
Lourenço et al. BMC Genomics (2024) 25:152
https://doi.org/10.1186/s12864-023-09933-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

Genomic prediction using machine learning:
a comparison of the performance of regularized
regression, ensemble, instance-based and deep
learning methods on synthetic and empirical
data
Vanda M. Lourenço1*, Joseph O. Ogutu2*, Rui A.P. Rodrigues1, Alexandra Posekany3 and Hans‑Peter Piepho2

Abstract

Background The accurate prediction of genomic breeding values is central to genomic selection in both plant
and animal breeding studies. Genomic prediction involves the use of thousands of molecular markers spanning
the entire genome and therefore requires methods able to efficiently handle high dimensional data. Not surpris‑
ingly, machine learning methods are becoming widely advocated for and used in genomic prediction studies. These
methods encompass different groups of supervised and unsupervised learning methods. Although several studies
have compared the predictive performances of individual methods, studies comparing the predictive performance
of different groups of methods are rare. However, such studies are crucial for identifying (i) groups of methods
with superior genomic predictive performance and assessing (ii) the merits and demerits of such groups of methods
relative to each other and to the established classical methods. Here, we comparatively evaluate the genomic predic‑
tive performance and informally assess the computational cost of several groups of supervised machine learning
methods, specifically, regularized regression methods, deep, ensemble and instance-based learning algorithms, using
one simulated animal breeding dataset and three empirical maize breeding datasets obtained from a commercial
breeding program.

Results Our results show that the relative predictive performance and computational expense of the groups
of machine learning methods depend upon both the data and target traits and that for classical regularized methods,
increasing model complexity can incur huge computational costs but does not necessarily always improve predic‑
tive accuracy. Thus, despite their greater complexity and computational burden, neither the adaptive nor the group
regularized methods clearly improved upon the results of their simple regularized counterparts. This rules out selec‑
tion of one procedure among machine learning methods for routine use in genomic prediction. The results also show
that, because of their competitive predictive performance, computational efficiency, simplicity and therefore relatively
few tuning parameters, the classical linear mixed model and regularized regression methods are likely to remain
strong contenders for genomic prediction.

*Correspondence:
Vanda M. Lourenço
vmml@fct.unl.pt
Joseph O. Ogutu
jogutu2007@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09933-x&domain=pdf

Page 2 of 20Lourenço et al. BMC Genomics (2024) 25:152

Conclusions The dependence of predictive performance and computational burden on target datasets and traits
call for increasing investments in enhancing the computational efficiency of machine learning algorithms and com‑
puting resources.

Keywords Genomic prediction, Genomic selection, Breeding value, Predictive accuracy, Predictive ability, High‑
dimensional data, Supervised machine learning methods

Background
Rapid advances in genotyping and phenotyping tech-
nologies have enabled widespread and growing use of
genomic prediction (GP). The very high dimensional
nature of both genotypic and phenotypic data, however,
is increasingly limiting the utility of the classical statisti-
cal methods. As a result, machine learning (ML) meth-
ods able to efficiently handle high dimensional data are
becoming widely used in GP. This is especially so because,
compared to many other methods used in GP, ML meth-
ods possess the significant advantage of being able to
model nonlinear relationships between the response and
the predictors and complex interactions among predic-
tor variables. However, this often comes at the price of
a very high computational burden. Often, however, com-
putational cost is less likely to present serious challenges
if the number of SNPs in a dataset is relatively modest
but it can become increasingly debilitating as the num-
ber of markers grows to millions or even tens of millions.
Future advances in computational efficiencies of machine
learning algorithms or using high-performance or more
efficient programming languages may progressively ame-
liorate this limitation. Given their growing utility and
popularity, it is important to establish the relative pre-
dictive performance of different groups of ML methods
in GP. Even so, the formal comparative evaluation of the
predictive performance of groups of ML methods has
attracted relatively little attention. The rising importance
of ML methods in plant and animal breeding research
and practice, increases both the urgency and impor-
tance of evaluating the relative predictive performance of
groups of ML methods relative to each other and to clas-
sical methods. This can facilitate identification of groups
of ML methods that balance high predictive accuracy
with low computational cost for routine use with high
dimensional phenotypic and genomic data, such as for
GP, say.

ML is perhaps one of the most widely used branches of
contemporary artificial intelligence. Using ML methods
facilitates automation of model building, learning and
efficient and accurate predictions. ML algorithms can be
subdivided into two major classes: supervised and unsu-
pervised learning algorithms. Supervised regression ML
methods encompass regularized regression methods,
deep, ensemble and instance-based learning algorithms.

Supervised ML methods have been successfully used to
predict genomic breeding values for unphenotyped geno-
types, a crucial step in genome-enabled selection [1–9].
Furthermore, several studies have assessed the relative
predictive performance of supervised ML methods in GP,
including two ensemble methods and one instance-based
method [5]; four regularized and two adaptive regular-
ized methods [6]; three regularized and five regularized
group methods [9] and several deep learning methods
[1–4, 8]. However, no study has comprehensively evalu-
ated the comparative predictive performance of all these
groups of methods relative to each other or to the classi-
cal regularized regression methods. We therefore rigor-
ously evaluate the comparative predictive performance
as well as the computational complexity or cost of three
groups of popular and state-of-the-art ML methods for
GP using one simulated animal dataset and three empiri-
cal datasets obtained from a commercial maize breed-
ing program. We additionally offer brief overviews of the
mathematical properties of the methods with emphasis
on their salient properties, strengths and weaknesses
and relationships with each other and with the classical
regularization methods. While we offer a somewhat com-
prehensive review of genomic prediction methods with
a specific emphasis on ML, our contribution extends to
showcasing novel findings derived from comparative
assessments of ML techniques across both real and simu-
lated datasets.

Besides ML methods, Bayesian methods are also
becoming widely used for genomic prediction [3, 8, 10].
So, even though our goal is not to provide an exhaustive
review of all genomic prediction methods, we offer two
Bayesian methods for benchmarking the performance of
the ML methods.

The rest of the paper is organized as follows. First we pre-
sent the synthetic and real datasets. Second, we detail the
methods compared in this study. Next, the results from the
comparative analyses of the data are presented. Finally, a
discussion of the results and closing remarks follow.

Data
Simulated (animal) data
We consider one simulated dataset [9], an animal breed-
ing outbred population simulated for the 16-th QTLMAS

Page 3 of 20Lourenço et al. BMC Genomics (2024) 25:152

Workshop 2012 (Additional file 1). The simulation mod-
els used to generate the data are described in detail in
[11] and are therefore not reproduced here. The data-
set consists of 4020 individuals genotyped for 9969 SNP
markers. Out of these, 3000 individuals were phenotyped
for three quantitative milk traits and the remaining 1020
were not phenotyped (see [9] for details). The goal of the
analysis of the simulated dataset is to predict the genomic
breeding values (PGBVs) for the 1020 unphenotyped
individuals using the available genomic information. The
simulated dataset also provides true genomic breeding
values (TGBVs) for the 1020 genotypes for all the traits.

As in [9], to enable model fitting for the grouping meth-
ods, markers were grouped by assigning consecutive SNP
markers systematically to groups of sizes 10, 20, ..., 100
separately for each of the five chromosomes. Typically,
the last group of each grouping scheme has fewer SNPs
than the prescribed group size. Table 1 summarizes the
simulated phenotypic data and highlights differences in
the magnitudes of the three simulated quantitative traits
T1 , T2 and T3.

Real (plant) data
For the application to empirical data sets, we use three
empirical maize breeding datasets produced by KWS
(breeding company) for the Synbreed project during
2010, 2011 and 2012. We first performed separate phe-
notypic analyses of yield for each of the three real maize
data sets to derive the adjusted means used in genomic
prediction using a single stage mixed model assuming
that genotypes are uncorrelated (Additional file 4, S1
Text). The fixed effect in the mixed model comprised a
tester (Tester) with two levels, genotypic group (GRP)
with three levels, Tester×GRP and Tester×GRP× G
(G=genotype). The random factors were location
(LOC), trial (TRIAL) nested within location, replicate
(REP) nested within trial and block (BLOCK) nested
within replicate. The fitted random effects were LOC,
LOC×TRIAL, LOC×TRIAL×REP, LOC×TRIAL×REP×
BLOCK, Tester×GRP×SWITCH2× G1 and Tester×GRP×
SWITCH1×G2. SWITCH1 and SWITCH2 in the last
two effects are operators defined and explained briefly
in the supplementary materials (Additional file 4, S1
text; and Additional file 5, Section 1) and in greater
detail in [12, 13]. All the three maize datasets involved

two testers and three genotypic groups. Accordingly,
prior to genomic prediction, we accounted for and
removed the effect of the tester×genotypic group (GRP)
effect from the adjusted means (lsmeans) of maize
yield (dt/ha) by computing the arithmetic mean of the
lsmeans for the interaction of testers with GRP for the
genotyped lines. This mean was then subtracted from
the lsmeans for each tester×GRP interaction term. The
resulting deviations were subtracted from the lsmeans
of the individual genotypes corresponding to each
Tester×GRP interaction. This enabled us not to con-
sider the Tester×GRP effect in the genomic prediction
model.

For all the years, every line was genotyped for 32217 SNP
markers. A subset of the SNP markers with non-zero vari-
ances were split into groups of sizes 10, 20, 30, 40, 50, 60, 7
0, 80, 90 and 100. Groups were defined by systematically
grouping consecutive and spatially adjacent markers, sepa-
rately for each of 10 chromosomes (Additional file 4, S2
Text). All the checks (standard varieties) and check markers
were deleted prior to genomic prediction. More details spe-
cific to the three datasets follow (Table 2 summarizes the
number of genotypes in the training and validation data-
sets). The true breeding values are not known in this case.

For each of the 2010, 2011 and 2012 datasets, the
genotypes or test crosses were genotyped for 32217
SNPs and randomly split into 5 parts (folds) for 5-fold
cross-validation (Additional file 4, S3 Text & S4 Text).
The random splitting procedure was repeated 10 times
to yield 10 replicates per dataset. The total number of
genotypes and the number of individuals assigned to
the training and validation sets for each dataset are
provided in Table 2.

Table 3 summarizes the KWS phenotypic data for
2010, 2011 and 2012. Each data split for each year
(2010, 2011 and 2012) contained approximately 20% of
the phenotypic observations and was obtained using
stratified random sampling using the algorithm of [14].
The strata were defined by the combinations of the two
testers and three genotypic groups.

Methods
In this section we describe the four supervised ML
groups of methods.

Table 1 Summary statistics for the three quantitative traits (T1 , T2 and T3) in the simulated training dataset (n = 3000 genotypes)

Trait Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

T1 ‑584.993650 ‑116.244762 ‑1.711490 ‑0.000004 112.248515 587.189720 176.518911

T2 ‑32.233530 ‑6.502070 0.075480 ‑0.000004 6.615977 32.514590 9.514060

T3 ‑0.095720 ‑0.015893 0.000650 0.000005 0.016450 0.085240 0.024474

Page 4 of 20Lourenço et al. BMC Genomics (2024) 25:152

Regularized regression methods
Consider the general linear regression model

where yi is the i-th observation of the response vari-
able, xij is the i-th observation of the j-th covariate (p is
the number of all covariates), βj are the regression coef-
ficients (unknown fixed parameters), εi are i.i.d. random
error terms with E(εi) = 0 and var(εi) = σ 2

e , where σ 2
e is

an unknown random variance, and n is the sample size.
The ordinary least squares estimator of β = (β0, . . . ,βp)

′ ,
which is unbiased, is obtained by minimizing the residual
sum of squares (RSS), i.e.,

where

This estimator is typically not suitable when the
design matrix X is less than full rank (X has a full
rank if the number of its linearly independent rows or

(1)yi = β0 +
p

j=1

βjxij + εi, i = 1, ..., n

β̂ols = argmin
β

n∑

i=1

(
yi − β0 −

p∑

j=1

βjxij

)2
= argmin

β

�y − Xβ�22,

y = (y1 . . . , yn)
′
, X =

1 x11 x12 x13 . . . x1p
1 x21 x22 x23 . . . x2p
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 xn1 xn2 xn3 . . . xnp

 and �.�2is the ℓ2-norm.

columns k = min(p, n)) or is close to collinearity (i.e.,
the covariates are close to being linear combinations of
one another) [15]; problems that are frequently associ-
ated with p >> n.

In genomic prediction (GP) one is interested in estimat-
ing the p regression coefficients βj so that genomic breed-
ing values of non-phenotyped genotypes can be predicted
from the fitted model. The response variable y is often
some quantitative trait and the βj ’s are the coefficients
of molecular markers spanning the whole genome, usu-
ally Single Nucleotide Polymorphisms (SNPs). Because
in GP typically p >> n , the ordinary least squares (OLS)
estimator breaks down and thus other methods for esti-
mating β in (1) must be sought. Indeed, the increasingly
high dimensional nature of high-throughput SNP-marker
datasets has prompted increasing use of the power and
versatility of regularization methods in genomic predic-
tion to simultaneously select and estimate important
markers and account for multicollinearity [5, 6].

Without loss of generality, we assume, consistent with
the standard practice in regularized estimation where a dis-
tance-based metric is used for prediction, that the response

Table 2 Number of genotypes in the training dataset (folds F1‑F4) and validation dataset (fold F5) for each of the 10 replicates of the
5‑fold cross‑validation sets for the 2010, 2011 and 2012 KWS real maize datasets. Individuals were genotyped for a total of 32217 SNPs
in all years

Folds

2010 2011 2012

F1-F4 F5 F1-F4 F5 F1-F4 F5

Data
 Training 859 856 685 688 1104 1108

 Validation 214 217 172 169 277 273

Total 1073 857 1381

Table 3 Summary statistics for maize yield (dt/ha) in the KWS real maize datasets for 2010, 2011 and 2012

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

2010 86.597600 121.550000 127.880000 126.806883 132.670000 149.930000 8.297735

2011 101.670000 139.310000 144.710000 144.221949 150.070000 164.060000 8.155595

2012 114.840000 139.160000 143.810000 143.719182 148.470000 169.160000 7.318531

Page 5 of 20Lourenço et al. BMC Genomics (2024) 25:152

variable is mean-centered whereas the covariates in (1) are
standardized, so that

Regularized regression methods minimize a non-nega-
tive loss function (RSS or other) plus a non-negative pen-
alty function. Standardizing the covariates prior to model
fitting ensures that the penalty is applied evenly to all
covariates. Mean-centering the response and the covari-
ates is usually done for notational simplicity but also
eliminates the need to estimate the intercept β0.

After the penalized models have been fit, the final esti-
mates are obtained by back transformation to the original
scale by re-introducing an intercept (β0). In particular,
for a mean-centered response y and standardized predic-
tor X∗ , predictions are obtained by

with β̂
∗ = (β̂∗

1 , . . . , β̂
∗
p) , the regression coefficients from

the model fit with the mean-centered response y and
standardized covariates X∗ , X∗

j = (x1j , . . . , xnj)
′ the j-

th covariate and β0 = ȳ . One can also choose to predict
using the original predictor X∗ without standardization.
In that case one should back transform the β̂∗

j to the orig-
inal scale and consider

with β̂j = β̂∗
j /sj , sj =

√
n−1

n∑
i=1

x2ij the standard deviation

of the j-th covariate X∗
j and β0 = ȳ − X̃β̂ , where

X̃j = (mj , . . . ,mj)
′ is a vector of size n with mj being the

mean of the j-th covariate X∗
j .

The primary goal of regularization methods is to reduce
model complexity resulting from high dimensionality by
reducing the number of predictors in the model. This is
achieved by either shrinking some coefficients to become
exactly zero, and so drop out of the model, or shrinking
all coefficients to be close to zero and each other but not
exactly zero. Ideally, a desirable estimator of β should (i)
correctly select the nonzero coefficients with probability
converging to 1 (i.e. with near certainty; selection consist-
ency) and (ii) yield estimators of the nonzero coefficients
that are asymptotically normal with the same means and
covariances that they would have if the zero coefficients
were known exactly in advance (asymptotic normality).
An estimator satisfying these two conditions is said to
possess the oracle property [16, 17].

n∑

i=1

yi = 0,

n∑

i=1

xij = 0 and n−1

n∑

i=1

x2ij = 1, j = 1, . . . , p.

ŷ = β0 +
p∑

j=1

X∗
j β̂

∗
j

ŷ = β0 +
p∑

j=1

X∗
j β̂j

For the remainder of the paper, we assume that X is a
n× p marker matrix (e.g., with the genotypes {aa,Aa,AA}
coded as {0, 1, 2} or {−1, 0, 1} for p biallelic SNPs under
an additive model) with Xj denoting the j-th SNP covari-
ate and β = (β1, . . . ,βp) denoting the unknown vector
of marker effects. Table 4 (upper half) summarizes the
methods discussed in this sub-section.

Bridge‑type estimators
The most popular regularization methods in genomic
prediction include ridge regression (RR; [18]), the least
absolute shrinkage and selection operator (LASSO; [19])
and the elastic net (ENET; [20]). All these methods are
special cases of the bridge estimator [15, 21] given by

where the regularization parameter � balances the good-
ness-of-fit against model complexity and the shrinkage
parameter γ determines the order of the penalty func-
tion. The optimal combination of � and γ can be selected
adaptively for each dataset by grid search using cross-
validation (CV; if the focus is on predictive performance)
or by information criteria (e.g., AIC or BIC; if the focus is
on model fit). Bridge regression automatically selects rel-
evant predictors when 0 < γ ≤ 1 , shrinks the coefficients
when γ > 1 and reduces to subset selection when γ = 0 .
The bridge estimator reduces to the LASSO estima-
tor when γ = 1 and to the ridge estimator when γ = 2 .
Specifically,

where ‖.‖1 is the ℓ1-norm, and

The bridge estimator also enjoys several other useful
and interesting properties (see [22, 23] for more details).
We summarize these salient properties with emphasis on
the special cases of the LASSO (γ = 1) and the ridge esti-
mators (γ = 2).

1 The asymptotic properties of bridge estimators have
been studied in detail by [22]. In particular, where
p < n , with p increasing to infinity as n grows, and
under appropriate regularity conditions, bridge
estimators enjoy the oracle property for 0 < γ < 1 .
This implies that neither the LASSO nor the ridge
estimator possesses the oracle property [16, 17].
If p >> n and no assumptions are imposed on the
covariate matrix, then the regression parameters

(2)β̂bridge = argmin
β

{
RSS+ �

p∑

j=1

|βj |γ
}
, γ > 0, � ≥ 0,

(3)β̂ lasso = argmin
β

{
RSS+ ��β�1

}
,

(4)β̂ridge = argmin
β

{
RSS+ ��β�22

}
.

Page 6 of 20Lourenço et al. BMC Genomics (2024) 25:152

are generally non-identifiable. However, if a suitable
structure is assumed for the covariate matrix, then
bridge estimators achieve consistent variable selec-
tion and estimation [22].

2 Although the LASSO estimator performs automatic
variable selection, it is a biased and inconsistent esti-
mator [24, 25]. Moreover, it is unstable with high-
dimensional data because it

 (i) cannot select a larger number of predictors p
than the sample size n if p >> n;

 (ii) arbitrarily selects one member of a set of pair-
wise highly correlated predictors and ignores
the other.

3 The ridge estimator performs well for many pre-
dictors each of which has a small effect but cannot
shrink the coefficients to become exactly zero. More-
over, the ridge estimator

 (i) prevents coefficients of linear regression
models with many correlated variables from
being poorly determined and exhibiting high
variance;

 (ii) shrinks coefficients of correlated predictors
equally towards zero and towards each other;

 (iii) retains all predictor variables in the model lead-
ing to complex and less interpretable models.

 In addition, RR has close connections with marker-
based best linear unbiased prediction (BLUP)
and genomic best linear unbiased prediction
(GBLUP) [26], which we clarify in what fol-
lows. The ridge estimator is given by

where, if � is estimated by cross-validation as sug-
gested above, then the ridge estimator may be
denoted by RR-CV. Another way of looking at the
ridge estimator is to assume in (1) that β ∼ N (0, Iσ 2

β)
is a random vector of unknown marker effects and
that ε ∼ N (0, Iσ 2

e) is an unknown random error
term, where σ 2

β and σ 2
e are the unknown marker-

effect and error variances, respectively. Model (1),
written in matrix form as

is now a linear mixed model and hence, the vari-
ances can be estimated via the restricted maxi-
mum likelihood (REML) method. Observing that
y ∼ N (0,Kσ 2

β + Iσ 2
ε) , where K = X′X is the kinship

β̂ridge = (X′X + �I)−1X′y,

(5)y = Xβ + ε,

Table 4 A summary of the estimators and penalty functions for the bridge‑type and adaptive bridge‑type regularized regression
methods used in this study. The adaptive methods have an a prefix in their names

Method Penalty Estimator

bridge
p�,γ (β) = �

p∑
j=1

|βj |γ β̂bridge = argmin
β

{
RSS+ �

p∑
j=1

|βj |γ
}
, γ > 0, � ≥ 0

(2)

• γ = 1:

LASSO p�(β) = ��β�1 β̂ lasso = argmin
β

{
RSS+ ��β�1

}
(3)

• γ = 2:

ridge p�(β) = ��β�22 β̂ ridge = argmin
β

{
RSS+ ��β�22

}
(4)

• Combination of LASSO and ridge penalties (γ = 1, 2 , respectively):

ENET p�(β) = �1�β�1 + �2�β�22 β̂enet = (1+ �2)× argmin
β

{
RSS+ �1�β�1 + �2�β�22

}
(6)

 abridge
p�,γ (β) = �

p∑
j=1

wj |βj |γ β̂
abridge = argmin

β

{
RSS+ �

p∑
j=1

wj |βj |γ
} (7)

• γ = 1:

aLASSO p�(β) = ��wβ�1 β̂
alasso = argmin

β

{
RSS+ ��wβ�1

}
(8)

• Combination of aLASSO and ridge penalties (γ = 1, 2 , respectively):

aENET p�(β) = �1�wβ�1 + �2�β�22 β̂
aenet = k × argmin

β

{
RSS+ �1�wβ�1 + �2�β�22

}
(9)

Page 7 of 20Lourenço et al. BMC Genomics (2024) 25:152

or genomic relationship matrix, the BLUP solution
for the marker effects under model (5) is given by
([27]; p.270)

 Now defining H = I
σ 2
ε

σ 2
β

 to simplify the notation and

pre-multiplying β̂BLUP with
(X

′
X +H)

−1
X
′
(K +H)K

−1
X we

obtain

 Finally, observing that
(X

′
X +H)

−1
X
′
(K +H)K

−1
X = X

′
K
−1

X
(see Appendix) and that X′K−1XX′ = X′ we find that

establishing the equivalence of BLUP and RR [28, 29]
and that one can actually estimate the ridge parame-
ter � by �̂ = σ̂ 2

e

σ̂ 2
β

 . Because we use REML to estimate

the two variance components in β̂BLUP , we refer to
this RR appproach as RR-REML. Our basic regres-
sion model (5) can be written as

where, g = Xβ . Making the same assumptions as
for RR-REML, i.e., assuming that β ∼ N (0, Iσ 2

β) and
ε ∼ N (0, Iσ 2

e) , we have that g ∼ N (0,Kσ 2
β) . The

BLUP of g , also known as genomic estimated breed-
ing values (GEBV) or gBLUP, under this model is
([27]; p.270)

 Now pre-multiplying ̂gBLUP with X(X′
X +H)

−1
X
′
(K +H)K

−1
we obtain

 Finally, observing that X(X′
X +H)

−1
X
′
(K +H)K

−1 = I (see
Appendix), we find that ĝBLUP = Xβ̂BLUP establish-
ing the equivalence of RR-REML and gBLUP [30, 31].

4 Due to the nature of the ℓ1 penalty, particularly for
high values of � , the LASSO estimator will shrink
many coefficients to exactly zero, something that
never happens with the ridge estimator.

β̂BLUP = cov(β , y)× (var(y))−1y = X′σ 2
β (Kσ

2
β + Iσ 2

ε)
−1y = X′(K +H)−1y

(X′X +H)

−1X′
(K +H)K−1Xβ̂BLUP = (X′X +H)

−1X′y.

β̂BLUP =
(
X′X + σ 2

e

σ 2
β

I
)−1

X′y,

y = g + ε,

ĝBLUP = cov(g, y)× (var(y))−1y = Kσ 2
β (Kσ

2
β + Iσ 2

ε)
−1y = K

(
K + I

σ 2
ε

σ 2
β

)−1

y.

X(X′X +H)−1X′(K +H)K−1ĝBLUP = X(X′X +H)−1X′y = Xβ̂BLUP .

Elastic net estimator
The elastic net estimator blends two bridge-type estima-
tors, the LASSO and the ridge, to produce a composite

estimator that reduces to the LASSO when �2 = 0 and to
the ridge when �1 = 0 . Specifically, the elastic net estima-
tor is specified by

with k = 1+ �2 if the predictors are standardized (as
we assume) or k = 1+ �2/n otherwise. Even when
�1, �2 = 0 , the elastic net estimator behaves much like
the LASSO but with the added advantage of being robust
to extreme correlations among predictors. Moreover, the
elastic net estimator is able to select more than n pre-
dictors when p >> n . Model sparsity occurs as a con-
sequence of the ℓ1 penalty term. Mazumder et al. [32]
proposed an estimation procedure based on sparse prin-
cipal components analysis (PCA), which produces an
even more sparse model than the original formulation
of the elastic net estimator [20]. Because it blends two
bridge-type estimators, neither of which enjoys the oracle
property, the ENET also lacks the oracle property.

Other competitive regularization methods that are
asymptotically oracle efficient (p < n with p increasing
to infinity with n), which do not fall into the category of
bridge-type estimators, are the smoothly clipped absolute
deviations (SCAD [17, 33]) and the minimax concave

penalty (MCP [25, 34]) methods. Details of the penalty
functions and other important properties of both meth-
ods can be found elsewhere [9, 35].

Adaptive regularized regression methods
The adaptive regularization methods are extensions
of the regularized regression methods that allow the

(6)β̂enet = k × argmin
β

{
RSS+ �1�β�1 + �2�β�22

}
.

Page 8 of 20Lourenço et al. BMC Genomics (2024) 25:152

resulting estimators to achieve the oracle property under
certain regularity conditions. Table 4 (lower half) sum-
marizes the adaptive methods considered here.

Adaptive bridge‑type estimators
Adaptive bridge estimators extend the bridge estima-
tors by introducing weights in the penalty term. More
precisely,

where {wj}pj=1 are adaptive data-driven weights. As with
the bridge-type estimator, the adaptive bridge estima-
tor simplifies to the adaptive LASSO (aLASSO) esti-
mator when γ = 1 and to the adaptive ridge estimator
when γ = 2 . Chen et al. [36] studied the properties of
adaptive bridge estimators for the particular case when
p < n (with p increasing to infinity with n), 0 < γ < 2
and wj = (|β̂ init

j |)−1 with β̂
init = β̂ols . They showed that

for 0 < γ < 1 , and under additional model assumptions,
adaptive bridge estimators enjoy the oracle property. For
p >> n , β̂ols cannot be computed and thus other initial
estimates, such as β̂ridge , have to be used. Theoretical
properties of the adaptive bridge estimator for p >> n
do not seem to have been well studied thus far.

The adaptive LASSO estimator was proposed by [37] to
remedy the problem of the lack of the oracle property of
the LASSO estimator [16, 17]. The penalty for the adaptive
LASSO is given by (adaptive bridge estimator with γ = 1)

where the adaptive data-driven weights {wj}pj=1 can be
computed as wj = (|β̂ init

j |)−ν with β̂
init

 an initial root-n
consistent estimate of β obtained through least squares
(or ridge regression if multicollinearity is important) and
ν is a positive constant. Consequently,

with ν chosen appropriately, performs as well as the ora-
cle, i.e., the adaptive LASSO achieves the oracle property.
Nevertheless, this estimator still inherits the LASSO’s
instability with high dimensional data. The values of �
and ν can be simultaneously selected from a grid of val-
ues, with values of ν selected from {0.5, 1, 2} , using two-
dimensional cross-validation [37].

Grandvalet [38] shows that the adaptive ridge estimator
(adaptive bridge estimator with γ = 2) is equivalent to the
LASSO in the sense that both produce the same estimate
and thus the adaptive ridge is not considered further.

(7)β̂
abridge = argmin

β

{
RSS+ �

p∑

j=1

wj |βj |γ
}
, γ > 0, � ≥ 0

p�(β) = �

p∑

j=1

wj|βj|

(8)β̂
alasso = argmin

β

{
RSS+ ��wβ�1

}

Adaptive elastic‑net
The adaptive elastic-net (aENET) combines the ridge and
aLASSO penalties to achieve the oracle property [39] while
at the same time alleviating the instability of the aLASSO
with high dimensional data. The method first computes
β̂enet as described above for the elastic net estimator, then
constructs the adaptive weights as ŵj = (|β̂j,enet |)−ν , where
ν is a positive constant, and then solves

where k = 1+ �2 if the predictors are standardized (as we
assume) or k = 1+ �2/n otherwise. In particular, when
�2 = 0 the adaptive elastic-net reduces to the aLASSO
estimator. This is also the case when the design matrix is
orthogonal regardless of the value of �2 [20, 37, 39].

Other adaptive regularization methods are the multi-
step adaptive ENET (maENET), the adaptive smoothly
clipped absolute deviations (aSCAD) and the adaptive
minimax concave penalty (aMCP) methods. Details of
the penalty functions and noteworthy properties of the
latter three methods are summarized elsewhere [6, 40].

Regularized group regression methods
Regularized regression methods that select individual pre-
dictors do not exploit information on potential grouping
structure among markers, such as that arising from the
association of markers with particular Quantitative Trait
Loci (QTL) on a chromosome or haplotype blocks, to
enhance the accuracy of genomic prediction. The nearby
SNP markers in such groups are linked, producing highly
correlated predictors. If such grouping structure is present
but is ignored by using models that select individual pre-
dictors only, then such models may be inefficient or even
inappropriate, reducing the accuracy of genomic prediction
[9]. Regularized group regression methods are regularized
regression methods with penalty functions that enable the
selection of the important groups of covariates and include
group bridge (gbridge), group LASSO (gLASSO), group
SCAD (gSCAD) and group MCP (gMCP) methods (see
[9, 41–46] for detailed reviews). Some grouping methods
such as the group bridge, sparse group LASSO (sgLASSO)
and group MCP, besides allowing for group selection, also
select the important members of each group [43] and are
therefore said to perform bi-level selection, i.e., group-wise
and within-group variable selection. Bi-level selection is
appropriate if predictors are not distinct but have a com-
mon underlying grouping structure.

Estimators and penalty functions for the regularized
grouped methods can be formulated as follows. Consider
subsets A1, . . . ,AL of {1, . . . , p} (L being the total number

(9)

β̂
aenet = k × argmin

β

{
RSS+ �1�wβ�1 + �2�β�22

}
,

Page 9 of 20Lourenço et al. BMC Genomics (2024) 25:152

of covariate groups), representing known covariate
groupings of design vectors, which may or may not over-
lap. Let βAl

= (βk , k ∈ Al) be the regression coefficients
in the l-th group and pl the cardinality of the l-th group
(i.e., the number of unique elements in Al). Regularized
group regression methods estimate β = (βA1

, ...,βAL
)′ by

minimizing

where X.l is a matrix with columns corresponding to the
predictors in group l.

Because
n∑

i=1

(
yi −

L∑

l=1

XilβAl

)2
 in (10) is equivalent to

RSS some authors use the RSS formulation directly. It is
assumed that all the covariates belong to at least one of
the groups. Table 5 summarizes the methods described
in this section.

Group bridge‑type estimators
Group bridge-type estimators use in (10) the penalty

term p�(β) = �

L∑

l=1

cl�βAl
�γ1 with cl constants that adjust

for the different sizes of the groups. The group bridge-
type estimators are thus obtained as

A simple and usual choice for the cl constants con-
sists in considering each cl ∝ p

1−γ

l . When 0 < γ < 1
group bridge can be used simultaneously for group and
individual variable selection. Also, note that under these
assumptions, the group bridge estimator correctly selects
groups with nonzero coefficients with probability con-
verging to one under reasonable regularity conditions,
i.e., it enjoys the oracle group selection property (see [47]
for details). When the group sizes are all equal to one, i.e.,
pl = 1 ∀ 1 ≤ l ≤ L , then group bridge estimators reduce
to the bridge estimators.

(10)FL
�,γ (β) =

n∑

i=1

(
yi −

L∑

l=1

XilβAl

)2
+ p�(β),

(11)

β̂
gbridge = argmin

β

RSS+ �

L∑

l=1

cl�βAl
�γ
1
, γ > 0, � ≥ 0.

Group LASSO and sparse group LASSO
Group LASSO regression uses in (10) the penalty func-

tion p�(β) = �

L∑

l=1

√
pl ||βAl

||2 . The group LASSO estima-

tor is thus given by

Unlike the group bridge estimator (0 < γ < 1),
gLASSO is designed for group selection, but does not
select individual variables within the groups. Indeed, its
formulation is more akin to that of the adaptive ridge esti-
mator [47]. As with the group-bridge estimator, when the
group sizes are all equal to one, i.e., pl = 1 ∀ 1 ≤ l ≤ L ,
the gLASSO estimator reduces to the LASSO estimator.

Because the gLASSO does not yield sparsity within a
group (it either discards or retains a whole group of covari-
ates) the sparse group lasso (sgLASSO), which blends the
LASSO and the gLASSO penalties, was proposed [48, 49].
Specifically, the sgLASSO estimator is given by

where α ∈ [0, 1] provides a convex combination of the
lasso and group lasso penalties (α = 0 gives the gLASSO
fit, α = 1 gives the LASSO fit). The gLASSO is superior
to the standard LASSO under the strong group sparsity
and certain other conditions, including a group sparse
eigenvalue condition [50]. Because the sgLASSO lacks
the oracle property, the adaptive sparse group LASSO
was recently proposed to remedy this drawback [51].

Note that there are two types of sparsity, i.e., (i) “group-
wise sparsity”, which refers to the number of groups with
at least one nonzero coefficient, and (ii) “within group
sparsity” that refers to the number of nonzero coeffi-
cients within each nonzero group. The “overall sparsity”
usually refers to the total number of non-zero coefficients
regardless of grouping.

Other group regularization methods are the hierarchi-
cal group LASSO (hLASSO), the group smoothly clipped
absolute deviations (gSCAD) and the group minimax

(12)β̂
glasso = argmin

β

{
RSS+ �

L∑

l=1

√
pl ||βAl

||2
}
, � ≥ 0.

(13)β̂
sglasso = argmin

β

{
RSS+ (1− α)�

L∑

l=1

√
gl ||β l ||2 + α�||β||1

}
,

Table 5 Penalty functions and estimators for some group regularized regression methods used in this study

Method Penalty Estimator

gbridge
p�,γ (β) = �

L∑

l=1

cl�βAl
�γ1 β̂

gbridge = argmin
β

{
RSS+ �

L∑

l=1

cl�βAl
�γ1

} (11)

gLASSO
p�(β) = �

L∑

l=1

√
pl�βAl

�2 β̂
glasso = argmin

β

{
RSS+ �

L∑

l=1

√
pl�βAl

�2
} (12)

sgLASSO
p�,α(β) = α�||β||1 + (1− α)�

L∑

l=1

√
gl ||β l ||2 β̂

sglassoargmin
β

{
RSS+ α�||β||1 + (1− α)�

L∑

l=1

√
gl ||β l ||2

} (13)

Page 10 of 20Lourenço et al. BMC Genomics (2024) 25:152

concave penalty (gMCP) methods. Details of the penalty
functions and salient properties of these methods can be
found in [9, 52–55].

Bayesian regularized estimators
The two Bayesian methods we consider are based on the
Bayesian basic linear regression model [10]. They assume a
continuous response y = (y1, . . . , yn) so that the regression
equation can be represented as yi = ηi + εi , where ηi is a
linear predictor (the expected value of yi given predictors)
and εi are independent normal model residuals with mean
zero and variance w2

i σ
2
ε , with wi representing user defined

weights and σ 2
ε is a residual variance parameter. The model

structure for the linear predictor η is constructed as follows

with an intercept µ (equivalent to β0 in equation (1)),
design n× p matrix X for predictor vectors Xj = (xij) and
fixed effects vectors β j associated with the the predictors
Xj.

The likelihood function of the data has the following
conditional distribution:

with the general parameter vector θ representing the
vector of all unknowns, such as the intercept, all the
regression coefficients and random effects, the residual
variance as well as parameters and hyper-parameters
subject to inference in the hierarchical Bayesian model.

The prior distribution factorises as follows:

In the basic form of the model the following prior set-
tings are typically chosen:

• The intercept is assigned a flat prior p(µ) = 1√
2·πσM

e
− µ2

2·σ2M
with prior hyper-parameter σ 2

M chosen to be very large
to make the prior flat.

• The residual variance is assigned a scaled-inverse χ2
density p(σ 2) = χ−2(Sε|dfε) with degrees of free-
dom parameter dfε(> 0) and scale parameter Sε(> 0).

The priors for the regression coefficients βjk can be chosen
in different ways, for example, as flat priors similar to the
intercept, which is considered an uninformative choice.
Choosing informative priors not only provides a chance

η = 1µ+
p∑

j=1

Xjβ j

p(y|θ) =
n�

i=1

N

yi|µ+
p�

j=1

xijβj , σ
2
ε w

2
i

p(θ) = p(µ)p(σ 2
ε)

p∏

j=1

p(β j)).

to introduce information on the coefficients known from
previous runs of the study, but also allows performing
penalized or regularized regression, such as Ridge regres-
sion or the LASSO through the choice of suitable priors.

Those coefficients utilizing flat priors are called
“fixed” effects, as the estimation of the posterior is
based only on information contained in the data itself,
encoded by the likelihood. This is the reference model
for regularised Bayesian models.

Choosing a Gaussian prior, according to [18], yields
Ridge regression shrinkage estimation. Similar to [10]
we call this approach the Bayesian ridge regression.
Choosing double-exponential priors corresponds to the
Bayesian LASSO model [10].

Ensemble methods
Ensemble methods build multiple models using a given
learning algorithm and then combine their predictions
to produce an optimal estimate. The two most commonly
used algorithms are bagging (or bragging) and boosting.
Whereas bagging is a stagewise procedure that combines
the predictions of multiple models (e.g., classification or
regression trees) to yield an average prediction, boost-
ing is a stagewise process in which each stage attempts
to improve the predictions at the previous stage by up-
weighting poorly predicted values. Below, we briefly dis-
cuss two popular ensemble methods, namely, random
forests, an extension of bagging, and gradient boosting
algorithms. Note that, although variable scaling (center-
ing or standardizing) might accelerate convergence of the
learning algorithms, the ensemble methods do not require
it. Indeed, the collection of partition rules used with the
ensemble methods should not change with scaling.

Random forests (RF)
The random forests algorithm is an ensemble algorithm
that uses an ensemble of unpruned decision (classifica-
tion or regression) trees, each grown using a bootstrap
sample of the training data, and randomly selected
(without replacement) subsets of the predictor variables
(features) as candidates for splitting tree nodes. The ran-
domness introduced by bootstrapping and selecting a
random subset of the predictors reduces the variance of
the random forest estimator, often at the cost of a slight
increase in bias. The RF regression prediction for a new
observation yi , say ŷBi , is made by averaging the output of
the ensemble of B trees {T (yi,�b)}b=1,...,B as [56]

ŷBi = 1

B

B∑

b=1

T (yi,�b)

Page 11 of 20Lourenço et al. BMC Genomics (2024) 25:152

where �b characterizes the b-th RF tree in terms of split
variables, cut points at each node, and terminal node val-
ues. Recommendations on how to select the number of
trees to grow, the number of covariates to be randomly
chosen at each tree node and the minimum size of ter-
minal nodes of trees, below which no split is attempted,
are provided by [57, 58]. We refer to [56–58] for further
details on the RF regression.

Stochastic gradient boosting (SGB)
Boosting enhances the predictive performance of base
learners such as classification or regression trees, each
of which performs only slightly better than random
guessing, to become arbitrarily strong [56]. As with RF,
boosting algorithms can also handle interactions, nonlin-
ear relationships, automatically select variables and are
robust to outliers, missing data and numerous correlated
and irrelevant variables. In regression, boosting is an
additive expansion of the form

where β1, . . . ,βM are the expansion coefficients and the
basis functions h(X; γ) , base learners, are functions of
the multivariate argument X , characterized by a set of
parameters γ = (γ1, . . . , γM) . Typically these models are
fit by minimizing a loss function L (e.g., the squared-
error loss) averaged over the training data

We used regression trees as basis functions in which
the parameters γm are the splitting variables, split points
at the internal nodes, and the predictions at the termi-
nal nodes. Boosting regression trees involves generating
a sequence of trees, each grown on the residuals of the
previous tree. Prediction is accomplished by weight-
ing the ensemble outputs of all the regression trees. We
refer to [49, 56, 59] for further details on SGB (see, e.g.,
[59] for the interpretation of boosting in terms of regres-
sion for a continuous, normally distributed response
variable).

Instance-based methods
For the instance-based methods, scaling before apply-
ing the method is crucially important. Scaling the vari-
ables (features) prior to model fitting prevents possible
numerical difficulties in the intermediate calculations
and helps avoid domination of numeric variables with
smaller by those with greater magnitude and range.

y = f (X) =
M∑

m=1

βmh(X; γm)

min
βm,γm

n∑

i=1

L

(
yi,

M∑

m=1

βmh(xi; γm)
)
.

Support vector machines
Support vector machines (SVM) is a popular supervised
learning technique for classification and regression of a
quantitative response y on a set of predictors, in which
case the method is called support vector regression or
SVR [60]. In particular, SVR uses the model

with xi = (xi1, . . . , xip)
′ and where the approximating

function f (xi) is a linear combination of basis functions
h(xi)

T , which can be linear (or nonlinear) transforma-
tions of xi . The goal of SVR is to find a function f such
that f (xi) deviates from yi by a value no greater than ε
for each training point xi , and at the same time is as flat
as possible. This so-called ε-insensitive SVR, or simply ε
-SVR, thus fits a model (14) using only those residuals
which are smaller in absolute value than ε and a linear
loss function for larger residuals. The choice of the loss
function (e.g., linear, quadratic, Huber) usually consid-
ers the noise distribution pertaining to the data samples,
level of sparsity and computational complexity.

If Eq. (14) is the usual linear regression model, i.e.,
yi = f (xi) = β0 + xTi β , one considers the following
minimization problem

where � is the regularization parameter (cost) that con-
trols the trade-off between flatness and error toler-
ance, ‖.‖ refers to the norm under a Hilbert space (i.e.,
�x� =

√
�x,x� with x a p ≥ 1 dimensional vector) and

is an ε-insensitive linear loss. Given the minimizers of
(15) β̂0 and β̂ , the solution function has the form

where α̂∗
i , α̂i are positive weights given to each obser-

vation (i.e., to the column vector xi) estimated from the
data. Typically only a subset of (α̂∗

i − α̂i) are non-zero
with the observations associated to these so called sup-
port vectors, and thus the name of the method, SVM.
More details on SVM can be found in [56].

Deep learning methods
Deep learning (DL) algorithms are implemented through
neural networks, which encompass an assortment of
architectures (e.g., convolutional, recurrent and densely
connected neural networks) and depend on many

(14)yi = f (xi) = β0 + h(xi)
Tβ ,

(15)min
β0,β

(n∑

i=1

V (yi − f (xi))+
�

2
�β�2

)

Vε(r) =
{
0, if |r| < ε

|r| − ε, otherwise

β̂ =
n∑

i=1

(α̂∗
i − α̂i)xi and f̂ (x) =

n∑

i=1

(α̂∗
i − α̂i)�x,xi� + β̂0

Page 12 of 20Lourenço et al. BMC Genomics (2024) 25:152

parameters and hyperparameters whose careful optimi-
zation is crucial to enhancing predictive accuracy and
minimizing overfitting (see [8, 61–65] for further insights
into DL architectures and other particulars and the sup-
plementary materials https:// github. com/ migue lpere zenci
so/ DLpip eline of [8] for a list of the main DL hyperparam-
eters, their role and related optimization issues). It can be
very challenging to achieve great improvements in pre-
dictive accuracy in genomic prediction studies with DL
because hyperparameter optimization can be extremely
demanding and also because DL requires very large train-
ing datasets which might not always be available [1–4].

After selecting a DL architecture there is usually a large
set of parameters to be set in order to minimize some
fitting criterion such as least squares or some measure
of entropy from some training data (network training).
Therefore, an optimization method must also be selected.
The three top ranked optimizers for neural networks
are mini-batch gradient descent, gradient descent with
momentum and adaptive moment estimation (ADAM;
[66]). Among the three, the mini-batch gradient descent
and Adam are usually preferred, because they perform well
most of the time. In terms of convergence speed, ADAM is
often clearly the winner and thus a natural choice [67].

Next, we offer a few more details on the feed-forward
and convolutional neural networks, which, besides being
some of the most popular DL architectures, are well suited
for regression problems. These models can be represented
graphically as a set of inputs linked to the outputs through
one or more hidden layer. Figure 1a represents such a
model (either FFNN or CNN) with a single hidden layer.

Further details on neural networks in general and FFNN
and CNN in particular can be found in [1–4, 8, 56]. Note
that, to avoid potential numerical difficulties, it is rec-
ommended that both the target (response variable; here
assumed to be continuous and normally distributed), and
the features (covariates) are standardized prior to training
the network [8].

Feed‑forward neural network (FFNN)
A feed-forward neural network (FFNN), also known in
the literature as a multi-layer perceptron (MLP), is a
neural network that does not assume a specific struc-
ture in the input features (i.e., in the covariates). This
neural network consists of an input layer, an output
layer and multiple hidden layers between the input and
output layers.

The model for a FFNN with one hidden layer expressed
as a multiple linear regression model (1) is given by

yi = α +
∑

h

whφ

(
αh +

∑

j

wjhxij

)

where the yi (output) and xij (input) are defined as in
model (1), α is the output bias, h runs over the units of
the hidden layer, αh refers to the bias of the h-th unit
of the hidden layer, wjh refer to the weights between
the inputs and the hidden layer, wh refer to the weights
between the hidden layer and the output, φ is the activa-
tion function of the hidden layer. The model parameters
α , αh , wh and wjh are unknown network parameters that
need to be estimated in the network training process.

Convolutional neural network (CNN)
A convolution neural network (CNN) is a neural network
that contains one or more convolution layers, which are
defined by a set of filters. Although a CNN generally
refers to a 2-dimensional neural network, which is used
for image analysis, in this study we consider a 1-dimen-
sional (1D) CNN. Here, the input to the 1D convolu-
tion layer is a vector x = (x1, . . . , xp) equal to one row
of the n× p marker matrix X . The 1D convolution filter
is defined by a vector v = (v1, . . . , vd) where d < p . The
convolution of a filter v with x , which is called a channel,
is a vector y = (y1, y2, . . .) satisfying

where s, i.e., the stride length, is the shift displacement
of the filter across the input data. An activation function
is applied after each convolution to produce an output.
Figure 1b depicts a 1D convolution of a filter (v1, v2, v3)
on the input vector (x1, x2, . . . , x9, . . .) , considering a
stride of length s = 2 , which results in the output channel
(y1, y2, . . .) . Filter values v1, . . . , vd are model parameters
that are estimated in the neural network training process.

Performance assessment
For the simulated dataset, we assessed predictive per-
formance using predictive accuracy (PA), the Pearson
correlation between the predicted (PGBVs) and the
simulated true (TGBVs) breeding values. For all the
three KWS empirical data sets, predictive performance
was expressed as predictive ability (PA), the Pear-
son correlation between the PGBVs and the observed
(adjusted means estimated from phenotypic analy-
sis) genomic breeding values (OGBVs), also calculated
using cross validation. The simulated true breeding
values are specified in the simulation model and there-
fore are known exactly. In contrast, for empirical data,
the true breeding values are unknown and are approxi-
mated by the observed breeding values estimated as
adjusted means during phenotypic analysis. The higher
the PA, the better is the relative predictive performance
of a method. We additionally assessed the predictive
performance of the methods using the out-of-sample

yi = x1+s(i−1)v1 + x2+s(i−1)v2 + · · · + +xd+s(i−1)vd

https://github.com/miguelperezenciso/DLpipeline
https://github.com/miguelperezenciso/DLpipeline

Page 13 of 20Lourenço et al. BMC Genomics (2024) 25:152

mean squared prediction error (MSPE) and the mean
absolute prediction error (MAPE). Specifically,

where the yi and ȳ are, respectively, the TGBVs and mean
TGBVs for the single simulated dataset, but the OGBVs
and mean OGBVs for the empirical datasets, and the ŷi
and ¯̂yi are, respectively, the PGBVs and mean PGBVs.
10-fold CV is used to assess the PA for each method
for the simulated datasets in contrast to the 5-fold CV
used with the three empirical maize datasets. Although
we report both the prediction errors and the PA, breed-
ers are primarily interested in the final ordering of the

PA =

∑
i

(yi − ȳ)(ŷi − ¯̂y)
√∑

i

(yi − ȳ)2
∑
i

(ŷi − ¯̂y)2
, MSPE = 1

n

∑

i

(yi − ŷi)
2
, MAPE = 1

n

∑

i

|yi − ŷi|,

genotypes, which the PA captures better than the predic-
tion errors.

For the cross validation, we aimed to have at least 150
individuals per fold. Accordingly, each phenotypic dataset
was randomly split into k approximately equal parts. The
breeding values for each of the k folds were predicted by
training the model on the k − 1 remaining folds and a CV
error (CVE) computed for each of the k folds. The method
with the smallest CVE was selected to predict the breeding
values for the unphenotyped genotypes for the simulated
dataset, and the phenotyped genotypes in the validation
sets for each of the three empirical maize datasets.

a

b

Fig. 1 Graphical representation of a a feed‑forward neural network (FFNN) with one hidden layer; and b a convolution of a filter (v1, v2, v3) ,
with stride=2, on the Input Channel (x1, x2, . . .) . The result is in the Output Channel (y1, y2, . . .)

Page 14 of 20Lourenço et al. BMC Genomics (2024) 25:152

All the methods are implemented in the R software and
are available in various R packages [10, 32, 40, 43, 48, 54,
58, 68–73]. Table S1 (Additional file 5, Section 3) lists
the R packages we used to analyse the synthetic and real
datasets. For the deep learning methods, and because of
fine tuning requirements, we used the Python software
and packages Numpy, Pandas and Tensorflow [74, 75].
All R and Python codes referring to the simulated data
are provided in Additional files 2 & 3.

Noteworthy details of model fitting are available in the
supplementary materials (Additional file 5, Section 2).

Results
Although we did not fully quantify the computational
costs of the different methods, the computational burden
increased strikingly from the simple regularized through
the adaptive to the grouped methods. A similar trend was
also apparent from the ensemble, through the instance-
based to the deep learning methods. Computational time
may be reduced greatly by parallelizing the estimation or
optimization algorithms, but this strategy may not always
be available and can be challenging to implement for
some methods.

Simulated (animal) data
The relative performances of the various methods on
the simulated data varied with the target trait and with
whether performance was assessed in terms of predic-
tive accuracy or prediction error. Performance also var-
ied in terms of computational cost with some methods
requiring considerably more time than others. Results of
genomic prediction accuracy for the simulated data are
displayed in Figs. 2, 3 and 4 and Tables S2-S5 (Additional
file 5, Section 3). Tables S6 & S7 (Additional file 5, Sec-
tion 3) report the calibration details for the fitted feed-
forward and convolutional neural networks.

Table 6 displays the range of the observed predictive
accuracies across all the classes of the regularized meth-
ods for traits T1 − T3 . Neither the adaptive, group, nor
Bayesian regularized methods seem to improve upon the
results of their regularized counterparts, although group
regularized methods do provide some slight improve-
ment upon the results of the adaptive regularized meth-
ods. Even though all the regularized regression methods
had comparable overall performance, the best compromise
between high PA (≥ 0.77 for T1 , 0.82 for T2 and 0.81 for T3)
and small prediction errors was achieved by the LASSO,

Fig. 2 Prediction accuracy (PA) of the regularized, adaptive regularized and Bayesian regularized methods, computed as the Pearson correlation
coefficient between the true breeding values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset, where T1 − T3 refer
to three quantitative milk traits. The choice of � , where applicable, was based on the 10‑fold CV. The mean squared and absolute prediction errors
are also provided. See Table S2 for details

Page 15 of 20Lourenço et al. BMC Genomics (2024) 25:152

ENET, sENET and SCAD (Fig. 2 and Table S2; first half).
Within the class of adaptive regularized methods, the best
compromise was achieved by aLASSO and aENET (Fig. 2
and Table S2; second half; PA≥ 0.72 for T1 , 0.78 for T2 and
0.80 for for T3). For the group regularized methods, a good
compromise was achieved by the gLASSO and gSCAD
(Fig. 2 and Table S2; mean PA values ≥ 0.76 for T1 , 0.82 for
T2 and 0.81 for T3). Whereas the worst performing group
regularized methods in terms of the estimated PAs were
the cMCP and gel for T1 (PA< 0.7), sgLASSO and gel for
T2 (PA< 0.8) and hLASSO and gel for T3 (PA< 0.8), the
worst performing methods in terms of prediction errors
were the gel (T1 & T2 only) and sgLASSO (T3 only). Of all
the group regularized methods, the most time consuming
were the sgLASSO and hLASSO, with sgLASSO requiring
several more months to compute results for trait T1 than
for traits T2 or T3 . In the comparisons between the two
Bayesian regularized methods, Lasso Bayes consistently
outperformed the Ridge Bayes method across all the three
traits, demonstrating superior predictive accuracy and
generally smaller prediction errors.

The ensemble, instance-based and deep learning meth-
ods did not improve upon the results of the regularized,
the group or the Bayesian regularized methods (Fig. 4
and Tables S4 & S5). Among the ensemble and instance-
based groups of methods, RF provided the best compro-
mise between high PA and small prediction errors. For
the deep learning methods, the FFNN provided consist-
ently higher PA values than CNN across all the three
traits from the simulated data.

Predictive performance varied not only among the
methods but also with the target quantitative traits. Spe-
cifically, trait T3 had the highest predictive accuracies for
the adaptive methods, whereas trait T2 was generally top
ranked across all the remaining methods.

Real (plant) data
The ridge regression methods plus the overall best perform-
ing methods (high PA values and low prediction errors) for
each class of methods based on the analysis of the simulated
dataset, were applied to each of the three KWS empirical
maize datasets. The specific methods fitted to the KWS

Fig. 3 Prediction accuracy (PA) of the group regularized methods (mean and range values of PA across the different groupings), computed
as the Pearson correlation coefficient between the true breeding values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset,
where T1 − T3 refer to three quantitative milk traits. Choice of � was based on the 10‑fold CV. Display refers to the mean, max and min values of PA
across all the 10 grouping schemes. The mean squared and absolute prediction errors are also provided. See Table S3 for details

Page 16 of 20Lourenço et al. BMC Genomics (2024) 25:152

maize datasets comprised RR-CV, RR-REML, sENET,
aENET (enet penalty), gLASSO, RF, FFNN and lBayes.

Results are displayed in Fig. 5 and Table S8 (Additional
file 5, Section 3). Across the three real maize datasets, the
highest predicitive abilities were obtained for the 2010 data-
set. The estimated predictive abilities (PA) are under 0.7 for
the 2010 dataset but under 0.6 for the 2011 dataset and gen-
erally under 0.6 for the 2012 dataset (RR-REML and lBayes
excluded with estimated PAs of 0.616 and 0.624, respec-
tively), regardless of the method used. The lBayes and RR-
REML (2011 & 2012 datasets) and RF, RR-REML and lBayes
(2010 dataset) are evidently the best performing methods
(higher PA values and lower prediction errors). On the other
hand, aENETe (2010 & 2011 datasets) and RF (2012 data-
set) are the worst performing methods (lower PA and higher

prediction errors). Interestingly, the RF performed both
the best (2010 dataset) and the worst (2012 dataset), clearly
emphasizing that the methods are strongly data dependent.

Discussion
We have investigated the predictive performance of
several state-of-the art machine learning methods in
genomic prediction via the use of one simulated and
three real datasets. All the methods showed reasonably
high predictive performance for most practical selection
decisions. But the relative predictive performance of the
methods was both data and target trait dependent, com-
plicating and precluding omnibus comparative evalua-
tions of the genomic prediction methods, thus ruling out
selection of one procedure for routine use in genomic
prediction. These results broaden the findings of earlier
studies (e.g. [9]) to encompass a wider range of groups
of methods. If reproducibility of results, low computa-
tional cost and time are important considerations, then
using the regularized regression methods comes highly
recommended because they consistently produced,
with relatively lower computational cost and computing
time, reasonably accurate and competitive predictions
relative to the other groups of methods for the simulated
and the three real datasets. Even among the regularized

Fig. 4 Prediction accuracy (PA) of the ensemble, instance‑based and deep learning methods, computed as the Pearson correlation coefficient
between the true breeding values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset, where T1 − T3 refer to three
quantitative milk traits. See Tables S4‑S5 for details

Table 6 Range of the estimated predictive accuracies across the
classes of regularized methods for traits T1 − T3

† Values refer to the range of the observed mean PAs

T1 T2 T3

Regularized 0.716− 0.779 0.770− 0.829 0.758− 0.817

Adaptive Regularized 0.645− 0.726 0.714− 0.789 0.730− 0.805

Group Regularized† 0.653− 0.766 0.758− 0.820 0.765− 0.814

Bayesian Regularized 0.730− 0.763 0.767− 0.807 0.756− 0.794

Page 17 of 20Lourenço et al. BMC Genomics (2024) 25:152

regression methods, increasing model complexity from
simple through the adaptive to grouped or even the
Bayesian regularized methods, generally only increased
computing time without clearly improving predictive
performance.

The ensemble, instance-based and deep-learning ML
methods need the tuning of numerous hyperparam-
eters thus requiring considerable computing time to
adequately explore the entire hyperparameter space.
This will not always be possible in most applications
because of limiting time and computational resources
leading to potentially less than optimal results and may
well partly explain why these methods did not clearly
outperform the classical ML methods. Indeed, the com-
putational costs of the ensemble, instance-based and
deep learning methods can quickly become prohibitive,
if all the parameters are tuned by searching over the
often large grid of values. This will typically require not
only proficiency in programming and algorithm paral-
lelization and optimization, but excellent computing
resources. These constraints, plus the growing size of
phenotypic and genomic data, make it difficult to iden-
tify methods for routine use in genomic prediction and
call for greater focus on and investment in enhancing

the computational efficiencies of algorithms and com-
puting resources.

We have considered only well tested and established
off-the-shelf machine learning methods and one simu-
lated and three real datasets. We are extending this work
to cover the following four objectives. (1) Comparing
the performance of methods that use advanced tech-
niques for feature selection or dimensionality reduc-
tion on multiple synthetic datasets simulated using
different configurations or scenarios. (2) Exploring how
the methods generalize based on different training/
test splits across simulations/real-world datasets, indi-
viduals/samples, or chromosomes. (3) Evaluating the
sensitivity of the different methods to hyperparameter
selection. (4) Assessing the training and testing com-
plexity for the different methods.

Conclusions
Machine learning methods are well suited for efficiently
handling high dimensional data. Particularly, supervised
machine learning methods have been successfully used in
genomic prediction or genome-enabled selection. How-
ever, their comparative predictive accuracy is still poorly
understood, yet this is a critical issue in plant and animal

Fig. 5 Predictive ability (PA; mean and range values computed across the 5‑fold validation datasets and 10 replicates) of the regularized
and adaptive regularized methods, computed as the Pearson correlation coefficient between the observed breeding values (OBVs)
and the predicted breeding values (PBVs), for the KWS datasets. The choice of � , where applicable, was based on 4‑fold CV. See Table S8 for details

Page 18 of 20Lourenço et al. BMC Genomics (2024) 25:152

breeding studies given that increasing methodologi-
cal complexity can substantially increase computational
complexity or cost. Here, we showed that predictive per-
formance is both data and target trait dependent thus
ruling out selection of one method for routine use in
genomic prediction. We also showed that for this reason,
relatively low computational complexity and competitive
predictive performance, the classical linear mixed model
approach and regularized regression methods remain
strong contenders for genomic prediction.

Appendix
Observation for β̂BLUP derivation:

Observation for ĝBLUP derivation:

Abbreviations
ADAM Adaptive moment estimation
BLUP Best linear unbiased prediction
CV Cross‑validation
DL Deep learning
ENET Elastic net
FFNN Feed‑forward neural network
GP Genomic prediction
GS Genomic selection
LASSO Least absolute shrinkage and selection operator
MAPE Mean absolute prediction error
MCP Minimax concave penalty
ML Machine learning
MLP Multi‑layer perceptron
MSPE Mean squared prediction error
OLS Ordinary least squares
PA Predictive accuracy/ability
PCA Principal component analysis
PGBV Predicted genomic breeding value
QTL Quantitative trait loci
REML Restricted maximum likelihood
RF Random forests
RR Ridge regression
RSS Residual sum of squares
SCAD Smoothly clipped absolute deviation
SGB Stochastic gradient boosting
SNP Single nucleotide polymorphism
TGBV True genomic breeding value
SVM Support vector machine
SVR Support vector regression

(X
′
X +H)

−1
X
′
(K +H)K

−1
X = (X

′
X +H)

−1
(X

′
XX

′ + X
′
H)K

−1
X

= (X
′
X +H)

−1
(X

′
X +H)X

′
K
−1

X = X
′
K
−1

X

X(X
′
X +H)

−1
X
′
(K +H)K

−1 = X(X
′
X +H)

−1
(X

′
XX

′ + X
′
H)K

−1

= X(X
′
X +H)

−1
(X

′
X +H)X

′
K
−1 = I

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s12864‑ 023‑ 09933‑x.

Additional file 1. Simulated (animal breeding) dataset. Includes four txt
files: one for the grouping schemes, one for the QTLMAS prediction data,
one for the QTLMAS training data, and one for the validation trait values.

Additional file 2. R codes used to fit the ML algorithms to the simulated
(animal breeding) dataset. Includes six R files: one for the simple regular‑
ized methods, one for the adaptive regularized methods, one for the
group regularized methods, one for the Bayesian regularized methods,
one for the ensemble methods, and one for the instance‑based methods.

Additional file 3. Python codes used to fit the deep learning (FFNN &
CNN) algorithms to the simulated (animal breeding) dataset. Includes six
py and three pnz files: three of the py files refer to the FFNN fits and the
other three to the CNN fits; each of the three pnz files include six npy files
referring to the training of the FFNNs for traits 1, 2 & 3, respectively.

Additional file 4. Includes SAS code for (i) the phenotypic data analysis
(S1 Text.doc); (ii) SNP grouping schemes (S2 Text.doc); and (iii) the 5‑fold
data split (S3 Text.doc & S4 Text.doc) for the KWS 2010− 2012 data
sets.

Additional file 5. Includes the RR‑BLUP model used to estimate variance
components for the KWS real maize data (Section 1), the Noteworthy
details of model fitting (Section 2) plus the additional Tables of results
(Section 3). Table S1. List of R and Python packages used in this paper.
Table S2. Prediction accuracy (PA) of the regularized, adaptive regularized
and Bayesian regularized methods, computed as the Pearson correlation
coefficient between the true breeding values (TBVs) and the predicted
breeding values (PBVs), for the simulated dataset, where T1 − T3 refer
to three quantitative milk traits. The choice of � , where applicable, was
based on the 10‑fold CV. The mean squared and absolute prediction
errors are also provided. Table S3. Prediction accuracy (PA) of the group
regularized methods (mean and range values of PA across the different
groupings), computed as the Pearson correlation coefficient between the
true breeding values (TBVs) and the predicted breeding values (PBVs), for
the simulated dataset, where T1 − T3 refer to three quantitative milk
traits. Choice of � was based on the 10‑fold CV. Display refers to the mean,
max and min values of PA across all the 10 grouping schemes. The mean
squared and absolute prediction errors are also provided. Table S4. Pre‑
diction accuracy (PA) of the ensemble and instance‑based methods, com‑
puted as the Pearson correlation coefficient between the true breeding
values (TBVs) and the predicted breeding values (PBVs), for the simulated
dataset, where T1 − T3 refer to three quantitative milk traits. Table S5.
Prediction accuracy (PA) of the deep learning methods, computed as the
Pearson correlation coefficient between the true breeding values (TBVs)
and the predicted breeding values (PBVs), for the simulated dataset, where
T1 − T3 refer to three quantitative milk traits. Table S6. Best FFNN
model calibration parameters selected for each of the three quantitative
milk traits T1 − T3 . Table S7. Best CNN model calibration parameters
(Number of epochs/Learning rate) selected for each of the three quantita‑
tive milk traits T1 − T3 . Table S8. Predictive ability (PA; mean and range
values computed across the 5‑fold validation datasets and 10 replicates) of
the regularized, adaptive regularized, group regularized, Bayesian regular‑
ized, ensemble, instance‑based and deep learning methods, computed as
the Pearson correlation coefficient between the observed breeding values
(OBVs) and the predicted breeding values (PBVs), for the KWS datasets. The
choice of � , where applicable, was based on 4‑fold CV.

Acknowledgements
We thank KWS for providing the maize datasets. We thank the Centre for
Mathematical Analysis, Geometry, and Dynamical Systems, from Instituto
Superior Técnico (IST) of the University of Lisbon, for granting access to their
computing resources to run the Deep Learning Models.

https://doi.org/10.1186/s12864-023-09933-x
https://doi.org/10.1186/s12864-023-09933-x

Page 19 of 20Lourenço et al. BMC Genomics (2024) 25:152

Authors’ contributions
VML, JOO and HPP conceived the project. RAPR wrote the Python code, selected
and trained the deep learning models. AP selected and programmed the Bayes‑
ian models and wrote the corresponding theory. VML and JOO wrote the R code,
performed the simulations and all the other analyses. VML wrote the initial draft
of the manuscript. JOO, RAPR and HPP contributed to writing and revising the
manuscript. All authors read and approved the final version of the manuscript.

Authors’ information
The authors declare no conflict of interests.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work
is funded by national funds through the FCT ‑ Fundação para a Ciência e
a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and
UIDP/00297/2020 (Center for Mathematics and Applications). The German
Federal Ministry of Education and Research (BMBF) funded this research within
the AgroClustEr “Synbreed ‑ Synergistic plant and animal breeding” (Grant ID:
0315526). JOO was additionally supported by the German Research Founda‑
tion (DFG, Grant # 257734638). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
The simulated animal data from the QTLMAS workshop 2012 is provided
in the supplementary materials together with the annotated R and Python
codes used to analyse these data. The KWS data is proprietary data and can‑
not be shared publicly for confidentiality reasons. These can only be shared
upon reasonable request and with KWS’ express consent. This notwithstand‑
ing, we provide a synthetic dataset that mimics the KWS data, which can be
used with our codes to illustrate the implementation of the ML methods.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Center for Mathematics and Applications (NOVA Math) and Department
of Mathematics, NOVA SST, 2829‑516 Caparica, Portugal. 2 Institute of Crop
Science, Biostatistics Unit, University of Hohenheim, Fruwirthstrasse 23,
70599 Stuttgart, Germany. 3 Research Unit of Computational Statistics, Vienna
University of Technology, Wiedner Hauptstr. 8‑10, 1040 Vienna, Austria.

Received: 21 March 2023 Accepted: 20 December 2023

References
 1. Montesinos‑López A, Montesinos‑López OA, Gianola D, Crossa J,

Hernández‑Suárez CM. Multi‑environment genomic prediction of plant
traits using deep learners with dense architecture. G3 Genes Genomes
Genet. 2018;8(12):3813–3828.

 2. Montesinos‑López OA, Montesinos‑López A, Crossa J, Gianola D,
Hernández‑Suárez CM, Martín‑Vallejo J. Multi‑trait, multi‑environment
deep learning modeling for genomic‑enabled prediction of plant traits.
G3 Genes Genomes Genet. 2018;8(12):3829–3840.

 3. Montesinos‑López OA, Martín‑Vallejo J, Crossa J, Gianola D, Hernández‑
Suárez CM, Montesinos‑López A, Philomin J, Singh R. A benchmarking
between deep learning, support vector machine and Bayesian threshold
best linear unbiased prediction for predicting ordinal traits in plant
breeding. G3 Genes Genomes Genet. 2019;9(2):601–618.

 4. Montesinos‑López OA, Martín‑Vallejo J, Crossa J, Gianola D, Hernández‑
Suárez CM, Montesinos‑López A, Juliana P, Singh R. New deep learning

genomic‑based prediction model for multiple traits with binary,
ordinal, and continuous phenotypes. G3 Genes Genomes Genet.
2019;9(5):1545–1556.

 5. Ogutu JO, Piepho H‑P, Schultz‑Streeck T. A comparison of random forests,
boosting and support vector machines for genomic selection. BMC Proc.
2011;5(3):1‑5.

 6. Ogutu JO, Schulz‑Streeck T, Piepho H‑P. Genomic selection using regular‑
ized linear regression models: ridge regression, lasso, elastic net and their
extensions. BMC Proc. 2012;6(2):1‑6.

 7. Heslot N, Yang HP, Sorrells ME, Jannink JL. Genomic selection in plant
breeding: a comparison of models. Crop Sci. 2012;52:146–60.

 8. Pérez‑Enciso M, Zingaretti LM. A Guide on Deep Learning for Complex
Trait Genomic Prediction. Genes. 2019;10(7):553.

 9. Ogutu JO, Piepho H‑P. Regularized group regression methods for
genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse
group lasso, group MCP and group SCAD. BMC Proc. 2014;8(5):1‑9.

 10. Pérez P, de los Campos G. Genome‑wide regression and prediction with
the BGLR statistical package. Genetics. 2014;198:483–495.

 11. Usai MG, Gaspa G, Macciotta NP, Carta A, Casu S. XVIth QTLMAS: simu‑
lated dataset and comparative analysis of submitted results for QTL
mapping and genomic evaluation. BMC Proc. 2014;8(5):1–9.

 12. Estaghvirou SBO, Ogutu JO, Schulz‑Streeck T, Knaak C, Ouzunova M, Gor‑
dillo A, Piepho HP. Evaluation of approaches for estimating the accuracy of
genomic prediction in plant breeding. BMC Genomics. 2013;14(1):1–21.

 13. Estaghvirou SBO, Ogutu JO, Piepho HP. How genetic variance and num‑
ber of genotypes and markers influence estimates of genomic prediction
accuracy in plant breeding. Crop Sci. 2015;55(5):1911–24.

 14. Xie L. Randomly split SAS data set exactly according to a given probabil‑
ity Vector. 2009. https:// silo. tips/ downl oad/ rando mly‑ split‑ sas‑ data‑ set‑
exact ly‑ accor ding‑ to‑a‑ given‑ proba bility‑ vector. Accessed 15 Mar 2021.

 15. Frank IE, Friedman JH. A statistical view of some chemometrics regression
tools (with discussion). Technometrics. 1993;35:109–48.

 16. Fan J, Li R. Variable selection via nonconcave penalized likelihood and its
oracle properties. J Am Stat Assoc. 2001;96:1348–60.

 17. Fan J, Peng H. Nonconcave penalized likelihood with a diverging number
of parameters. Ann Stat. 2004;32:928–61.

 18. Hoerl AE, Kennard RW. Ridge regression: biased estimation for non‑
orthogonal problems. Technometrics. 1970;12:55–67.

 19. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc
B. 1996;58:267–88.

 20. Zou H, Hastie T. Regularization and variable selection via the elastic net. J
R Stat Assoc B. 2005;67:301–20.

 21. Fu WJ. Penalized regressions: The bridge versus the lasso. J Comput Graph
Stat. 1998;7:397–416.

 22. Huang J, Horowitz JL, Ma S. Asymptotic properties of bridge estimators in
sparse high‑dimensional regression models. Ann Stat. 2008;36:587–613.

 23. Knight K, Fu W. Asymptotics for Lasso‑type estimators. Ann Stat.
2000;28:356–1378.

 24. Zhang C‑H, Huang J. The sparsity and bias of the lasso selection in high‑
dimensional linear regression. Ann Stat. 2008;36:1567–94.

 25. Zhang C‑H. Nearly unbiased variable selection under minimax concave
penalty. Ann Stat. 2010;38:894–942.

 26. Meuwissen TH, Hayes BJ, Goddard M. Prediction of total genetic value
using genome‑wide dense marker maps. Genetics. 2001;157(4):1819–29.

 27. Searle SR, Casella G, McCulloch CE. Variance components. New York:
Wiley; 1992.

 28. Piepho H‑P, Ogutu JO, Schulz‑Streeck T, Estaghvirou B, Gordillo A, Technow F.
Efficient computation of ridge‑regression best linear unbiased prediction in
genomic selection in plant breeding. Crop Sci. 2012;52:1093–104.

 29. Ruppert D, Wand MP, Carroll RJ. Semiparametric regression. Cambridge:
Cambridge University Press; 2003.

 30. Hayes BJ, Visscher PM, Goddard ME. Increased accuracy of artifi‑
cial selection by using the realized relationship matrix. Genet Res.
2009;91(1):47–60.

 31. Piepho H‑P. Ridge regression and extensions for genomewide selection
in maize. Crop Sci. 2009;49:1165–76.

 32. Mazumder R, Friedman JH, Hastie T. Sparsenet: Coordinate descent with
nonconvex penalties. J Am Stat Assoc. 2011;106(495):1125–38.

 33. Kim Y, Choi H, Oh HS. Smoothly clipped absolute deviation on high
dimensions. J Am Stat Assoc. 2008;103(484):1665–73.

https://silo.tips/download/randomly-split-sas-data-set-exactly-according-to-a-given-probability-vector
https://silo.tips/download/randomly-split-sas-data-set-exactly-according-to-a-given-probability-vector

Page 20 of 20Lourenço et al. BMC Genomics (2024) 25:152

 34. Zhang C‑H. Penalized linear unbiased selection. Department of Statistics
and Bioinformatics, Rutgers University, Technical Report #2007‑003. 2007.

 35. Breheny P, Huang J. Coordinate descent algorithms for nonconvex penal‑
ized regression, with applications to biological feature selection. Ann
Appl Stat. 2011;5:232–53.

 36. Chen Z, Zhu Y, Zhu C. Adaptive bridge estimation for high‑dimensional
regression models. J Inequalities Appl. 2016;1:258.

 37. Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc.
2006;101:1418–29.

 38. Grandvalet Y. Least absolute shrinkage is equivalent to quadratic penali‑
zation. International Conference on Artificial Neural Networks. London:
Springer; 1998. p. 201–206.

 39. Zou H, Zhang HH. On the adaptive elastic‑net with a diverging number
of parameters. Ann Stat. 2009;37(4):1733–51.

 40. Xiao N, Xu QS. Multi‑step adaptive elastic‑net: reducing false posi‑
tives in high‑dimensional variable selection. J Stat Comput Simul.
2015;85(18):3755–65.

 41. Huang J, Breheny P, Ma S. A Selective Review of Group Selection in
High‑Dimensional Models. Stat Sci. 2012;27(4). https:// doi. org/ 10. 1214/
12‑ STS392.

 42. Bach F. Consistency of the group lasso and multiple kernel learning. J
Mach Learn. 2008;9:1179–225.

 43. Breheny P, Huang J. Penalized methods for bi‑level variable selection. Stat
Interface. 2009;2:369–80.

 44. Park C, Yoon YJ. Bridge regression: adaptivity and group selection. J Stat
Plan Infer. 2011;141:3506–19.

 45. Yuan M, Lin Y. Model selection and estimation in regression with grouped
variables. J R Stat Soc B. 2006;68:49–67.

 46. Breheny P, Huang J. Group descent algorithms for nonconvex penal‑
ized linear and logistic regression models with grouped predictors. Stat
Comput. 2015;25(2):173–87.

 47. Huang J, Ma S, Xie H, Zhang C‑H. A group bridge approach for variable
selection. Biometrika. 2009;96:339–55.

 48. Simon N, Friedman J, Hastie T, Tibshirani R. A sparse‑group lasso. J Com‑
put Graph Stat. 2013;22:231–45. https:// doi. org/ 10. 1080/ 10618 600. 2012.
681250.

 49. Friedman J, Hastie T, Tibshirani R. A note on the group lasso and sparse
group lasso. 2010. arXiv preprint arXiv:1001.0736.

 50. Huang J, Zhang T. The benefit of group sparsity. Ann Stat.
2010;38:1978–2004.

 51. Poignard B. Asymptotic theory of the adaptive Sparse Group Lasso. Ann
Inst Stat Math. 2020;72(1):297–328.

 52. Percival D. Theoretical properties of the overlapping groups lasso. Elec‑
tron J Stat. 2011;6:269–88.

 53. Zhou N, Zhu J. Group variable selection via a hierarchical lasso and its
oracle property. Stat Interface. 2010;3:557–74.

 54. Lim M, Hastie T. Learning interactions via hierarchical group‑lasso regu‑
larization. J Comput Graph Stat. 2015;24(3):627–54.

 55. Bien J, Taylor J, Tibshirani R. A lasso for hierarchical interactions. Ann Stat.
2013;41:1111–41.

 56. Hastie TJ, Tibshirani R, Friedman J. The elements of statistical learning. 2nd
ed. New York: Springer; 2009.

 57. Liaw A, Wiener M. Classification and regression by randomForest. R News.
2002;2:18–22.

 58. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 59. Schonlau M. Boosted regression (boosting): An introductory tutorial and

a Stata plugin. Stata J. 2005;5(3):330–54.
 60. Vapnik V. The Nature of Statistical Learning Theory. New York: Springer;

1995.
 61. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinforma.

2017;18(5):851–69. https:// doi. org/ 10. 1093/ bib/ bbw068.
 62. Yue T, Wang H. Deep learning for genomics: A concise overview. 2018.

arXiv preprint arXiv:1802.00810.
 63. Bengio Y. Practical recommendations for gradient‑based training of

deep architectures. In: Neural Networks: Tricks of the trade. Berlin,
Heidelberg: Springer; 2012. p. 437–478.

 64. Eraslan G, Avsec Z̆, Gagneur J, Theis FJ. Deep learning: new computational
modelling techniques for genomics. Nat Rev Genet. 2019;20(7):389–403.

 65. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on
deep learning in genomics. Nat Genet. 2019;51(1):12–8. https:// doi. org/
10. 1038/ s41588‑ 018‑ 0295‑5.

 66. Kingma DP, Ba JL. Adam: A method for stochastic optimization. 2014.
arXiv preprint arXiv:1412.6980. https:// arxiv. org/ pdf/ 1412. 6980. pdf.

 67. Ruder S. An overview of gradient descent optimization algorithms. 2016.
arXiv preprint arXiv:1609.04747.

 68. Breheny P. The group exponential lasso for bi‐level variable selection.
Biometrics. 2015;71(3):731‑40.

 69. Endelman JB. Ridge regression and other kernels for genomic selection
with R package rrBLUP. Plant Genome. 2011;4(3):250–55.

 70. Friedman J. Greedy function approximation: a gradient boosting
machine. Ann Stat. 2001;29:1189–232.

 71. Friedman J, Hastie T, Tibshirani R, Narasimhan B, Tay K, Simon N, Qian J.
Package ‘glmnet’. J Stat Softw. 2022;2010a:33(1).

 72. Greenwell B, Boehmke B, Cunningham J. Package ‘gbm’. R package ver‑
sion. 2019;2(5).

 73. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A. "Package ‘e1071’."
R Software package. 2009. Avaliable at https:// cran.r‑ proje ct. org/ web/
packa ges/ e1071/ index. html.

 74. Agrawal A, et al. TensorFlow Eager: A multi‑stage, Python‑embedded DSL
for machine learning. Proc Mach Learn Syst. 2019;1:178–89.

 75. McKinney W. Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. California: O’Reilly Media, Inc.; 2012.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1214/12-STS392
https://doi.org/10.1214/12-STS392
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1080/10618600.2012.681250
https://doi.org/10.1093/bib/bbw068
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1038/s41588-018-0295-5
https://arxiv.org/pdf/1412.6980.pdf
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html

	Genomic prediction using machine learning: a comparison of the performance of regularized regression, ensemble, instance-based and deep learning methods on synthetic and empirical data
	Abstract
	Background
	Results
	Conclusions

	Background
	Data
	Simulated (animal) data
	Real (plant) data

	Methods
	Regularized regression methods
	Bridge-type estimators
	Elastic net estimator

	Adaptive regularized regression methods
	Adaptive bridge-type estimators
	Adaptive elastic-net

	Regularized group regression methods
	Group bridge-type estimators
	Group LASSO and sparse group LASSO

	Bayesian regularized estimators
	Ensemble methods
	Random forests (RF)
	Stochastic gradient boosting (SGB)

	Instance-based methods
	Support vector machines

	Deep learning methods
	Feed-forward neural network (FFNN)
	Convolutional neural network (CNN)

	Performance assessment

	Results
	Simulated (animal) data
	Real (plant) data

	Discussion
	Conclusions
	Appendix
	Observation for derivation:
	Observation for derivation:

	Acknowledgements
	References

