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Abstract 

Background The possibility of recovering metagenome-assembled genomes (MAGs) from sequence reads 
allows for further insights into microbial communities and their members, possibly even analyzing such sequences 
with tools designed for single-isolate genomes. As result quality depends on sequence quality, performance of tools 
for single-isolate genomes on MAGs should be tested beforehand. Bioinformatics can be leveraged to quickly create 
varied synthetic test sets with known composition for this purpose.

Results We present MAGICIAN, a flexible, user-friendly pipeline for the simulation of MAGs. MAGICIAN combines 
a synthetic metagenome simulator with a metagenomic assembly and binning pipeline to simulate MAGs based 
on user-supplied input genomes, allowing users to test performance of tools on MAGs while having a ground truth 
to compare results to. Using MAGICIAN, we found that even very slight (1%) changes in depth of coverage can drasti-
cally affect whether a genome can be recovered. We also demonstrate the use of simulated MAGs by evaluating 
the suitability of such genomes obtained with MAGICIAN’s current default pipeline for analysis with the antimicrobial 
resistance gene identification tool ResFinder.

Conclusions Using MAGICIAN, it is possible to simulate MAGs which, while generally high in quality, reflect issues 
encountered with real-world data, thus providing realistic best-case data. Evaluating the results of ResFinder analysis 
of these genomes revealed a risk for plausible-looking false positives, which underlines the need for pipeline valida-
tion so that researchers are aware of the potential issues when interpreting real-world data. Furthermore, the effects 
of fluctuations in depth of coverage on genome recovery in our simulated “random sequencing” warrant further 
investigation and indicate random subsampling of reads may affect discovery of more genomes.
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Background
Metagenomics and MAGs
In recent years, metagenomic technologies have grown 
in importance in a wide range of fields, from ecol-
ogy to healthcare [1]. “Shotgun metagenomics”, the 

non-targeted sequencing of microbial genomes in a sam-
ple, allows the investigation of complex microbial com-
munities by a number of analyses [2].

Analyzing metagenomes through de novo assembly to 
contigs and binning of those contigs to yield so-called 
metagenome-assembled genomes (MAGs) has become 
increasingly common over the course of the last years, 
with studies assembling large numbers of genomes 
from metagenomic reads (see for example [3–5]). This 
approach has already provided a greater overview of 
microbial diversity and deeper insights into new meta-
bolic pathways [6]. Some have even attempted to analyze 
MAGs with tools originally designed for single-isolate 
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genomes, for instance by using the genome mining tool 
antiSMASH to predict potential natural products in a 
number of MAGs [7]. However, the quality of the results 
of such analyses depends on the quality of the input (see 
e.g. [8] for how this applies to antiSMASH). It is thus 
necessary to establish what level of MAG quality is nec-
essary to yield reliable results from tools designed for iso-
lated genomes. Manually completed and curated MAGs 
would be ideal when using MAGs as input for single-iso-
late tools, as even high-quality automatically assembled 
MAGs have been found to contain errors [6]. How-
ever, this is a time-consuming process; with some stud-
ies producing as many as 150,000 MAGs, automation is 
required to feasibly explore the wealth of available data. 
It therefore is necessary to evaluate errors of MAG gen-
erating pipelines and their effects on results from single-
isolate tools.

Simulating MAGs: motivation and methods
“Real-world” data is commonly used in benchmarking 
and optimization studies for genome assemblers and bin-
ners, as seen for example in a study by Papudeshi et  al. 
[9] comparing three assemblers and two binners. This 
has the advantage of reflecting the complexity of the data 
processed with such programs, but means the underlying 
composition of the community used for testing remains 
unknown [10, 11]. When evaluating the performance of 
tools meant for single-isolate WGS rather than metage-
nomes on MAGs, the issue becomes even greater - in 
some cases, assembly-free methods provide some basis 
for comparison, but it is difficult to confirm the results of 
analyses where genomic context is relevant.

For such purposes, a potential alternative may be the 
use of synthetic metagenomes - a term covering both 
approaches in which a community is simulated by pool-
ing DNA from various organisms in  vitro and sequenc-
ing it (e.g. the MBARC-26 dataset [12]), and ones in 
which existing, complete genomes are used to simulate 
metagenomic reads in silico (e.g. the data used in the 
CAMI challenge [13]). With these synthetic metage-
nomes, the composition of the community and the 
genomes of the organisms comprising it are already 
known; this is especially helpful in examining the per-
formance of single-isolate tools on MAGs, as one can 
obtain a point of comparison by analyzing the original 
sequences with the tool in question. The approach is also 
highly flexible - one can fine-tune community composi-
tion to suit any specific question, and for in silico syn-
thetic metagenomes, changing a few lines of code may be 
all that is required to change sequencing technology. A 
number of standalone read simulators emulating differ-
ent sequencers can be employed to simulate metagen-
omic reads, or one may use pipelines such as CAMISIM 

[14], a tool originally developed for the aforementioned 
CAMI challenge that can utilize multiple read simula-
tors in order to simulate Illumina, Nanopore, PacBio and 
error-free reads, or Tamock [11], which recreates the 
taxonomic composition of existing metagenomic sam-
ples with reads generated from reference genomes. How-
ever, no similarly flexible tool for the simulation of MAGs 
has been published; we therefore present MAGICIAN, 
a user-friendly pipeline for MAG simulation for a wide 
range of purposes.

Antimicrobial resistance monitoring 
through metagenomics ‑ a case for MAGs?
One challenge which may be addressed by metagenom-
ics is the rise of antimicrobial resistance (AMR) - a global 
challenge which threatens to make the treatment of even 
common infections a matter of chance [15]. To overcome 
this threat, metagenomic methods have been employed 
to monitor the spread of AMR, up to and including the 
global surveillance of antimicrobial resistance through 
metagenomic analysis of sewage, as proposed in a recent 
study examining samples from 60 countries [16], or other 
environmental samples such as samples from public 
transit systems [17]. Using a read-based approach, the 
study of Hendriksen et al. [16] was able to make impor-
tant observations on the global prevalence and distribu-
tion of antimicrobial resistance genes (ARGs). Yet more 
information could be gained by complementing this with 
an assembly-based approach - in addition to identifying 
what genes were found in a sample, MAGs would allow 
to place them into context, thus revealing e.g. whether a 
certain ARG was present due to the outbreak of a resist-
ant pathogen or coincidentally occurred in a commensal 
organism, or whether a large number of ARGs belonged 
to many organisms or a few multiresistant “superbugs”. 
As valuable as the information from this may be, how-
ever, errors in such analyses could have severe conse-
quences - a wrongly assembled MAG could mean that 
a potential outbreak of a multiresistant pathogen is dis-
missed as a coincidental find in a commensal. We there-
fore decided to test the performance of a commonly used 
tool for AMR detection aimed at a broad range of people, 
ResFinder 4.0 [18], on MAGs to uncover any potential 
issues.

Materials and methods
As shown in Fig.  1A, MAGICIAN generates synthetic 
MAGs by first simulating reads from a metagenomic 
sample composed of specified organisms, assembling 
these reads, and binning the resulting contigs. After-
wards, various measures such as N50, L50 and simi-
larity to input genomes are generated. The workflow is 
implemented using Snakemake [19], as this allows for a 
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great degree of flexibility as well as a user-friendly way 
of handling dependencies by running each step of the 
workflow in a dedicated conda environment.

A detailed overview of the workflow including the 
tools used can be seen in Fig. 1B.

Input
To generate MAGs using MAGICIAN, sequences 
comprising an in silico “metagenomic community” (in 
FASTA or GenBank format) are required. The user sup-
plies these through a comma-separated overview table 
containing the path to each sequence, information on 
whether it is a chromosome or plasmid sequence, as 
well as the relative amount of genome copies of the 
sequences in each “community” simulated (“relative 
abundance” for brevity, following the terminology of 

CAMISIM [14], the metagenome simulation pipeline 
used). An example of such a table is seen in Table 1.

MAGICIAN is then run through a Python script which 
takes the overview table as input. The pipeline defaults 
to running the entire workflow, but desired target file 
or rule can be specified, as with a Snakemake workflow; 
error profiles used for read simulation (see below) can 
be specified, and commands may be passed through to 
Snakemake itself. A configuration file is used to specify 

Fig. 1 A Diagram of the process in the simulated experiments; 1: the user supplies genomes and their required relative abundances for one 
or more community samples. 2: Microbiomes with the user-supplied compositions are simulated. 3: Shotgun metagenomic sequencing 
of the microbiomes is simulated resulting in reads with the chosen error profile. 4: Metagenomic assembly is performed on each microbiome. 5: 
Genomic binning is performed in an attemt to group the contigs/scaffolds into original input genomes. 6: The metagenomic bins are compared 
to the user-supplied input genomes. 7: Summary tables are provided to the user showing matched pairs of genomes and bins, how well they 
cover each other and differ in terms of fragmentation, % GC, length, and completion. Note that only a single summary table corresponding 
to community_1 (left) is shown. B A detailed overview of the workflow of MAGICIAN, from generation of configuration files for CAMISIM 
to summarizing quality control measures, showing the software used. Created with BioRender.com

Table 1 Sample input table for the MAGICIAN pipeline

genomes seq_type sample_1 sample_2

/path/to/seq_1.fa chromosome 1 2

/path/to/seq_2.gbk chromosome 1 1

/path/to/seq_3.gbk plasmid 1 3
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what environment manager to use as well as the location 
of CAMISIM (see below).

Read simulation
The metagenome simulation pipeline CAMISIM [14] is 
used to simulate the initial metagenomic sample. Spe-
cifically, Illumina reads are simulated by using the read 
simulator ART [20] within CAMISIM; to allow users to 
simulate reads from other sequencers than those already 
included with CAMISIM, a version of CAMISIM which 
is able to use user-supplied error profiles with ART is 
required. In the current version of MAGICIAN, this is 
implemented through a fork of CAMISIM (code avail-
able at https:// github. com/ KatSt einke/ CAMIS IM), a 
functionality that has since been integrated in CAMI-
SIM with version 1.3. CAMISIM simulates forward and 
reverse reads for each genome individually; to obtain a 
“metagenomic dataset”, reads are then pooled to obtain 
two files respectively containing all forward and all 
reverse reads.

MAG creation
To obtain synthetic MAGs, the pooled reads are pro-
cessed with a workflow that closely follows realistic 
workflows:

• reads are trimmed with BBDuk2 [21]
• trimmed reads are assembled using metaSPAdes [22]
• assembled scaffolds are filtered by size using BBMap’s 

rename.sh script [21]
• reads are mapped back to the filtered scaffolds using 

BBMap; SAMtools [23] is then used to convert the 
mapped reads to BAM format and sort them by 
coordinates, and finally a depth file giving depth of 
coverage for each scaffold is generated with the jgi_
summarize_bam_contig_depths tool included with 
MetaBAT2 [24]

• scaffolds are binned using MetaBAT2; in simulated 
communities that contain plasmids, minimum bin 
size is reduced to avoid excluding all but the largest 
plasmids

Output
The primary output of MAGICIAN consists of the syn-
thetic MAGs simulated on the basis of the supplied 
genomes. To evaluate how closely these match the 
source genomes, MAGICIAN also performs a number of 
analyses:

• contig and scaffold statistics are obtained with the 
statswrapper.sh script in BBMap [21], so that issues 

such as substantial fragmentation or large differences 
in GC content can be identified.

• taxonomy, completeness and contamination are esti-
mated using CheckM [25]

• as the original sequences are known, the synthetic 
MAGs are compared to these using dRep compare 
[26], which allows for a direct evaluation of sequence 
similarity between synthetic MAGs and original 
sequences using average nucleotide identity (ANI). 
The pipeline uses dRep compare’s default ANImf 
algorithm, which calculates ANI and clusters based 
on Nucmer [27] alignments which are filtered to only 
include the longest consistent alignments for refer-
ence and query respectively.

Results of these analyses are then summarized to 
give the user an overview of the relevant statistics. This 
includes both the statistics described above for bins and 
original genomes in a “general summary” table, and a 
comparison of each bin to the original sequence to which 
it has the highest ANI in a “bin summary” table. Exam-
ples of such tables are given as Additional files 1 (general 
summary) and 2 (bin summary), taken directly from the 
pipeline’s output for one replicate of a MAGICIAN run 
with a simulated microbial community used in this work 
(community 1a, described below under “Constructing 
synthetic metagenomes for testing”).

Code availability
The code of MAGICIAN can be found at https:// github. 
com/ KatSt einke/ magic ian (https:// doi. org/ 10. 5281/ 
zenodo. 10144 427).

Constructing synthetic metagenomes for testing
In order to test the performance of MAGICIAN, a col-
lection of metagenomic samples consisting of 17 organ-
isms (see Supplementary Table  1) was simulated as 
detailed below. Organisms comprising the community 
were selected to prioritize phylogenetic diversity (with 
organisms sharing different taxonomic levels), as well as 
diversity in GC content and genome size. Both common 
laboratory strains and clinically relevant organisms 
such as the ESKAPE pathogens [28] were included. To 
evaluate whether assembly and binning issues caused 
by the presence of closely related organisms could be 
reproduced by MAGICIAN output, several differ-
ent samples containing one or more close relatives of 
organisms in the community were added. These formed 
community 1a (with multiple related organisms) and 
community 1b (with a single pair of related organisms). 
Some of the organisms selected also carried plasmids 

https://github.com/KatSteinke/CAMISIM
https://github.com/KatSteinke/magician
https://github.com/KatSteinke/magician
https://doi.org/10.5281/zenodo.10144427
https://doi.org/10.5281/zenodo.10144427
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- specifically, Acinetobacter baumannii XH386, Bifi-
dobacterium choerinum FMB-1, Enterobacter cloacae 
EN3600, Enterococcus faecium isolate Ef_aus00233, and 
Salmonella Typhimurium 81741. Plasmid sequences 
were not included in the original community, but a 
separate community (“community 2”) which included 
these sequences were simulated in order to examine the 
effects of the presence of plasmids.

Quite surprisingly, seemingly small variations in read 
simulation even of abundant organisms substantially 
affected binning, to the point of genomes no longer 
being reconstructed. Simulations were repeated in trip-
licate to compensate for this, with the exception of the 
“baseline” community, which was simulated five times 
in order to investigate the issue.

To obtain the baseline community, the relative 
amount of copies for each organism in the community 
(“relative abundance” in CAMISIM) was initially gen-
erated by randomly drawing from a uniform distribu-
tion between 1 and 3.5, then manually adjusting the 
distribution to avoid organisms not being recovered 
due to low abundance as well as “hybrid bins” arising 
from related organisms with too similar abundance, so 
that the baseline represented a synthetic “best case” to 
which issues could then be introduced systematically. 
However, due to the abovementioned effect of random 
variation, recovery of all source organisms could not be 
consistently achieved.

Investigating failure to recover source organisms
In order to investigate the effect of variations in depth 
on recovery of source organisms further, reads from 
one replicate of simulated community 1a in which con-
tigs from one organism (B. cereus) could not be binned 
were randomly downsampled in triplicate, retaining 
99% of the reads. This was performed with sorted .bam 
files, the final step before calculating depth, using refor-
mat.sh from the BBTools suite [21]:

 Depth was then recalculated using the downsampled 
files in the same manner as in the MAGICIAN pipeline 
proper. Binning was then performed with MetaBAT2 
once more, using the same settings (including the ran-
dom seed for MetaBAT2) as in MAGICIAN, but with the 
depth files obtained with the downsampled reads. Finally, 
bins obtained in this manner were compared to the origi-
nal genomes using dRep compare with the settings used 
in MAGICIAN to investigate whether scaffolds from the 
“missing” organism could be binned.

Matching bins to original genomes
To compare the simulated MAGs to the sequences 
they were derived from, each source sequence (genome 
or plasmid) was assigned at most one bin for ease of 
analysis. As a bin also could match multiple source 
sequences, it was also necessary to ensure that each bin 
was only assigned to at most one source sequence. A 
bin was therefore only assigned to a source sequence 
if a) the bin was the bin with the highest ANI to the 
source sequence, as determined by dRep compare, b) 
the source sequence was the sequence with the highest 
ANI to the bin, as determined by dRep compare, and 
c) this bin was not simply the one that contained all 
unbinned scaffolds. Throughout this work, when dis-
cussing matches between bins and source sequences, 
this was the method applied, unless stated otherwise. 
For brevity, bins that have been matched to a source 
sequence in this way will generally be referred to by 
the source sequence’s name in figures unless explicitly 
noted otherwise. To aid in this process, MAGICIAN 
reports the closest source sequence for each bin (cri-
terion b)) in one of the output files produced, the “bin 
summary” table. An example of such a table is included 
as Additional file 2.

Identifying contamination
As the original genomes were known, contamination 
could be accurately calculated rather than estimated, 
through the alignment of input sequences to output 
bins. To examine alignments in detail, alignment was 
performed using Nucmer version 3.23 [27] at default 
settings: 

 and vice versa. Subsequently, hits were filtered using 
show-coords to only include matches with a length of at 
least 2000 basepairs and 70% identity:

 For comparison, the table of results was then filtered 
further in Python using the pandas library to obtain only 
hits with 100% identity.

Performance of a single‑genome tool: ResFinder
ResFinder 4.0 [18] was run on FASTA files of the origi-
nal genomes as well as the simulated MAGs. As one test 
dataset included two Salmonella Typhimurium strains 
differing in the presence of a point mutation confer-
ring resistance, “Salmonella” was selected as the taxa for 
the purpose of identifying point mutations. It was first 
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established which ARGs (and mutations in the case of 
Salmonella) were found by ResFinder in the original 
sequences used as a basis for the synthetic metagenome. 
AMR predictions were obtained for all 84 antimicrobi-
als and antimicrobial combinations available in Res-
Finder. Subsequently, the MAGs reconstructed from 
the different “samples” were analyzed with ResFinder 
and results were compared. For evaluating the results, 
true and false positives and negatives were defined by 
whether predicted antimicrobial resistances and sus-
ceptibilities in a MAG matched these of the origi-
nal genome it matched, where this was applicable; the 
organism’s true AMR profile was not considered. From 
these observations, sensitivity, specificity, accuracy, pre-
cision and F-score were calculated for each simulated 
metagenomic community.

Statistical analysis
Statistical analysis was performed in R.

Results
Genome retrieval and factors affecting it
As an initial demonstration of MAGICIAN’s core func-
tionality, a microbial community consisting of 17 organ-
isms was simulated. Metagenome composition was 
subsequently varied to explore their impact on the MAGs 
the pipeline produced. As shown in Fig. 2, in the baseline 
community, the majority of bins fulfilled Bowers et  al.’s 
completeness and contamination cutoffs for high-quality 
genomes (over 90% completeness, under 5% contamina-
tion) when using CheckM [29]. In simulated community 

1a, containing multiple related organisms, multiple bins 
failed the completeness and/or contamination thresh-
olds, while in simulated community 1b, with only one 
pair of related organisms, issues were only visible in two 
out of three replicates. The addition of plasmids in simu-
lated community 2 did not appear to affect completeness 
and contamination scores, likely because plasmids were 
not recovered in the first place.

When identifying genome completeness and con-
tamination by aligning bins to the original genomes 
using Mummer, a similar pattern is visible (see Supple-
mentary Table 2). However, in some cases contamina-
tion appears far more substantial than detected with 
CheckM. As expected, related organisms often are the 
source of the contamination, such as K. pneumoniae 
sequences being found in a bin primarily matching 
Enterobacter cloacae.

An additional finding which can be seen in Fig.  2 is 
that relatively small differences in simulated reads - spe-
cifically, a different random seed - substantially affected 
the resulting bins. Despite all other parameters being 
identical, simulations of the baseline community led to 
a substantially more contaminated bin in only one rep-
licate, and incomplete bins in two. The issue becomes 
even more apparent upon matching bins to source 
genomes - in several simulations of the baseline com-
munity, no bin matching B. cereus ATCC 14579 was 
found, while dRep compare showed the closest match 
to B. cereus ATCC 14579 was the unbinned contigs. 
This may for instance be seen in the dRep results of 
Additional file  1, and the source-to-bin matches in 

Fig. 2 Completeness and contamination values calculated by CheckM for the baseline community, communities with related organisms, 
and communities with plasmids, colored by replicate. Dotted lines represent cutoffs for contamination and completeness for high-quality genomes. 
Plotted in R using ggplot2
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Additional file  2. No obvious differences in read qual-
ity or coverage of the genome were apparent between 
replicates, however (see Supplementary Fig. 1), so that 
no cause for the issue was apparent. To investigate the 
effects of small fluctuations in depth, one dataset in 
which B. cereus scaffolds failed to be binned was sub-
sampled to retain 99% of the reads in three replicates; 
in these, B. cereus scaffolds could be binned (see Addi-
tional file 3 for dRep compare’s Nucmer-based Ndb.csv 
output for all three replicates).

Performance of ResFinder on simulated MAGs
To demonstrate the utility of simulated MAGs in evalu-
ating whether a given assembly and binning pipeline 
results in metagenomic assemblies of sufficient quality 
for use with a given tool, MAGs reconstructed from the 
various simulated samples were then analyzed with Res-
Finder, a tool used to predict AMR. In general, F-scores 
seemed to indicate acceptable sensitivity and specificity, 
ranging from 0.74 to 0.84. As expected, ResFinder per-
formed worse for the simulated communities introducing 
known issues with MAG assembly; when multiple closely 
related organisms were added (community 1a), F-scores 
worsened significantly compared to the baseline, though 
a trend may be visible for the other communities (see 
Supplementary Table 3).

Challenges encountered in individual genomes
While examining results on a community level did not 
suggest drastic differences between results obtained 

with the original sequences and with the reconstructed 
MAGs, this could vary substantially on an individual 
level. This is visible in Fig. 3, showing ARG counts aver-
aged across triplicates for each organism in each simu-
lated community. For instance, while the original genome 
of Acinetobacter baumannii XH386 was predicted to 
contain 18 ARGs, the MAGs in the baseline community 
contained only six of them. Most commonly, as in the 
case of A. baumannii XH368, the issue was that not all 
ARGs present in a sequence could be found in the corre-
sponding bins. With the introduction of plasmids, shown 
in simulated community 2, further issues appeared. As 
seen in Fig.  3, Escherichia coli K-12 was not predicted 
to contain any ARGs; however, when low copy-num-
ber plasmids were added to the simulated community, 
MAGs matching E. coli K-12 were predicted to contain 
the blaCTX-M-3 gene, which encodes the extended-
spectrum beta-lactamase blaCTX [30], in two out of 
three replicates. From the original non-metagenomic 
sequences, we can see this gene actually originates from 
the Enterobacter cloacae EN3600 plasmid unnamed6.

Discussion
Applicability of MAGICIAN for MAG simulation
MAGICIAN provides a convenient way to simulate 
entire modern, genome-focused metagenomic studies in 
silico. Most MAGs simulated in this study fulfilled com-
pleteness and contamination requirements for high qual-
ity draft genomes as defined by Bowers et al. [29]; while 
this of course is not the case for all MAGs obtained in 
real studies, many such studies result in so many MAGs 

Fig. 3 Heatmap showing the absolute amount of AMR genes in each organism (x-axis) or its matching bin by community (y-axis), averaged 
across replicates. Gene counts in the original sequences are shown in the leftmost column. Only chromosomal sequences were included 
as plasmids were too rarely recovered to add meaningful information. The plot was created in R using ggplot2
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that further investigation could easily be limited to high-
quality genomes while still obtaining large amounts of 
data. Based on the “baseline” community, metagenomic 
communities were put together as “test cases” provoking 
a range of issues occurring in real metagenomic samples. 
The introduction of closely related organisms in com-
munities 1a and 1b led to decreased completeness and 
increased contamination due to relatively highly frag-
mented bins and “hybrid bins” caused by metaSPAdes’s 
attempts to prevent this fragmentation through “con-
sensus assemblies” [22]. Both of these issues have been 
found to occur in studies of real MAGs [6]. Plasmids 
were generally not recovered; this, too, is consistent with 
the challenges posed by plasmids in real-world metagen-
omic samples [31, 32]. However, the presence of plasmids 
may still affect the assembled MAGs and thereby down-
stream analysis, as plasmids may be binned with entirely 
wrong organisms. For optimizing MAG quality, one 
might therefore consider actively removing the circular 
plasmid molecules before sequencing.

However, MAG quality and reconstruction was also 
affected by another factor: the random seed used in 
read simulation with ART. With all other parameters 
in the pipeline unchanged, different random seeds for 
read simulation resulted in substantial differences in the 
recovery of MAGs, with scaffolds from B. cereus failing to 
be binned on multiple occasions. No differences in read 
quality were evident using FastQC, and when examining 
mappings of the generated reads to the source genome, 
no obvious anomalies occurring only in one of the two 
groups were evident. The presence of scaffolds belonging 
to B. cereus in the assemblies produced by metaSPAdes 
was also verified. No anomalies were apparent. Subsam-
pling one read set which produced such binning issues 
to retain 99% of reads led to successful binning of the 
scaffolds from the “missing” organism, suggesting that 
small fluctuations in depth seem to have large and sur-
prising effects on the ability to recover genomes. While 
further investigation would have exceeded the scope of 
this work, it is clearly warranted in the future, to verify 
whether genome binning success is also this sensitive in 
real datasets. That could suggest even a slight sub-sam-
pling of real read sets could help discover many more 
previously missed MAGs and we hope MAGICIAN will 
help shape and pose such future hypotheses.

Use of simulated MAGs: testing single‑genome tools
To demonstrate how simulated MAGs generated by 
MAGICIAN could help evaluate the performance and 
pitfalls when using whole-genome tools on MAGs, we 
compared ResFinder AMR predictions of MAGICIAN 
input genomes and output bins.

While results generally appeared promising on a com-
munity level, individual organisms posed a number of 
issues, with large numbers of ARGs overlooked or in 
some cases even mis-binned to wrong, but plausible 
genomes.

The problem with plasmids: a plausible‑looking false positive
In the simulated microbial community containing low-
copy number plasmids, MAGs matching E. coli K-12, an 
organism without any ARGs in ResFinder, were found 
to contain the extended-spectrum beta-lactamase gene 
blaCTX-M-3. The incorrectly binned MAGs would not 
have aroused immediate suspicion: they were not unusu-
ally fragmented, and their genome size, matching that of 
the original genome, was not inconsistent with CheckM 
placing them within Enterobacteriaceae. Without knowl-
edge of the underlying “true” sequence, a researcher 
faced with the ResFinder prediction of blaCTX-M-3 in 
an organism placed within Enterobacteriacea by CheckM 
would now likely use their knowledge of ARGs in order 
to investigate the result, checking for irregularities such 
as atypical ARGs or acquired resistance to an antibiotic 
the organism is intrinsically resistant to. However, in this 
case, the result would still be plausible, as blaCTX-M-3 
is indeed found in Enterobacteriaceae [30]. Some ques-
tions may be raised by the gene being plasmid-borne, but 
these too have a plausible answer indicating a far smaller 
error: tetranucleotide frequency, one of the factors used 
by MetaBAT2 in binning contigs [24], can be similar in 
plasmids and their hosts [33] - absent the underlying 
sequences, this might indicate a low copy number plas-
mid being binned with its host, rather than an entirely 
different organism. Thus, the researcher could be led to 
accept ResFinder’s prediction and identify a common 
laboratory strain of E. coli as a potential ESBL-carrying 
pathogen. This clearly underlines the importance of 
using simulated MAGs whose underlying sequences 
are known in initial investigations of the performance 
of tools designed for single-isolate genomes on MAGs. 
Though the “ground truth” of course is not known for 
real metagenomic samples, knowing the types of errors 
occuring in MAGs should inform which conclusions are 
permissible.

Use of simulated MAGs: perspectives
In the present work, we showed the utility of MAGs 
created by MAGICIAN in evaluating the suitability of 
MAGs obtained with a given pipeline for analysis with 
a given single-isolate tool and investigating the impact 
of simulated metagenome composition on the results. 
Beyond this, MAGICIAN could also be used to simu-
late test datasets for use in developing and/or testing 
tools specifically designed to work with MAGs; while 
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the MAGs simulated here tend to err on the side of high 
quality, they do provide a “best case” to test against, and 
future versions of MAGICIAN may allow the combina-
tion of real-world reads with “spiked-in” simulated data.

Using MAGICIAN, metagenomic data from any step of 
a metagenomic assembly workflow, from reads to entire 
MAGs, can be simulated for a range of purposes. In the 
present work, MAGs simulated with MAGICIAN have 
been used to evaluate how one tool developed for single-
isolate genomes performed on MAGs obtained with a 
specific pipeline and how the composition of the simu-
lated metagenome impacted the results of the tool. The 
suitability of other pipelines both for this and other tools 
may be investigated in the future - different tools have 
different requirements, which may pose different chal-
lenges to MAG retrieval. As tools specifically designed 
to work with MAGs are developed, synthetic MAGs may 
also provide easily generated test sets to aid in this, as 
they tend to have the same issues as realistic data.

MAGICIAN: perspectives
The potential versatility of the Snakemake-based pipe-
line is far from exhausted. Further additions to the pipe-
line could make it more flexible by allowing the user to 
choose between e.g. read simulators, assemblers, bin-
ners and performing plasmid-specific assembly. More 
complex sequencing strategies such as the combination 
of short and long reads could also be simulated. This 
technique shows great results in modern hybrid assem-
blers like OPERA-MS [34]. Being able to select the right 
combination of instrument and sequencing depth could 
greatly increase the value of the final datasets. To better 
reflect the complexity of real metagenomic samples, an 
option to “spike” an existing sample with simulated reads 
could also be introduced.

Conclusions
MAGICIAN makes it possible to simulate metagenomic 
reads and MAGs from user-defined synthetic commu-
nities in silico and easily vary the composition of these 
communities and simulate large numbers of experiments. 
This allows users to investigate a wide range of questions 
and gain an estimate of best-case performance of the 
assembly/binning pipelines used and the suitability of 
results for downstream analysis tools before any sequenc-
ing is performed. To demonstrate this functionality, 
MAGs from a range of synthetic communities obtained 
by systematically varying an initial “baseline” community 
composition through introduction of related organisms 
and plasmids, as well as varying sequencing parameters, 
were simulated. It was subsequently evaluated how well 
MAGs could be recovered under the specific condi-
tions, and whether this was biologically plausible. Results 

generally resembled what could be expected from reality: 
plasmids could generally not be recovered, and recon-
structing closely related organisms was challenging. 
MAGs simulated in this work in fact demonstrated two 
common issues occurring with closely related organisms: 
in most cases, bins containing sequences from the related 
organisms were highly fragmented, but when using a pair 
of highly similar strains of Salmonella Typhimurium, 
metaSPAdes instead was able to create longer scaffolds 
based on combining the two, avoiding excessive fragmen-
tation but potentially creating chimeric sequences.

In certain edge cases, two samples simulated from the 
same underlying community composition, with the same 
read simulator with the same settings may result in sub-
stantially different results after binning, with one of the 
members of the synthetic community being unable to be 
reconstructed in one sample while being found without 
issues in the other, even though there were only slight 
differences in read simulation. This may warrant further 
investigation in  vitro, as this may reflect an important 
and arbitrary issue in real-world metagenomic datasets.

The use of simulated MAGs for investigating the suita-
bility of MAGs obtained with a given pipeline for a given 
tool was also demonstrated through analyzing the AMR 
profile of simulated MAGs with ResFinder. This showed 
generally promising results, but also revealed cases of 
acquired ARGs being wrongly binned to a genome unde-
serving of the blame. In some cases, these issues could 
only be identified because the sequences of the underly-
ing community were known. In summary, this work both 
provides a user-friendly, flexible tool for the simulation 
of MAGs for a wide range of uses, and demonstrates 
that it brings considerable advantages to one potential 
application.
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of a fixed seed for MetaBAT 2, the test of fixed seeds for both CAMISIM and 
MetaBAT 2, and five simulations with a random CAMISIM seed and fixed 
MetaBAT 2 seed. Read mappings were taken from CAMISIM output and 
visualized in the alignment viewer Tablet. Black coordinates on the left 
show the range of the entire overview, red coordinates on the right show 
the range selected in the red box.
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