel method for cross-cell segmentation and 
single-cell copy number estimation, the proposed Deep-
CNA treats read counts of all cells of each bin as a feature 
vector and automatically learns its latent representations 
by leveraging an autoencoder network, which makes it 
convenient to call breakpoints along each latent dimen-
sion and yield the final set of breakpoints by merging the 
results from all dimensions. The approach exploits the 
distillation process of the autoencoder to effectively rep-
resent each bin over a low-dimensional space and gets 
higher robustness to the outliers present in read counts. 
To the best of our knowledge, DeepCNA is the first deep 
learning method that performs cross-cell segmentation 
of read count sequence. For estimating single-cell copy 
numbers, a mixture model is employed to cluster seg-
ments into different copy number states, and cell ploidy 
is determined by exploring the baseline shift of LRC data. 
Although DeepCNA follows the same idea as proposed 
in rcCAE to estimate cell ploidy, its main difference to 
rcCAE lies in the fact that DeepCNA jointly segments the 
read counts of all cells while rcCAE segments the read 
counts under a cell-by-cell manner, and this makes Deep-
CNA more powerful in suppressing false positive calls of 
breakpoints.

To comprehensively evaluate the performance of Deep-
CNA, we generate various datasets by mimicking differ-
ent cell ploidy. Evaluation results suggest our method 
is highly effective in finding breakpoints and recogniz-
ing cell ploidy, thus yields accurate estimations of copy 
numbers. With DeepCNA, we elucidate single-cell copy 
number profiles from a breast cancer dataset, and obtain 

https://www.10xgenomics.com/resources/datasets/1-k-cells-from-bj-fibroblast-euploid-cell-line-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/1-k-cells-from-bj-fibroblast-euploid-cell-line-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/1-k-cells-from-bj-fibroblast-euploid-cell-line-1-standard-1-1-0
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similar prediction results as previously reported. Com-
pared to the existing methods, DeepCNA generally bet-
ter explains the observed depth data. In addition, we test 
DeepCNA on a large 10X Genomics dataset containing 
1446 cells, and the estimation results provide clear indi-
cation of copy number profile difference between cell 
subpopulations. We also show DeepCNA is able to call 
low-prevalence CNAs, and these are missed by rcCAE 
due to deficient recovery of the LRC signal for low-preva-
lence copy numbers.

Despite that DeepCNA shows advantages in inferring 
breakpoints and single-cell copy number profiles, there are 
still two potential directions to further improve its accu-
racy. First, DeepCNA does not consider the relative posi-
tions of bins when learning latent representation, which 
probably makes DeepCNA yield over-segmented results 
when processing extensively fluctuated read counts. Posi-
tional encoding is an effective way to represent the relative 
position of each bin and can be used as additional features 
when learning the latent representation. Therefore, how to 
encode the positions and utilize positional encoding fea-
tures in the representation learning model is one of our 
future works to improve DeepCNA. Second, DeepCNA 
implements breakpoint detection and copy number esti-
mation as two separate procedures, and errors made in 
breakpoint detection may be propagated to the CNA anal-
ysis. Joint inference of breakpoints and copy numbers from 
all cells is a feasible solution to improve the accuracy, while 
this may be a very challenging task as the candidate break-
points and copy number states form a huge search space. 
Some of the existing methods have employed HMMs to 
simultaneously detect breakpoints and CNAs under a 
cell-by-cell manner, and mixture hidden Markov model 
(MHMM) [31] could be used to implement cross-cell seg-
mentation and copy number estimation in a single model 
provided that the hidden states and mixture components 
are properly defined. The mixture components could be 
defined as cell subpopulations showing distinct copy num-
ber profiles between each other, which makes it conveni-
ent to identify tumor clones.

Conclusions
In summary, we introduce a new method DeepCNA for 
profiling single-cell CNAs from scDNA-seq data. Deep-
CNA leverages deep representation learning to cope with 
the difficulty of segmenting high-dimensional read count 
sequence and employs an effective mixture model to deci-
pher copy numbers for each cell. Evaluation results dem-
onstrate DeepCNA has advantages over other methods in 
inferring breakpoints and single-cell CNAs. We believe 
our work will promote development of computational 
methods for downstream ITH and phylogenetic analysis.
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Additional file 1: Fig. S1. An example of segmentation results on 
simulated datasets. The top four subfigures depict LRC data of four tumor 
clones, and the bottom subfigure shows the learned latent sequence and 
segmentation results. Fig. S2. Analysis of the relationship between the 
ground truth average copy number and estimated baseline shift oof LRC 
signal. Data marked by blue, green and red are from tetraploid, triploid 
and diploid cells, respectively. Fig. S3. Comparison of cell ploidy estima-
tion results between different methods. Average copy number (ACN) 
is calculated for each cell based on the inferred copy numberprofiles, 
and difference between the ground truth and inferred ACNs(denoted as 
∆ACN) is analyzed for each method.Values of ∆ACN that are closer to 0 
indicate better estimation results. Fig. S4. Analysis of the effect of bin size 
on copy number segments detection accuracy of DeepCNA. The values in 
{100kb, 200kb, 500kb, 1000kb} are tested for the bin size. Four perfor-
mance metrics including mean of absolute distances (MAD), difference 
between the ground truth and inferred average copy numbers(denoted 
as ∆ACN), breakpoint distance and ratio between the number of 
inferred breakpoints and the number of real breakpoints(denoted as w)
are calculated for comparison. Fig. S5. Analysis of the effect of latent 
dimensionality on breakpoint detection accuracy. The values in {1, 2, 3} 
are tested for the latent dimensionality d. Breakpoint distance and the 
metric ware calculated for comparison. Data points marked with an 
asteriskrepresent mean values. Fig. S6. Segmentation results of DeepCNA 
on three simulated datasets when the latent dimension is set to 2. The first 
dimension well captures most of the breakpoints, while sometimes under-
represents the breakpoints that may be shared by only a few cells, and 
these breakpoints are detectable from the second dimension. It is also 
observed that some breakpoints can be simultaneously detected from 
both dimensions. Fig. S7. Analysis of DeepCNA’ performance on different-
sized datasets. The numbers of cells in {100, 200, 300} are tested. Four per-
formance metrics including mean of absolute distances (MAD), difference 
between the ground truth and inferred average copy numbers(denoted 
as ∆ACN), breakpoint distance and ratio between the number of inferred 
breakpoints and the number of real breakpoints(denoted as w) are 
calculated for comparison. Fig. S8. Analysis of DeepCNA’ performance on 
datasetswith varying data heterogeneity. Thenumbers of cloneschanges 
from 4 to 8. Four performance metrics including mean of absolute 
distances (MAD), difference between the ground truth and inferred 
average copy numbers(denoted as ∆ACN), breakpoint distance and ratio 
between the number of inferred breakpoints and the number of real 
breakpoints(denoted as w) are calculated for comparison.Cdenotes the-
number of clones. Fig. S9. Analysis of DeepCNA’ performance on datasets 
with no normal cells mixed in the data. Four performance metrics includ-
ing mean of absolute distances (MAD), difference between the ground 
truth and inferred average copy numbers(denoted as ∆ACN), breakpoint 
distance and ratio between the number of inferred breakpoints and the 
number of real breakpoints(denoted as w) are calculated for comparison. 
Fig. S10. Copy number estimation results on cell “SRR053675” from the 
breast cancer dataset. DeepCNA detects acopy number amplification on 
chromosome 7, while SCOPE, SCYN and rcCAE predict it as normal copy 
number, and their predictions deviate from the observed data.SCICoNE 
overestimates the cell ploidy. Copy number deletion, normal copy num-
berand copy number amplification are marked by green, blue and red, 
respectively. Fig. S11. Copy number estimation results on cell “SRR054618” 
from the breast cancer dataset. DeepCNA detects a smallcopy number 

https://doi.org/10.1186/s12864-023-09901-5
https://doi.org/10.1186/s12864-023-09901-5
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segment on chromosome 7 that is missed by SCOPE, SCICoNE and rcCAE.
Copy number deletion, normal copy number and copy number amplifica-
tion are marked by green, blue and red, respectively. Fig. S12. Copy num-
ber estimation results on cell “SRR089402” from the breast cancer dataset. 
Existing methods except SCYN underestimate the number of breakpoints 
on chromosome 2q, thus yield biased predictions of the copy numbers.
SCICoNE overestimates the cell ploidy.Copy number deletion, normal 
copy number and copy number amplification are marked by green, blue 
and red, respectively. Fig. S13. Copy number estimation results on cell 
“SRR054632” from the breast cancer dataset. SCOPE and SCICoNE predict 
asmall segmenton chromosome 6 to copy number amplification. rcCAE 
fails to find a small segment on chromosome 7. Copy number deletion, 
normal copy number and copy number amplification are marked by 
green, blue and red, respectively. Fig. S14. Copy number estimation 
results on the cell with barcode “AAG GCA GGT TCG CGTG” from the 10X 
Genomicsdataset. rcCAE’ predictions on chromosome 2 probably deviate 
fromthe ground truth. Copy number deletion, normal copy number and 
copy number amplification are marked by green, blue and red, respec-
tively. Fig. S15. Comparison of Pearson correlation coefficients on the 10X 
Genomics dataset. By using CHISEL results as the baseline, Pearson cor-
relation coefficientsare calculatedbased on copy numbers inferred byeach 
method. Fig. S16. An example of copy number estimation results of 
DeepCNA onthe BJ Fibroblast Euploid Cell Linedataset. DeepCNA predicts 
all cells as diploidy. Table S1. The parameters used to run each method 
on simulated datasets. Table S2. The runtime performance comparison 
results of all investigated methods. The results are obtainedfromsimulated 
datasets with varying number of cells.All the experiments are conducted 
on a computational server with64 CPU cores,128 GB RAM and 1 GeForce 
RTX 2080 Ti GPU.
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