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Abstract 

Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases 
include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain path-
ogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis 
was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 
National Center for Biotechnology Information database. These strains of interest were analysed in the following 
programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five 
strains (ECP19–198, ECP19–798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few 
regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was com-
monly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, 
espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF 
group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribu-
tion of bacteriophages and genomic islands respectively. The results indicated that structural and functional features 
of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene 
transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional 
features will enable the development of detection and control of transmission strategies.
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Introduction
Shiga toxin-producing Escherichia coli (STEC) are food-
borne pathogens that are a major health concern due to 
global disease outbreaks [1, 2]. STEC cause human gas-
trointestinal infections/diseases such as diarrhoea, hem-
orrhagic colitis and hemolytic uremic syndrome [3–6]. 
STEC is defined by virulence factors known as Shiga tox-
ins [4, 7]. There are two types of Shiga toxin (Stx) (Stx1 
and Stx2) that are encoded by stx genes that are produced 
in STEC [8–10]. These toxins are responsible for causing 
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cytotoxicity in host cells [10, 11]. There are several Stx 
subtypes that differ in their biological activity includ-
ing three subtypes for Stx1 (Stx1a, Stx1c, Stx1d) and 
seven subtypes for Stx2 (Stx2a to Stx2g) [12, 13]. STEC 
attain virulence genes through horizontal gene transfer 
from other pathogens [14]. Additionally, pathogenicity 
in STEC is also a result of the adherence factor intimin, 
which is encoded by the eae gene located in the Locus of 
Enterocyte Effacement (LEE) pathogenicity island [15]. 
LEE encodes a number of genes that play a role in the 
attaching and effacing [15].

Treatment for infections caused by STEC is limited, 
however, antibiotics can be used remove pathogens at the 
beginning stages of the infection [16–20]. STEC patho-
gens in hosts and varying environments are exposed to 
selective pressure leading to antibiotic resistance [21]. 
Research has shown that STEC are resistant to the fol-
lowing antibiotics in livestock and humans, tetracyclines, 
aminoglycosides, phenicols, streptomycin, erythromy-
cin, carbapenems, cephalosporins, sulpha drugs and 
β-lactams [22–25]. Antibiotic resistance occurs via 
intrinsic (enzymatic degradation/ modification, efflux 
pumps, modification target sites or reduced cell wall 
permeability -) or acquired (horizontal gene transfer -) 
mechanisms or both [21, 26, 27]. Mobile genetic elements 
such as plasmid have demonstrated a role in the dissemi-
nation of antimicrobial resistance [28, 29]. Plasmids in 
STEC strains carry both virulent factors and antibiotic 
resistant (single and multiple) genes in highly conserved 
regions [30, 31].

Whole genome sequences available of STEC have 
shown high diversity because of horizontal gene trans-
fer and genomic alterations [7, 32–37]. Using compara-
tive genomics, identification of virulence and resistant 
genes and associated plasmids can be achieved to track 
pathogenic bacteria that pose as a public health threat. 
In the present study, the main aim was to compare whole 
genome sequences from all available Escherichia coli (E. 
coli) O157:H7 strains to investigate potential resistance, 
virulence and plasmid properties to distinguish between 
strains. Whole genome mapping for comparative genom-
ics between the E. coli O157:H7 strains and the reference 
genome of pathogenic E. coli.

Results
BRIG
A comparative BLAST was performed using BRIG to 
determine homology between the reference strain (Sakai) 
and all other O157:H7 strains obtained. The greatest 
homology was observed between seven strains and Sakai: 
ECP19–198 (Fig. 1), ECP19–798 (Fig. 1), F7508 (Fig. 1), 
F8798 (Fig. 1), F8952 (Fig. 1), FRIK804 (Fig. 1) and H2495 
(Fig.  1), because these strains had a few regions that 

were missing, and these regions were short sections of 
nucleotides.

Resistance genes
There were 5 resistance genes identified according to 
the ResFinder (Fig.  2): Tetracycline resistance (tet(B)), 
Sulphonamide resistance (sul2), Aminoglycoside resist-
ance (aph(3″)-Ib), Aminoglycoside resistance (aph(6)-
Id), Macrolide-associated resistance gene (mdf(A)).  In 
strain 2–6-2, BB24–1, FRIK944, FRIK2069, FRIK2455, 
FRIK2533 and SS TX 313–1 all 5 resistance genes were 
present. In strains, ECP17–1298, F6294 Show KS 470–1, 
TX 265–1 and Wll001 did not have any of the resistance 
genes present. All other strains only had the presence 
of the mdf(A) gene except the reference strain, with the 
exception of the NE1092-2 strain that also had resistance 
to the aph(3″)-Ib and aph(6)-Id genes.

In strain 2–6-2, BB24–1, FRIK944, FRIK2069, 
FRIK2455, FRIK2533 and SS TX 313–1 all 5 resistance 
genes were present. In strains, ECP17–1298, F6294 Show 
KS 470–1, TX 265–1 and Wll001 did not have any of the 
resistance genes present. All other strains only had the 
presence of the mdf(A) gene except the reference strain.

Plasmids
There were 13 plasmids identified according to Plasmid-
Finder (Fig.  3): Col(MG828), Col156, Col8282, IncC, 
IncFIA, IncFIB, IncFII, IncFII(pCoo), IncII(pSFO), Inc1-
I(Alpha), IncI2(Delta), p0111 and pEC4115. FRIK2533 
and TR01 had no plasmids. The reference strain only had 
plasmids for IncFIB and IncFII. Col(MG828) plasmid was 
only present in strain NE 1092–2. Col156 was only pre-
sent in Z869. Col8282 was present in FRIK804. IncC was 
present in NE 1092–2, NE 1169–1 and NE1127. IncFIA 
is present in 2–6-2, 493/89, 2571, 7409, BB24–1, C1–057, 
EC4115, ECP19–2498, F1273, F6321, F6667, F7386, 
F8092B, F8492, F8797, FRIK944, FRIK2069, FRIK2455, 
JEONG-1266, LSU61, MB9–1, N8B7–2, Show KS 470–1, 
SS NE 1040–1, SS TX 313–1, SS TX 754–1, SS17, SS52, 
TB21–1, TW14359, TX 265–1, TX 376–2, Z1835 and 
Z1836. IncFIB was present in all strains except, F8492, 
FRIK2533, TR01 and Z1504. IncFII was present in all 
except 493/89, FRIK2533, LSU61, TR01 and Z1626. 
IncFII(pCoo) was only present in Z1834. IncII(pSFO) was 
present in 493/89 and LSU61. Incl-I(Alpha) was present in 
3–5-1, ECP19–598, ECP19–2498 and G5295. IncI2(Delta) 
was present in E32511, F7386, H6437 and N8B7–2. p0111 
present in F1273 and TX 376–2. pEC4115 present in 
EC4115, MB9–1, SS17, Z1832 and Z1833.

Virulence genes
There were 27 virulence genes identified/detected by 
VirulenceFinder (Fig. 4): astA, cdtB, efa1, hra, iha, stx1A, 
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Fig. 1 Comparison of Blast Ring Image Generated for E. coli O157:H7 strains
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stx1B, stx2A, stxB, traT, espA, espB, espF, espJ, gad, chuA, 
eae, iss, nleA, nleB, nleC, ompT, tccP, terC, tir, stx1, stx2. 
These virulence genes belong to categories such as, 
adherence, autotransporter, iron uptake, LEE-encoded 
TTSS effectors, non-LEE-encoded TTSS effectors, secre-
tion system, and toxins. Virulence genes espA, espB, 
espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, 
tccP, terC, tir were not present in EC4115, F3113 and 
TW14359 but present in all other strains. Other viru-
lence genes that were more prevalent include: astA was 
present in all strains except EC4115, ECP19–198, F3113, 
F7508, F8952 and TW14359, cdtB was not present in all 
strains except 493/89, and MB41–1, efa1 was not present 
in all strains except 493/89 and LSU61, hra was not pre-
sent in all strains except 86–24 and ATCC 43888, iha was 
present in all strains except 493/89, EC4115, F3113 and 
TW14359, traT was present in all strains except 493/89, 
EC4115, F3113, LSU61 and TW14359. The stx1A was 
present in 38 strains and stx1B was present in 37 strains. 
The stx2A gene was absent in 9 strains and stx2B gene 
was absent in 12 strains. Majority of the strains did not 
have the stx1 gene (only 38 strains had the gene) and the 
stx2 gene was present in majority of the strains (only 9 
strains did not have the gene).

Genomic islands
The chromosomal sequences of all strains were also 
analysed to detect genomic islands and the locations 
(Table 1). Based on this analysis the number of genomic 
islands present ranged from 74 to 120 islands. Virulence, 
pathogen associated, and resistance genes were also iden-
tified. No genomic islands were identified for the follow-
ing 39 strains: ECP19–198, ECP19–598, ECP19–798, 

ECP19–2498, TT12A, Z563, Z570, Z852, Z866, Z869, 
Z885, Z887, Z892, Z903, Z910, Z1486, Z1504, Z1615, 
Z1626, Z1723, Z1766, Z1767, Z1768, Z1769, Z1811, 
Z1812, Z1813, Z1814, Z1815, Z1816, Z1825, Z1826, 
Z1830, Z1831, Z1832, Z1833, Z1834, Z1835, Z1836. The 
number or virulence genes present ranged from 15 to 46. 
The number or pathogen associated genes ranged from 
19 to 40. The number or resistant genes ranged present 
from 1 to 5. Strain F3113 had no resistant genes present.

PHASTER
Chromosomal sequences analysed by PHASTER identi-
fied phage-like elements in all 115 E. coli O157:H7 strains. 
The reference strain had 13 intact prophages, 5 question-
able prophages, 4 incomplete prophages and 49.86% GC 
(guanine-cytosine content). The following data are sig-
nificant results: Strains 1130, 2149, 2159, 4276, NE92 
all had a total of 18 prophages (9 intact, 6 questionable 
and 3 incomplete) and percentage GC of 50.52%. Strains 
F7349, FWSEC004, NE 1169–1 and NE1127 had a total 
of 21 prophages (11 intact, 4 questionable and 6 incom-
plete) and percentage GC of 50.50%. Fourteen strains 
(Z852, Z903, Z1626, Z1766, Z1768, Z1769, Z1812, Z1815, 
Z1816, Z1825, Z1830, Z1831, Z1832 and Z1833) had 
21 prophages (13 intact, 5 questionable and 3 incom-
plete) and percentage GC of 50.53%. The results for the 
PHASTER analysis are in Additional file 2.

Discussion
E. coli, specifically strain O157:H7 has become a well-
known foodborne pathogen associated with human dis-
ease because of the genome constantly changing through 
mutation events and horizontal gene transfer [38–43] 
enables strains to diverge and adapt to colonize carrier 

Fig. 2 The presence of resistance genes in Escherichia coli O157:H7 strains
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Fig. 3 The presence of plasmids in Escherichia coli O157:H7 strains
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host causing diseases in humans or survive in exter-
nal environments [44–47]. Hence, it is imperative to 
understand the genomic diversity and adaptability of the 
O157:H7 strains to predict severity of the disease, under-
stand bacterial pathogenesis, identify specific biomark-
ers, trace origin, determine epidemiology and develop 
vaccines [48].

In the present study, we used comparative genomics to 
analyze chromosomal sequence of E. coli strain O157:H7 
(Sakai), to determine its genetic and functional attributes 
to other well-characterized O157 strains. Bioinformatic 
tools that were available online were used to obtain infor-
mation such as chromosomal homology and presence 
of plasmids, resistance genes, virulence genes, genomic 
islands, and prophages in the O157:H7 reference strain 
(Sakai) and other strains of interest.

BRIG was used to generate circular maps of the ref-
erence strain (Sakai) to other strains of interest and 
determines the chromosomal similarity of sequences 
There were five strains that showed a high level of simi-
larity, namely, ECP19–198, ECP19–798, F7508, F8798, 

F8952, FRIK804 and H2495. This suggests that there 
are not many differences in the genetic make-up of 
these strains. Differences in the chromosomal locations 
of multiple O157:H7 strains can provide information 
on the impact that mobile elements or bacteriophages, 
etc. have on virulence, resistance and other aspects 
[41]. All E. coli share a core genome sequence that is 
approximately 4.1 Mb, however in pathogenic E. coli 
like the O157:H7 strains insertion of mobile DNA ele-
ments such as phages, genomic islands, transposons 
create a variability in the genome sizes among the vari-
ous O157:H7 strains [41, 48–50].

In pathogenic bacteria such as E. coli, antimicrobial 
resistance genes play and integral role in becoming 
resistant against various drugs/medications that are 
used to treat diseases [51]. To achieve antibiotic resist-
ance, entry of the antibiotic is hindered by various efflux 
mechanisms [51]. The E. coli O157:H7 strains were 
susceptible to five antibiotics, with the highest suscep-
tibility against macrolide-associated resistance gene 
(mdf(A)) (95%), followed by 8 (7%) to aminoglycoside 

Fig. 4 The presence of virulence genes in Escherichia coli O157:H7 strains
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resistance (aph(3″)-Ib) and aminoglycoside resistance 
(aph(6)-Id) and 7 (6%) to tetracycline resistance (tet(B)), 
sulphonamide resistance (sul2). The key facilitator of 
the transport protein superfamily is the putative mem-
brane protein (mdfA) which is coded by the mdfA gene 
and made up of 410 amino acid compounds [52]. Cati-
onic and zwitterionic lipophilic compounds (benza-
lkonium, daunomycin, ethidium bromide, puromycin, 
rifampin, rhodamine, tetracycline and tetraphenylphos-
phonium) have a greater resistance to cells that express 
mdfA [52]. mdfA is also known to be resistant to vital 
antibiotics such as fluoroquinolones, erythromycin, 
chloramphenicol, and aminoglycosides [53]. From one 
hundred and fifteen E. coli O157:H7 strains evaluated, 
seven (6%) were resistant to all five antimicrobial resist-
ant genes which suggests multi-drug resistant [54]. As a 
result, bacterial resistance increases against antibiotics 

Table 1 The presence of genomic islands in Escherichia coli 
O157:H7 strains

Strain No. of 
genomic 
islands

Sakai (reference strain) 110

2–6-2 117

3–5-1 109

17B6–2 113

86–24 91

493–89 85

611 101

1130 84

2149 83

2159 81

2571 103

3384 96

4276 80

7409 105

7636 97

8368 91

9234 89

ATTC 35150 99

ATCC 43888 95

ATCC 43890 91

BB24–1 102

C1–057 107

DEC4E 91

E32511 101

EC4115 106

ECP17–46 104

ECP17–1298 111

EDL933 106

F1273 105

F3113 97

F6294 110

F6321 102

F6667 105

F7349 102

F7386 112

F7508 115

F8092B 99

F8492 104

F8797 120

F8798 110

F8952 100

FESEC0004 94

FRIK804 113

FRIK944 115

FRIK2069 98

FRIK2455 101

FRIK2533 106

Table 1 (continued)

Strain No. of 
genomic 
islands

G5295 107

Gim1–1 90

H2495 102

H6437 110

JEONG-1266 94

LSU61 96

MB9–1 98

MB41–1 97

N8B7–2 106

NE 1092–2 119

NE 1169–1 100

NE92 97

NE122 94

NE1127 103

OK1 99

PV15–279 109

Show KS 470–1 110

SS NE 1040–1 108

SS TX 313–1 113

SS TX 754–1 109

SS17 102

SS52 95

TB21–1 103

TR01 108

TT12B 95

TW14359 101

TX 265–1 108

TX 376–2 92

Wll001 92

Wll001 92
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since resistance in bacteria is can be obtained through 
bacterial gene transfer [55]. Antibiotics are used in ani-
mals for growth promotion for food consumption, in 
human and veterinary medicine to treat and prevent 
infection and control spreading of the disease [56, 57]. 
Thus, the overuse and negligent use of antibiotics con-
tributes to resistance.

Most plasmids are known to have an association with 
antimicrobial and/or virulence resistance [58]. Among 
the 13 plasmids identified, the IncF group of plasmids 
were more prevalent. IncF plasmids systems cause 
autonomous replication and code for addiction systems 
regularly based on toxin-antitoxin factors [59]. IncF plas-
mids most times encode for FII together with FIA and/or 
FIB [60]. IncFIB and IncFII represented majority of the 
strains, 97 and 96% respectively, IncFIA represented 30%, 
IncFII(pSFO) represented 0.017% and IncFII(pCoo) rep-
resented 0.008%. The IncF incompatibility family charac-
terizes most plasmids that are associated with virulence 
in E. coli [61]. A study by Lambrecht and others in 2018 
[62], showed that the FII-FIB combination was prevalent 
in commensal multi drug resistant E. coli in farm ani-
mals. Although IncF plasmids are well adapted in E. coli, 
these plasmids have a limited host range [63, 64]. Simi-
larly, a comparative genomics study by Noll and others 
in 2018 showed that almost half their sample size (44%) 
identified IncF plasmids [65]. However, it is important 
to note that the pO157 plasmid is well studied in E. coli 
O157:H7 and other plasmids that are carried are not [66]. 
Previous studies have shown that IncF plasmids can com-
bine many genes that cause resistance to antimicrobials 
such as, aminoglycosides, β-lactams, chloramphenicol, 
quinolones and tetracyclines [67, 68].

The current study identified multiple virulence genes 
in all the O157:H7 strains. Out of the 27 virulent genes 
identified, 15 virulence genes (espA, espB, espF, espJ, 
gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC, 
tir) was found dominating in majority of the O157:H7 
strains (97%). These virulent genes belong to catego-
ries such as adherence, iron uptake, toxins, Shiga toxin, 
non-LEE and LEE-encoded TTSS effector and secretion 
system. Tir is a T3SS effector in STEC that plays a role 
as the receptor for the outer membrane protein intimin 
which facilitates interactions between the pathogen cell 
and host cell to get α-actinin to the pedestal for forma-
tion of attaching and effacing intestinal lesions [69]. The 
tccP gene codes for an effector protein that plays a direct 
role in EHEC infection [70]. Strains become extremely 
pathogenic when tccP gene is present together with espJ, 
stx1a, stx2a intimin and tir [71]. Intimin facilitates inti-
mate attachment, this is encoded by the eae gene which 
enable attaching and effacing intestinal lesions between 
E. coli O157:H7 and host cell [72]. The above-mentioned 

genes play an important role in making strains virulent 
[2] thus, the Sakai strain was used as a reference strain. 
E. coli O157:H7 strains either express Stx1, Stx2, or both 
genes, however the more toxic of the two genes is Stx2 
which causes hemorrhagic colitis and hemolytic ure-
mic syndrome [2, 73, 74]. When isolates do not harbour 
the stx genes they are known as non-Shiga toxigenic E. 
coli O157:H7 [75]. A study by Iwu and others analysed 
O157:H7 strains from irrigation water and agricultural 
soil in two district municipalities in South Africa and 
showed that the overall prevalence of non-Shiga toxi-
genic E. coli O157:H7 was higher than STEC O157:H7 
[75]. Non-Shiga toxigenic E. coli O157:H7 have been 
associated in severe diseases, however their influence as 
pathogens is not known [76].

The function of the genomic island of each strain 
is greatly dependent on the genetic makeup [77]. The 
genomic island results demonstrated varying number of 
GI. A study by Sharma and others in 2019 [48], identi-
fied 63 GI and 71 GI in the O157:H7 strains EDL933 and 
Sakai, respectively. However, in the present study, 106 GI 
and 110 GI in the O157:H7 strains EDL933 and Sakai, 
respectively. Genomic islands are known to display struc-
tural features that are similar, thus the difference in the 
number observed by Sharma and colleagues [48] and the 
present study could be a result of mobile elements being 
transferred by horizontal gene transfer [77, 78]. The 
genomic islands have the potential to contribute to the 
fitness, metabolic flexibility or increase the pathogenicity 
of the organisms [77]. The reference strain GI sequences 
can be aligned with GI sequence of interest to determine 
conserved GIs.

E. coli STEC strains are known to contain a high 
prophage content within the chromosome and sequences 
are highly variable among strains [79]. An approximation 
of 13–14% of the chromosome is made up of prophages 
in STEC O157:H7 [80, 81]. The number of predicted 
prophages varied greatly among the O157:H7 strains. 
The PHASTER analysis demonstrated the distribution 
of various bacteriophages. The results showed that there 
were three groups of strains that had the same prophages 
and GC percentage, suggesting that there is a high level 
of homology. To determine if these prophages are con-
served phylogenetic and Basic Local Alignment Search 
Tool (BLAST) analysis can be done. In study by Weinroth 
and colleagues [82] demonstrated that all STEC O157:H7 
showed great homology and shared three prophages. 
Bacteriophages that are that are similar suggest that 
they inhabit, adapt, and evolve from the same environ-
ment [83]. It is known that STEC genomes to possess 
prophages as well as integrative elements [84]. A study 
by in 2017 by Katani and colleagues [85] showed that 
prophages play an integral role in difference observed 
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between closely related strains. This study revealed 
that gaining and losing genomic mobile elements cause 
changes in strains, for example two strains SS17 and 
SS52 are closely related, however, SS17 possess the phage 
CP-9330 and SS52 does not [85]. Phages seem to play an 
important part in the diversity and evolutionary aspects 
of E. coli strains such as O157:H7, therefore it is specu-
lated that specific traits or mechanisms such as fitness 
and adherence can be transferred from strain to host 
[85]. This speculation and should be tested further using 
additional comparative phage characterization [85]. The 
genome of JEONG-1266, EC4115, and SS17 contained a 
total of 19 prophage regions which were highly conserved 
demonstrating a close evolutionary relationship [79].

Conclusions
This study undertook a whole genome comparative 
analysis of E. coli O157:H7 isolates collected from 
NCBI to provide insight in the chromosomal homol-
ogy, plasmids, resistance genes, virulence genes, 
genomic islands and prophages that are present. Our 
study demonstrated that although the E. coli O157:H7 
strains belong to the same serotype group, mobile 
genetic elements can be transferred via horizontal 
gene resulting in differences between strains. Com-
mensal strains can become pathogenic because the 
genetics in parts of their genome may code for viru-
lent factor [10, 34]. STEC strains are able to adapt to 
multiple host conditions which provides these patho-
gens with the potential to expand their genomes [86]. 
Insight into the interactions between STEC strains and 
host cells will provide information on structural and 
functional features that result in the variation of STEC 
strains [2, 86]. This can be achieved by experimental 
confirmation to determine the evolving pathogenic-
ity of E. coli O157:H7 strains which will shed light on 
developing strategies to detect and control the trans-
mission of STEC in communities.

Methods
National Center for Biotechnology Information (NCBI) 
database
Reference strain sequence and all query strain sequences 
were selected from NCBI. In NCBI, E. coli, O157:H7 was 
searched. In the advance search all laboratory strains were 
excluded and only complete genomes were used. The list 
of strains used in this study is in Additional file 1

BLAST Ring Image Generator (BRIG) used to construct 
circular chromosomal maps
Chromosomal maps were created to compare a reference 
bacterial strain to all query bacterial strains using BLAST 
Ring Image Generator (BRIG) [48] BRIG uses BLAST 

alignment to construct circular maps [87]. The anno-
tated chromosome of E. coli O157:H7 Sakai was used as 
a reference for generating whole chromosomal sequence 
comparisons with query sequences. All default setting 
were used in BRIG.

Plasmid identification
PlasmidFinder (https:// cge. cbs. dtu. dk/ servi ces/ Plasm idFin 
der/) database was used to identify the presence of plasmids 
in the O157:H7 strains [88, 89]. All sequences of interest 
were combined into one file and uploaded in the program. 
There are four different selection options: select database, 
select threshold for minimum % identity, select minimum 
% coverage and select you read types. Default settings were 
used for select threshold for minimum % identity and select 
minimum % coverage, 95 and 60%, respectively. Enterobac-
teriales was selected as database and assembled or draft 
genome/contigs for read type.

Resistance identification
ResFinder (https:// cge. cbs. dtu. dk/ servi ces/ ResFi nder/) data-
base was used for the identification of resistant genes [89–
91]. All sequences of interest were combined into one file 
and uploaded in the program. There are four different selec-
tion options: chromosomal point mutations, acquired anti-
microbial resistance genes, select species and select you read 
types. Chromosomal point mutations and acquired antimi-
crobial resistance were selected. E. coli was selected as spe-
cies and assembled or draft genome/contigs for read type.

Virulent gene identification
VirulenceFinder (https:// cge. cbs. dtu. dk/ servi ces/ Virul enceF 
inder/) database was used for the identification of virulence 
genes [89, 92, 93]. All sequences of interest were combined 
into one file and uploaded in the program. There are four 
different selection options: select species, select threshold 
for % ID, select minimum length and select you read types. 
Default settings were used for select threshold for % ID and 
select minimum length, 90 and 60%, respectively. E. coli was 
selected as species and assembled or draft genome/contigs 
for read type.

Genomic islands
Genomic islands (GIs) were first identified using Island-
Viewer 4 (https:// www. patho genom ics. sfu. ca/ islan dview 
er/ browse/) [94] with the genome of E. coli Sakai strain as 
a reference. A GI was called when a prediction was made 
by at least one of the three methods (IslandPath-DIMOB, 
SIGI-HMM, and IslandPick).

PHASTER
The presence of prophages in the chromosome of all 
strains were determined by downloading each FASTA 

https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/VirulenceFinder/
https://cge.cbs.dtu.dk/services/VirulenceFinder/
https://www.pathogenomics.sfu.ca/islandviewer/browse/
https://www.pathogenomics.sfu.ca/islandviewer/browse/
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file of the whole chromosomal sequence of this strain 
from NCBI followed by uploading the file to PHASTER 
[95, 96]. Prophages were identified into three groups: 
intact, questionable and incomplete based on the 
scores, a score that is > 90, a score that is 70–90) and a 
score that is < 70, respectively.
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