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Abstract
Background The infection of carbapenem-resistant organisms was a huge threat to human health due to their 
global spread. Dealing with a carbapenem-resistant Serratia marcescens (CRSM) infection poses a significant challenge 
in clinical settings. This study aims to provide insights into strategies for controlling CRSM infection by exploring the 
transformation mechanism of carbapenem-resistance.

Methods We used whole genome sequencing (WGS) to investigate the mechanism of carbapenem resistance in 
14 S. marcescens isolates in vivo. The expression level of related genes and the minimum inhibitory concentration of 
meropenem (MICMEM) were also evaluated to confirm the mechanism of carbapenem resistance.

Results Seven groups of S. marcescens, each consisting of two strains, were collected from a hospital and displayed a 
shift in MICMEM from low to high levels. Homology analysis revealed that the isolates in five groups were significantly 
different from the remaining two. WGS and experimental evidence indicated that four groups of strains developed 
carbapenem resistance by acquiring the blaKPC (obtaining group), while two groups (persisting group) increased 
the expression level of the blaKPC. In contrast, isolates in the last group (missing group) did not carry the blaKPC. All 
strains possessed multiple β-lactamase genes, including blaCTX−M−14, blaSRT−1, and blaSRT−2. However, only in the 
missing group, the carbapenem-resistant strain lost an outer membrane protein-encoding gene, leading to increased 
blaCTX−M−14 expression compared to the carbapenem-susceptible strain.

Conclusion The study findings suggest that S. marcescens strains developed diverse carbapenem resistance in vivo 
through the evolution of drug resistance, rather than through clone replacement. We hypothesize that carbapenem 
resistance in S. marcescens was due to certain clonal types with a distinct mechanism.
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Introduction
Serratia marcescens, a member of the family Enterobac-
teriaceae, is an opportunistic pathogen that has recently 
become commonly associated with hospital-acquired 
infections. For almost one and a half centuries, it was 
believed to be a fungus without pathogenicity after it was 
first observed in 1819 by the Italian Chemistry professor 
Bartolomeo Bizio [1]. However, in the last two decades, 
reports of infections from various sites [2–9] have 
increased. In fact, current emergence of resistant isolates 
worldwide has narrowed the therapeutic options against 
this pathogen. A recent systematic review [10] found that 
S. marcescens is resistant to a wide range of antibiotics, 
including penicillin, cephalosporin, tetracycline, macro-
lide, nitrofurantoin, and colistin. It also pointed out that 
carbapenem should be included in the treatment of S. 
marcescens infections. The emergence of carbapenem-
resistant strains was a consequence of the excessive use 
of broad-spectrum antibiotics. Due to the intrinsically 
resistance of S. marcescens to colistin [11], tigecycline 
is commonly used in anti-infection treatment in China. 
Due to the different distribution of tigecycline in vivo, the 
efficacy of specific infection sites is limited. Therefore, 
the infection of CRSM has become a major challenge 
in clinical settings. With both the increasing number of 
infections and the dissemination of carbapenem resis-
tant strains, S. marcescens infection has become a global 
threat to human health.

In recent years, local outbreaks and epidemics of CRSM 
had occurred in many countries, including Italy, Brazil, 
South Africa and Argentina [12–15]. In China, CRSM 
strains were also widely distributed in distinct regions 
as relevant reports from Zhejiang, Anhui, Jiangsu, Sich-
uan, Jilin, Guangdong, Ningxia, and other provinces. In 
Zhejiang province, cases of nosocomial infection caused 
by CRSM have been increasingly reported, and the main 
cause of carbapenem-resistance has been identified as 
the production of carbapenemases, specifically Klebsi-
ella pneumoniae carbapenemase (KPC) [16, 17]. Strains 
that harbor a blaKPC−2 plasmid show low-level resistance 
to meropenem (MIC 2–8 µg/ml), as well as resistance to 
penicillin, cephalosporins, and aztreonam, but remain 
sensitive to quinolones and aminoglycosides [17]. In our 
previous study, all CRSM strains collected from a tertiary 
hospital were resistant to meropenem (MICs between 
64 and 512  µg/ml), quinolones, and aminoglycosides 
because of harboring blaKPC−2 while one strain was even 
resistant to tigecycline [18]. It was indicated that CRSM 
had developed and would continue to undergo changes in 
drug resistance. Therefore, suitable and prompt approach 
should be devised and implemented for clinical infection 
prevention and control.

The development of beta-lactam resistance in S. 
marcescens involves several mechanisms, including the 

production of beta-lactamases, decreased permeability 
of the outer membrane, modification of the target pen-
icillin-binding proteins (PBPs), overexpression of active 
efflux systems, synthesis of aminoglycoside modifying 
enzymes, and structural alteration of the GyrA protein 
[19]. Our previous study revealed that carbapenem resis-
tance in CRSM was caused by the production of car-
bapenemase, a decrease in the permeability of the outer 
membrane, and the operation of functional efflux pump 
systems, with KPC production being the most common 
[18]. The transformation of carbapenem resistance in 
CRSM is considered as an evolution of drug resistance 
under the pressure of antibiotics. Since it is not common 
in clinical practice, there is not enough clinical data to 
determine the potential risk factors and reveal the exact 
truth of the transformation. This research aims to inves-
tigate the potential carbapenem resistance mechanism 
of CRSM in vivo by collecting and analyzing duplicated 
CRSM strains with altered carbapenem resistance from 
the same patient using whole genome sequencing (WGS).

Materials and methods
The strains information
In a tertiary hospital of Hangzhou with a period from 
2014 to 2019, 66 non-duplicated CRSM strains were col-
lected from patients during their hospitalization. After 
confirming the resistance to meropenem by broth dilu-
tion test, the transformation of carbapenem resistance 
was found in seven patients after a search of clinical data. 
Finally, 14 strains were collected from the seven patients 
with each two from a same patient. All strains were iden-
tified by MALDI-TOF mass spectrometry. During the 
interval of isolation time, all patients were exposed to 
invasive operations and received broad-spectrum anti-
biotics including piperacillin tazobactam, cefoperazone 
sulbactam and meropenem in prescribed doses. Besides, 
all strains were hospital acquired except strain 83 and all 
strains were isolated from sputum except strain 31.

Antimicrobial susceptibility testing
The minimal inhibitory concentrations (MICs) of 
meropenem against CRSM strains were determined by 
the broth microdilution method. Carbapenem resistance 
was defined as resistance to any carbapenems in accor-
dance with 2020 Clinical and Laboratory Standards Insti-
tute guidelines [11]. Escherichia coli ATCC 25,922 was 
used as a quality control strain. The efflux pump inhibi-
tor test was performed with the efflux pump inhibitors 
including 1-(1-naphthylmethyl)-piperazine (NMP), phe-
nylalanine arginine β-naphthylamide (PAβN) and car-
bonyl cyanide m-chlorophenylhydrazone (CCCP) [20].
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WGS and homology analysis
All strains were cultured overnight in Mueller-Hin-
ton broth at 37  °C for genomic DNA extraction using 
the QIAamp DNA Mini Kit (QIAGEN, Germany). All 
the genomic DNAs were sequenced by using paired-
end 500-bp insert libraries on an Illumina HiSeq X Ten 
instrument. The resulting 150-bp Illumina reads were 
assembled by CLC Genomics Workbench software with 
default settings. To obtain complete genome assemblies, 
four strains (24,26,82,152) from the persisting group were 
sequenced sicne they were comparable on the Nanopore 
MinIon platform of Novogene company in China. Anti-
biotic resistance genes were identified by resFinder3.2 
(https://cge.cbs.dtu.dk/services/ResFinder/) with the 
default threshold. For homology analysis, a local core 
genome multi-locus sequence typing (cgMLST) scheme 
was established and a minimum spanning tree was gener-
ated as previous indicated [18].

Quantitative polymerase chain reaction(qPCR) of drug 
resistant genes
The mRNA expression levels of drug resistant genes 
including blaKPC−2, blaCTX−M−14, blaSRT−1 and blaSRT−2 
were examined by qPCR. Overnight bacterial cultures 
were diluted 1/100 in LB broth and grown to log phase 
at 37  °C with vigorous shaking. Total RNA was har-
vested by the RNeasy Mini Kit (QIAGEN, Germany). 
The yield and quality of RNA were determined by Nano-
drop 2000 (Thermo, USA). Total RNA was reverse tran-
scribed into cDNA by the Prime Script RT Reagent kit 
(Takara, China). Quantitative PCR was run on a CFX96 
Real-Time PCR Detection System (Thermo, USA) with 
40 cycles of 5  s at 95  °C, 30  s at 60  °C after 1 cycle of 
30 s at 95 °C. SYBR Premix Ex Taq (Takara, China) was 

used to quantify the expression of the target gene. The 
reactions were performed in a volume of 25 µL and the 
primers used in these experiments are listed in Table 1. 
The expression of each gene was normalized to that of a 
housekeeping gene (rpoB). Data were analyzed using the 
2−ΔΔCT method. The unpaired t-test was used to com-
pare the expression of drug resistant genes. All P values 
were two-tailed, and p < 0.01 was considered statistically 
significant.

Results
The distribution of clonal types in seven groups
A total of fourteen strains were collected and classi-
fied into seven groups based on the same patient. Based 
on the presence of blaKPC, seven groups of strains were 
further divided into obtaining (LAC, ZFB, YQS, CMY), 
persisting (YZY, FZX) and missing groups (LCD). Within 
each group, strains from the same patient exhibited an 
increasing in MICMEM by 8 to 1024 times (Table 1). Based 
on WGS data, a minimum spanning tree was generated, 
which demonstrated that all strains could be divided into 
three clonal types. As shown in Fig. 1, five groups (LAC, 
ZFB, YQS, CMY and LCD) on the right belonged to the 
same clone type, while group FZX and group YZY on the 
left belonged to other two different clone types. However, 
strains within each group were closely related to each 
other, with the distinct allelic genes differing by less than 
sixteen.

Seven groups were divided into three clonal types as 
shown above. The right one including four obtaining 
groups (in green box) and one missing group (in grey 
box). The left two were the persisting groups YZY and 
FZX (in red box), respectively. The group names were 

Table 1 The basic characteristics and comparison of drug resistance in seven group strains
Group Age/sex Strain NO. Source Ward MICMEM

(µg/ml)
Date blaKPC Other resistant genes*

CMY 62/F 62 sputum Neurosurgery 0.0625 5/25/2017 - blaCTX−M−14, blaSRT−1, qnrS1, 
aac(6’)-Ic63 sputum 4 5/31/2017 +

LAC 66/M 83 sputum Neurosurgery 0.0625 8/22/2019 - blaSRT−1,qnrS1, aac(3)-IId, 
aac(6’)-Ic, blaLAP−286 sputum 2 8/30/2019 +

YQS 50/M 88 sputum ICU 0.0625 9/11/2019 - blaCTX−M−14, blaLAP−2, blaSRT−1, 
qnrS1, aac(6’)-Ic, aac(3)-Iid89 sputum 64 9/12/2019 +

ZFB 60/F 42 sputum Neurosurgery 0.5 6/21/2017 - blaCTX−M−14, qnrS1, blaLAP−2, 
blaSRT−1, aac(6’)-Ic125 sputum 32 7/31/2017 +

FZX 62/M 24 sputum ICU 1 7/8/2014 + blaSRT−1, blaSRT−2, aac(6’)-Ic
26 sputum 32 7/15/2014 +

YZY 89/M 82 sputum Gerontology 8 8/14/2019 + blaSRT−1, blaSRT−2, qnrS1, 
aac(6’)-Ic152 sputum 64 10/17/2019 +

LCD 58/M 31 blood Infection 0.5 1/31/2015 - blaCTX−M−14, blaLAP−2, blaSRT−1, 
blaOXA−1, qnrS1, ARR-3, mph(A), 
aac(6’)-Ib-cr, aac(6’)-Ic, aac(3)-
Iid, catB3,qacE, aac(6’)-Ib-cr, sul1

34 sputum 8 3/1/2015 -

*: including β-lactam, quinolone and aminoglycoside resistance genes

https://cge.cbs.dtu.dk/services/ResFinder/
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next to each box. Numbers next to the lines indicated the 
distinct allelic genes between two strains.

The transformation mechanism of carbapenem resistance 
in obtaining groups
Table 1 reveals that the MICMEM of strains in obtaining 
groups (group CMY, LAC, YQS and ZFB) increased by 
acquiring a blaKPC gene. The mRNA expression level of 
blaKPC was detected from none to a normal cycle thresh-
old (CT) value in each group by quantitative polymerase 
chain reaction (qPCR). The normal CT values detected in 
group CMY, LAC, YQS and ZFB were 22.68, 17.54, 15.36 
and 17.07, respectively. It was observed that the blaKPC 
is located in the IncF type plasmid with two transposase 
around it, one of which were directly connected with the 
blaKPC. However, there was no blaKPC gene exist in CRKP, 
CRAB and CRPA strains which isolated earlier than 

strain 89 and strain 125 from the same patient (Supple-
mental Fig. 1).

The mechanism of carbapenem resistance transformation 
in persisting groups
In group FZX and group YZY (persisting groups), strains 
harboring the same blaKPC gene with different levels 
of minimum inhibitory concentration for meropenem 
(MICMEM) (Fig.  2A). The qPCR results confirmed the 
findings from the transcriptome sequencing data (data 
not shown), revealing a nine-fold increase in mRNA 
expression levels in group FZX and a two-fold increase 
in group YZY (Fig. 2B). The blaKPC genes were all located 
on the plasmids of the size above ~ 100 kb and belonged 
to the group incompatibility F. In group FZX, the genetic 
context of blaKPC exhibited 15 different base pairs dis-
tributed mostly in blaKPC and in transposable genes 
upstream and downstream of it (Supplemental Fig. 2). In 

Fig. 2 Comparison of relative KPC expression levels in persisting groups. (A). The MICMEM of persisting groups.; (B). The relative mRNA expression of blaKPC 
gene in persisting groups MICMEM: minimum inhibitory concentration of meropenem. *:P < 0.01, ns: not significant

 

Fig. 1 Minimum spanning tree of fourteen strains from seven groups
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contrast, the genetic context of blaKPC was identical in 
group YZY. Furthermore, all groups exhibited at least a 
two-fold decrease in MICMEM under the influence of car-
bonyl cyanide m-chlorophenyl hydrazine (CCCP) (Sup-
plemental Table 2).

The mechanism of carbapenem resistance transformation 
in missing group
Strains in group LCD (missing group) were separated 
from different source but shared the same clonal type 
with the obtaining groups. Despite the absence of car-
bapenemase-encoding genes, these strains carried two 
β-lactamase genes, including blaCTX−M−14, blaSRT−1 
and blaSRT−2, similar to other strains. However, with a 
result of BLAST, strain 34 lost a porin gene (Gene ID: 
64,177,395) and was more than six times that of strain 31 
in blaCTX−M−14 expression level (Fig. 3).

Discussion
In this study, we observed the diverse carbapenem 
resistant transformation mechanism of S. marcescens 
strains. Three patients in seven were stayed in neuro-
surgery department and two were in intensive care unit 
during the hospitalization. Besides, only three patients 
in persisting groups were clinical improved. It was sug-
gested that the selection pressure led to the usage of at 
least one of the broad-spectrum antibiotics (meropenem, 
cefoperazone sulbactam and piperacillin tazobactam) 
in each patient. The transformation mechanism showed 
a potential relationship with clonal types of each group 
which indicated the different transformation mecha-
nisms of strains were influenced by the specific genetic 
background.

In the analysis of horizontal gene transfer process of 
blaKPC, various species of carbapenem-resistant strains 
were observed in the same patient. As demonstrated in 
Supplemental Fig. 1, we did not find any evidence of gene 

transferring since none of the strains harboring blaKPC 
gene. Actually, they possessed β-lactam genes including 
blaOXA and blaNDM. The blaKPC-harboring plasmids in 
obtaining groups were IncF types and shared the simi-
lar gene context of blaKPC with persisting groups. Our 
work previously confirmed that the pathogenic micro-
organisms could either being cross-regional transmitted 
between the environment and humans [21], or being lim-
ited to a specific area [22]. Above all, we supposed that 
the blaKPC gene was more likely being transferred from 
other strains rather than a new clone replacement.

In persisting groups, it was indicated that the mecha-
nism of changed carbapenem resistance was the upreg-
ulation of the blaKPC expression. With the comparison 
of the blaKPC gene context, the blaKPC expression of 
strain 26 probably upregulated by several gaps. How-
ever, mutations of the mobile elements around it which 
was not determined (Supplemental Fig.  2). No change 
of the sequence was observed between strains 82 and 
152. Because of the significant inhibition effect of CCCP 
(Supplemental Table 2), the increased MICMEM of strain 
152 might partly attributed to the efflux pump function 
rather than the upregulated expression of blaKPC.

In fact, the efflux pumps played a common role in all 
strains was observed in the present study. As Supple-
mental Table 2 showed, the MICMEM of all strains were 
significantly decreased to a susceptible level. It was pro-
posed that CCCP not only regulated the efflux pumps of 
carbapenem, but also the expression of blaKPC, which was 
a major contributor to carbapenem resistance. As previ-
ously reported, the MacB ABC transporter forms a tri-
partite efflux pump with the MacA adaptor protein and 
TolC outer membrane exit duct to expel antibiotics from 
Gram-negative bacteria [23]. Since various mechanisms 
have been reported, a series of efflux pumps also playing 
an important role in tigecycline resistance [24–28], but 
none is confirmed in carbapenem resistance. Till now, 
only a few efflux systems that belong to different families 
have been reported for S. marcescens. A comprehensive 
review of efflux systems was conducted, which included 
a bioinformatical analysis of the genes encoding the 
RND type systems in S. marcescens, based on the homol-
ogy with the relevant E. coli genes [29]. It will promote 
our understanding of the physiology of the bacteria and 
detect new molecular mechanisms of resistance.

This was the first exploration of the evolution of drug 
resistance in CRSM in vivo, according to current stud-
ies. This research was restricted in some aspects of the 
process which necessitate further investigation. One is 
the regulation of the blaKPC that was rarely reported in 
related literature. To confirm the exact efflux pump target 
on the specific drug is also a difficult task and required 
more efforts. Besides, there still has some mechanisms Fig. 3 Comparison of AmpC gene expression levels in missing group. 

CTX-M-14: blaCTX−M−14; SRT-1: blaSRT−1. *:P < 0.01, ns: not significant
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which could be varied by clonal types and have not been 
detected and mentioned in this study.

The clone replacement does not seem to be the usual 
means of carbapenem resistance alteration in S. marces-
cens, as it necessitates the bypassing of hand hygiene and 
maintaining a distance. In clinical practice, antibiotics 
are the last sword to fight against the infection, but often 
with a not sharp edge. Thus, the infection control strategy 
should take the primary and dominant role in preventing 
the transmission of drug resistance gene. Besides, a bet-
ter understanding and prediction of resistance patterns 
of a pathogen will lead to a better selection of active anti-
biotics for the treatment of multidrug-resistant infections 
[30]. Therefore, more attention should be paid to the 
efflux effect of drug research and development in future 
because of the extensive role in drug resistance.

Conclusion
S. marcescens strains acquired carbapenem-resistance in 
vivo through the different drug resistance mechanism 
instead of clone replacing. It also suggested that the spe-
cific mechanism of carbapenem resistance was probably 
related to specific clonal types. These insights into the 
complex mechanisms underlying carbapenem resistance 
acquisition have important implications for the develop-
ment of effective strategies to combat antibiotic resis-
tance in clinical settings.
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