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Abstract
Background Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and 
poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants 
in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the 
genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and 
Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and 
selection signatures.

Results We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. 
Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology 
terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). 
Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 
and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures 
specific to JD, SM, and SX, respectively.

Conclusions In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing 
a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of 
experimental animal genetic resources.

Keywords Laboratory ducks, Whole-genome resequencing, Genetic characteristics, Selection signature, Copy 
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Background
Genetic variation is an important genetic basis for indi-
vidual differences. Copy number variation (CNV) is 
a type of genetic variation that varies from 50  kb to a 
few Mb in size compared with the reference genome 
sequence of an organism, particularly a deletion event 
or duplication type affecting many base pairs [1]. Neigh-
boring CNV areas with overlapping regions can be 
merged into one large genomic segment referred as a 
copy number variant region (CNVR). CNV is a comple-
mentary genetic variant to a single nucleotide polymor-
phism (SNP), which has a more substantial impact on 
gene expression and function. For example, changing the 
genetic structure and dose, destroying a coding sequence, 
interfering with long-term gene regulation, and exposure 
of recessive genes, all of which have important implica-
tions for animal phenotypic polymorphism, disease sus-
ceptibility, and evolutionary adaptation [2–4].

With the development of large-scale human CNV 
research, substantial progress has been made in CNV 
detection in livestock and poultry species, including cat-
tle (Bos taurus) [5, 6], pigs (Sus scrofa) [7], goats (Capra 
hircus) [8], sheep (Ovis aries) [9], dogs (Canis familaris) 
[10], and chickens (Gallus gallus) [4]. To date, CNV 
overlapping genes screened in numerous animal mod-
els have been shown to be related to coat color [10, 11], 
meat quality [12], reproduction [13], immune response 
[14], disease [15], and environmental adaptations [16]. 
Moreover, CNVs provide resources towards the creation 
of new genes [17]. Compared with SNP chips and array 
comparative genomic hybridization (aCGH) microarrays 
chips, whole genome resequencing (WGRS) technology 
is more comprehensive and accurate for genome level 
recognition of CNVs, thereby improving the accuracy of 
functional genetic prediction [18].

Duck (Anas platyrhynchos) is the most widespread and 
agriculturally important waterfowl species in the world, 
providing significant economic benefits from its use as 
a high-quality source of meat, eggs, and feathers [19]. 
Furthermore, ducks are hosts for most avian diseases 
and have been shown to undergo high morbidity, long-
distance transmission and carry multiple viruses [20, 21]. 
Consequently, Specific Pathogen Free (SPF) ducks, which 
have been artificially bred to carry controlled microor-
ganisms and have a clear genetic background, are impor-
tant experimental materials for avian pathology research 
and the production of avian-derived biological products 
[22, 23]. Characterization of whole-genome sequence 
variation in SPF ducks and the identification of pheno-
type-related functional variants are crucial to assess their 
genetic quality and are necessary to guide future genome-
assisted breeding and disease studies.

With the availability of duck reference genome 
sequences, studies have successfully applied SNP loci 

identified by WGRS technology in population structure 
analysis [24], trait localization [25], and population evo-
lution [19] of ducks. However, CNVs in the duck genome 
have not been thoroughly studied on a genome wide 
basis. After Skinner et al. [26] obtained the first genomic 
CNV map of ducks using the aCGH detection method, 
only Xu et al. [27] has explored the CNVs associated with 
the number of cervical vertebrae in Pekin ducks using 
genome-wide association analysis. Herein, the CNVs of 
three representative experimental ducks, Jinding duck 
(JD), Shaoxing duck (SX), and Fujian Shanma duck (SM), 
were analyzed using the WGRS technique for the first 
time. They are often used as ancestral generations to 
breed new varieties because of their excellent fecundity 
and adaptive performance. Besides, the successful breed-
ing of JD, SX and SM populations has led to their wide 
use in research related to avian pathogens, such as New-
castle disease virus [28], avian influenza virus [29], and 
avian reovirus [30]. Our main objectives were to charac-
terize the genome wide CNV variation within and among 
populations, and identify CNVs and related functional 
genes associated with different phenotypic traits in each 
experimental duck. A significant number of experimental 
duck CNVs and candidate CNVRs were identified, which 
will provide a valuable resource for the genetic character-
ization of different experimental duck populations.

Materials and methods
Sample collection
SPF experimental ducks in this study represent the cur-
rent breeding ducks in China and were maintained in an 
isolation environment at the National Poultry Labora-
tory Animal Resource Center (LARC). The cultivation of 
SPF ducks requires a series of strict processes (Fig. 1). In 
brief, all ducks were raised based on high-quality breed-
ing eggs (SX are introduced from Shaoxing shelduck 
ancestor duck eggs of the Academy of Agricultural Sci-
ences in Zhejiang Province; JD are introduced from the 
National Waterfowl Base Resource Library in Taizhou, 
Jiangsu; SM are introduced from the Shelduck Origi-
nal Breeding Farm in Longyan City, Fujian), reared in 
positive pressure isolators in a barrier environment. 
The detection of pathogenic microorganisms was car-
ried out in regular population surveys to eliminate posi-
tive individuals and ducks were confirmed to be free of 
duck hepatitis virus I, duck plague virus, duck circovirus, 
duck tembusu virus, goose parvovirus, avian leukosis 
viruses, avian reovirus, avian influenza virus (H5 sub-
type (Re8 strain), H7 subtype, H9 subtype), Newcastle 
disease virus, and avian adenovirus II. Using the wing 
vein method, we collected blood samples from 30 SPF 
ducks of similar body weight at 42 weeks old, including 
JD (5♀, 5♂), SX (5♀, 5♂), and SM (5♀, 5♂). Samples were 
immediately snap-frozen in liquid nitrogen for further 
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extraction of genomic DNA. Table S1 shows the pheno-
typic descriptions of three breeds.

Sequencing data processing
Genomic DNA was extracted from blood samples and 
paired-end libraries were constructed (insert size of 
300–400 bp) using the Illumina NovaSeq 6000 platform 
(San Diego, CA, USA). Quality control was used to filter 
the reads to remove adapters and low-quality reads. The 
filtered raw reads were further processed to obtain high 

quality clean reads based on three strict filtering criteria: 
(1) removing reads with ≥ 10% unidentified nucleotides; 
(2) removing reads with > 50% bases having phred qual-
ity scores of ≤ 20; and (3) removing reads aligned to the 
barcode adapter. The clean reads were mapped to the 
Anas platyrhynchos reference genome obtained from 
the NCBI (https://www.ncbi.nlm.nih.gov/assembly/
GCF_015476345.1) using the BWA software, with the 
following parameters: mem -t 4 -k 32 -M [31]. Duplicates 
were removed using SAMtools software [32]. If multiple 

Fig. 1 Cultivation flow chart of SPF ducks
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read pairs had identical external coordinates, only the 
pair with the highest mapping quality were retained.

Detection of CNVs and CNVRs
We firstly used CNVnator software to detect the CNVs 
in each duck genome sample [33]. Quality control 
was performed on the raw CNVs of each sample. The 
screening criteria included a p-value < 0.01 (e-val1 cal-
culated using t-test statistics), size > 1  kb. CNV_type 
was judged based on the read depth (RD) value (dele-
tion: RD < 0.7; duplication: RD > 1.3). Then, CNVcaller 
was used to detect population-level CNVRs [34]. To 
obtain high-confidence CNVs and CNVRs, we per-
formed the following quality control procedures: (1) 
The CNVs of 10 samples from each group were fused 
using the “Merge” command of BEDTools [35]. (2) 
When overlapping sequences were at least > 1 bp along 
their genomic coordinates, we used the “intersect” 
command in BEDTools to merge multiple adjacent 
CNVs between individuals within a population into one 
CNVR and discarded each population or CNVRs that 
contained only one CNV in the metapopulation. We 
defined CNVRs containing only deletions as deleted 
CNVRs, duplicated CNVRs as duplicated CNVRs, and 
CNVRs containing both deletions and duplicates as 
complex CNVRs.

Functional enrichment analysis of CNVR-harboring genes
CNVR-harboring genes were searched in the Anas platy-
rhynchos reference genome, and completely and partially 
(≥ 50%) overlapping genes were retained for subsequent 

analysis. Functional enrichment analysis using gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [36], performed using the online tool 
DAVID (https://david.ncifcrf.gov/). A false discovery 
rate (FDR) < 0.05 was considered to indicate significant 
enrichment of candidate genes.

Population genetics of CNVRs
Levels of genetic differentiation among populations were 
evaluated by using the Fixation index (FST) method [37], 
using the -weir-fst-pop option in VCFtools [38]. Func-
tional enrichment analysis was performed on the top 
5% of CNVR loci showing extremely high FST values and 
tested whether these “outlier” loci were associated with 
important traits in ducks.

Results
Sequencing and CNV detection
Using Illumina paired-end sequencing technology, we 
obtained high-quality next generation sequencing data 
for 30 experimental ducks (Additional file 2: Table S2). 
The mapped read depth ranged from 19.65× to 28.33×, 
with an average depth of 22.65× per sample, indicat-
ing that these data were sufficient for further analy-
sis (Additional file 3: Table S3). We detected a total of 
73,012 CNVs, including 26,432 “duplication” events 
and 46,580 “deletion” events. The sizes of all the CNVs 
showed an L-shaped distribution (median size = 7.8 kb, 
average size = 19.0  kb) (Fig.  2a and Additional file 4: 
Table S4). At the individual level, we found an average 
of 1956 CNVs per duck genome, ranging from 1707 to 

Fig. 2 Genome-wide characterization of CNVs in the duck genome. (a) A histogram of the distribution of CNV length. (b) Total length and the total 
amount of CNVs identified in each sample
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2398 (Fig. 2b and Additional file 5: Table S5). By merg-
ing overlapping CNVs, a total of 4,810 CNVRs were 
obtained, covering 4.2% of the duck genome (Additional 
file 6: Table S6). Among them, 2,263; 2,127; and 2,128 
CNVRs were obtained in the SM, JD and SX ducks, 
respectively (Additional file 7: Fig. S1). There was a sig-
nificant positive linear relationship between the num-
ber of CNVRs and the corresponding autosomal size 
(R2 = 0.85, Fig. 3).

Functional annotation of the identified CNVRs
From the genome annotation, there were 750, 97, and 
92 CNVR-harboring genes detected only in SM, JD, 
and SX, respectively, while 2675 CNVR-harboring 
genes were detected in all three populations (Addi-
tional file 8: Fig. S2). The functional enrichment 
analysis showed that 31 GO terms were enriched in 
the CNVRharboring genes shared by the three popu-
lations, comprising 6 biological processes, 9 cellular 

Fig. 3 Genomic landscape of CNVRs. (a) A map of CNVRs in the duck genome; Two types of CNVR were identified, including duplication (yellow) and 
deletion (green). (b) Correlation between CNVR counts and chromosome length
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components, and 16 molecular functions. These GO 
terms were mainly related to olfactory receptor 
activity (GO:0004984) and signaling receptor activ-
ity (GO:0004888, GO:0060089, GO:0038023, and 
GO:0004930) (Additional file 9: Table S7). The KEGG 
pathway analysis identified 16 significantly enriched 
pathways, including olfactory transduction (ko04740) 
and the immune system (ko05320, ko04612, and 
ko04650) (Fig. 4 and Additional file 10: Table S8). Fur-
thermore, we performed functional enrichment analy-
sis of specific CNVR-harboring genes in the three duck 
populations. In particular, the CNVR-harboring genes 
specifically distributed in SM were mainly involved in 
oxygen transporter activity (GO:0005344) and oxygen 
binding (GO:0019825).

Population genetics of CNVRs
Through estimating the genome-wide FST to detect the 
CNVRs that were genetically differentiated in each duck 
population, we were able to perform the following com-
parisons: CNVRs from JD compared with those from SX 
and SM, CNVRs from SM compared with those from JD 
and SX, and CNVRs from SX compared with those from 
JD and SM. Based on the top 5% of the FST distribution, 
159 outlier loci that overlapped with 56 genes were con-
sidered highly divergent in JD (Fig.  5a and Additional 
file 11: Table S9). The functional analysis identified three 
significantly enriched pathways, including the C-type 
lectin receptor signaling pathway (ko04625), tuberculo-
sis (ko05152) and endocrine and other factor-regulated 
calcium reabsorption (ko04961) (Fig.  5b and Additional 

Fig. 4 KEGG pathway enrichment analysis (www.kegg.jp/kegg/kegg1.html). (a) Top 20 enriched signaling pathways of CNVR-harbored genes shared 
among the three duck populations. (b) Top 20 enriched signaling pathways for JD-, (c) SM-, and (d) SX-specific CNVR-harbored genes
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file 12: Table S10). Among all CNVRs analyzed, we iden-
tified a 2,000  bp deletion (chromosome 1: 83,517,601–
83,519,600  bp) in SPAG17 (encoding sperm-associated 
antigen 17) and a 1,600  bp deletion (chromosome 2: 
163,037,601–163,039,200 bp) in PTH1R (encoding para-
thyroid hormone 1 receptor). The frequencies of their 
deletion were high in JD, but lower in the other popula-
tions (Fig. 5c).

Based on the top 5% of the empirical FST distribution, 
159 outlier loci that overlapped with 51 genes were con-
sidered highly divergent in SM (Fig.  6a and Additional 
file 11: Table S9). KEGG pathway analysis showed that 
the enriched differentiated CNVR genes were mainly 
associated with viral myocarditis (ko05416), Staphylo-
coccus aureus infection (ko05150) and protein diges-
tion and absorption (ko04974) (Fig.  6b and Additional 
file 12: Table S10). The genome-wide distribution of 
FST showed that the most significantly variation was 
a 3,200  bp deletion (chromosome 2: 163,312,001–
163,315,200 bp) that overlapped with the CATHL3 gene 
(encoding cathelicidin 3) and a 3,600  bp duplication 

(chromosome 5: 55,372,001–55,375,600 bp) overlapping 
with the DMBT1 gene (encoding deleted in malignant 
brain tumors 1). The frequencies of these CNVRs in SM 
were lower relative to that those in the other popula-
tions (Fig. 6c).

In the selective sweep analyses, we identified 161 out-
lier loci overlapping with 65 genes that were considered 
highly divergent in SX (Fig.  7a and Additional file 11: 
Table S9). Functional analysis revealed that genes over-
lapping with differentiated CNVRs were enriched in 
autoimmune thyroid disease (ko05320) and glycerophos-
pholipid metabolism (ko00564) (Fig.  7b and Additional 
file 12: Table S10). Additionally, we identified the stron-
gest selection signal as a 2,000 bp deletion (chromosome 
14: 15,796,801–15,798,800  bp) containing the SLIT3 
gene (encoding slit guidance ligand 3) and a 2,400  bp 
deletion (chromosome 1: 181,252,801–181,255,200  bp) 
containing the TRPC4 gene (encoding transient receptor 
potential channel 4), the deletion frequencies of which 
were high in SX, but much lower in the other popula-
tions (Fig. 7c).

Fig. 5 Comparative genomic analysis for JD vs. SX and SM using population fixation index (FST). (a) Manhattan plot of genome-wide FST on each CNVR 
locus between for JD vs. SX and SM. (b) Top twenty enriched KEGG pathways for the genes overlapped with highly differentiated CNVRs for JD vs. SX and 
SM (www.kegg.jp/kegg/kegg1.html). (c) Allele frequencies of SPAG17 and PTH1R
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Discussion
Understanding the genetic basis of phenotypic differ-
ences is a major theme in animal science. CNVs, as 
important sources of genetic diversity, have attracted 
widespread attention in the last decade because of their 
dramatic phenotypic consequences [39, 40]. Studies 
have shown that the average size of avian genomes and 
the range of variation in genome size are the smallest 
among all vertebrate groups (http://www.genomesize.
com) and that the overall karyotype structure is highly 
conserved [41]. In addition, the number of CNVs is also 
lower in avian genomes compared with that in mamma-
lian genomes [42]. Therefore, avian genomes are partic-
ularly suitable to analyze CNVs because of their unique 
combination of features [41]. However, research related 
to avian CNVs (especially in ducks) is scarce. Herein, we 
detected the CNVs of three experimental duck species in 
China based on the WGRS technique, which identified 
2,263; 2,127; and 2,128 CNVRs for SM, JD, and SX ducks 
respectively by merging 73,012 CNVs from all duck sam-
ples. Compared with previous studies based on 600  K 
SNP chip array chicken CNV profiling [43], we detected 

about twice as many CNVRs per duck population, which 
is consistent with comparative genomics studies of 
chickens and Peking ducks reported by a previous study 
[26]. Furthermore, we found that the CNVRs accounted 
for 4.2% of the duck reference genome, whereas they 
accounted for 5.12% in chickens [43], 6.2% in yaks (Bos 
grunniens) [44], and 10.8% in goats [45]. The different 
number of samples, different detection methods, and 
different reference genomes likely contributed to the 
observed inconsistencies in CNVR counts. Our findings 
further complemented the research base of duck CNVRs. 
Notably, this study is the first to focus on the genomic 
CNVR maps of different experimental duck populations.

Genes located in CNVR regions provide a resource to 
study the biological relationships between CNVRs and 
the genetic basis of phenotypic variation caused by their 
broad molecular functions. The GO enrichment analysis 
revealed that the detected CNVRs of the three popula-
tions shared genes that were mostly enriched in terms 
of olfactory receptor activity. The term olfactory recep-
tor activity is the combination of an olfactory receptor 
and an odor, manifested by the transmission of a signal 

Fig. 6 Comparative genomic analysis for SM vs. JD and SX using population fixation index (FST). (a) Manhattan plot of genome-wide FST on each CNVR 
locus between for SM vs. JD and SX. (b) Top twenty enriched KEGG pathways for the genes overlapped with highly differentiated CNVRs for SM vs. JD and 
SX (www.kegg.jp/kegg/kegg1.html). (c) Allele frequencies of CATHL3 and DMBT1

 

http://www.genomesize.com
http://www.genomesize.com
http://www.kegg.jp/kegg/kegg1.html


Page 9 of 13Li et al. BMC Genomics           (2024) 25:17 

from one side of the membrane to the other in response 
to odor detection [46]. Odor is crucial to animal survival, 
because it contributes to the animal’s hedonic evalua-
tion of food, thereby effectively assisting the animal in 
choosing food and its possible consumption [47]. Previ-
ous studies have also reported an association of olfactory 
transduction with feed efficiency in cattle and their pro-
duction properties [48], and the remaining feed intake 
of pigs [49]. The experimental ducks used in this study 
were reared in a positive pressure isolator under a barrier 
environment, drinking acidified water, and were fed 60Co 
radiation sterile feed. This suggests that the high rate of 
olfactory receptor CNVR variability might help species 
adapt to specific environments more quickly by exerting 
in appetite regulation. The results of the KEGG signal-
ing pathway analysis showed that some CNVR-harboring 
genes were enriched in signaling pathways related to the 
immune system, such as antigen processing and presen-
tation, and autoimmune thyroid disease. As experimental 
ducks, they face specific living conditions. Strict purifica-
tion treatment involves blocking environmental pollution 

and re-infection pathways, regularly monitoring the 
quantity of pathogenic microorganisms, and eliminating 
positive individuals to ensure their freedom from epi-
demic diseases. Previous studies on SPF/non-SPF ani-
mals in histology [50], physiology, biochemistry [51] and 
epidemic susceptibility [52] revealed that SPF animals 
have a high susceptibility to pathogens, but stable genetic 
properties, making them a valuable resource for disease 
and immune research. Furthermore, immune-related 
genes evolve at a rapid rate [53, 54]. Thus, modulation 
of the immune system during pathogen-free cultivation 
is predictable. Collectively, the enriched CNVR overlap-
ping genes related to olfactory receptors and the immune 
system might help us to understand the common envi-
ronmental adaptation mechanisms. Notably, the oxygen 
transporter activity and oxygen binding pathways were 
significantly and specifically enriched in SM. These path-
ways have been identified in animals such as Tibetan 
sheep [55] and Tibetan chickens [56] to explain their 
adaptation to hypoxia. This coincides with the actual 
situation of this duck population. The production area of 

Fig. 7 Comparative genomic analysis for SX vs. JD and SM using population fixation index (FST). (a) Manhattan plot of genome-wide FST on each CNVR 
locus between for SX vs. JD and SM. (b) Top twenty enriched KEGG pathways for the genes overlapped with highly differentiated CNVRs for SX vs. JD and 
SM (www.kegg.jp/kegg/kegg1.html). (c) Allele frequencies of TRPC4 and SLIT3
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SM in Longyan Reserve in Fujian Province is mostly com-
posed of mountainous areas, suggesting that SM can sur-
vive well in an environment with a limited oxygen supply.

Selection signature analysis based on sequencing data 
can reveal genomic regions that have undergone artificial 
selection and environmental change during local adapta-
tion and evolution [57]. To screen for selection regions 
and genes specific to each population, the FST values for 
one population of experimental ducks compared with 
those of the other populations. Herein, the CNVR har-
boring genes SPAG17 and PTH1R showed significant 
differentiation in JD. SPAG17 encodes a multifunctional 
cytoplasmic protein that not only affects reproduction, 
but also is used extensively in the analysis of body-mea-
surement traits related to skeletal development [58]. 
SPAG17 plays a crucial role in determining human body 
height. SNPs of SPAG17 have been reported to be asso-
ciated with height and idiopathic short stature in infants 
[59], children [60], and adults [61]. In the livestock indus-
try, SPAG17 expression is often used as growth trait data 
to guide the scientific raising and breeding of animals, as 
reported in goats [58] and cattle [62]. PTH1R also plays 
an important role in skeletal homeostasis. After PTH 
activation of PTH1R, it mediates catabolic and anabolic 
processes in bone. PTHR1 gene mutation causes Jansen’s 
metaphyseal chondrodysplasia [63]. In another study, a 
51 bp indel polymorphism in the PTH1R gene was asso-
ciated with growth and carcass traits in chickens [64]. 
Therefore, the identification SPAG17 and PTH1R further 
deepened our understanding of the genetic mechanisms 
underlying growth traits in JD.

Although related issues have been extensively studied 
through SNPs, there have been few reports on CNVR-
based selection signals for adaptation to disease resis-
tance in humans and animals [65, 66]. In the present 
study, we highlighted genes (CATHL3 and DMBT) that 
overlapped highly differentiated CNVRs between SM 
and other duck populations. CATHL3 is a small cat-
ionic antimicrobial peptide with effective activity against 
a wide range of pathogens, including bacteria, viruses, 
and fungi [67]. Previous studies have confirmed that 
CATHL3 is a potential candidate gene related to disease 
resistance studies in humans [68] and Gir cattle (Bos 
indicus) [69]. Similarly, DMBT1, a member of the scav-
enger receptor cysteine-rich super family, is considered 
to play a role in tumorigenesis and pathogen defense 
[70]. A DMBT1-harbored SNP selection signal provides 
evidence of a bovine tuberculosis (bTB) susceptibility 
gene in cattle breeds [65]. SM inhabits a mountainous 
area that has been relatively closed to transportation for 
a long time, acting as a natural barrier to some extent. In 
addition, SM exists mainly in free-ranging populations 

with less vaccination during the breeding process. There-
fore, we speculated that CNVR-harbored CATHL3 and 
DMBT1 have undergone natural selection by moun-
tain ecology in SM, with possible importance in disease 
resistance. Further studies are warranted to characterize 
the causal relationship between these genes and disease 
resistance in SM.

Temperature stress (high or low temperatures) is one of 
the most serious environmental challenges facing poultry 
worldwide, with negative effects on duck health, welfare 
and productivity. Organisms can assess changes in envi-
ronmental temperature to produce certain physiological 
and behavioral responses that benefit survival. The acti-
vation of certain ion channels of the transient receptor 
potential (TRP) family by changes in ambient tempera-
ture, as well as the identification of their heterogeneous 
expression patterns and heterogeneous temperature 
sensitivity, have triggered the interest of researchers to 
evaluate these proteins as candidate endogenous ther-
mosensors [71]. TRPC4 has been identified as a promis-
ing molecular target for body temperature management. 
Loss-of-function studies of TRPC4 demonstrated its 
function in GABAergic warm sensitive neurons, result-
ing in extra deficits in basal temperature setting, warm 
defense, and fever responses [72]. Recent studies have 
reported that TRPC4 is associated with thermoregula-
tion [73] in cattle and cold adaptation [74] in Arctic dogs. 
In addition, secretion of the macrophage cytokine SLIT3 
by adipose tissue macrophages enhances cold adapta-
tion via stimulating sympathetic nerves and thermo-
genesis in mice (Mus musculus) [75]. In this study, the 
highly differentiated CNVRs between SX and the other 
duck populations overlapped with TRPC4 and SLIT3. We 
hypothesized that TRPC4 and SLIT3 might be involved 
in thermoregulation in SX. Furthermore, functional 
analysis revealed that the autoimmune thyroid disease 
pathway was the most significantly enriched among all 
pathways for SX-differentiated CNVR genes. Studies have 
shown that thyroid disorders potentially interfere with 
the normal regulation of body temperature in humans 
[76]. Thyroid hormone synthesis is increased in birds and 
mammals in cold environments. The size and activity of 
the thyroid also increase especially at low temperatures 
[74, 77]. It has been reported that the expression of the 
TPO gene (encoding thyroid peroxidase, a key factor of 
the autoimmune thyroid disease pathway) is up-regulated 
in Bashang long-tail chicken (BS) and Rhode Island red 
chickens (RIR) in cold environments [78]. Therefore, we 
speculated that this pathway might also be related to 
the thermoregulation of SX. However, more functional 
experiments are necessary to fully reveal their biological 
functions.
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Conclusion
In the present study, the first resequencing based CNV 
map of experimental SPF ducks was developed. Func-
tional enrichment analysis of the identified genes in 
shared CNVRs revealed several underlying biological 
processes responsible for olfactory receptors and the 
immune system of experimental ducks. Selective sweep 
analysis showed that growth (SPAG17 and PTH1R), dis-
ease resistance (CATHL3 and DMBT1), and thermoregu-
lation (TRPC4 and SLIT3) candidate gene were identified 
in strongly selected signatures specific to JD, SM, and SX, 
respectively. Although these phenotype-associated genes 
need to be further validated by biological experiments, 
our findings provide valuable information to identify the 
molecular basis of important phenotypic variations in 
experimental ducks.
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