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Abstract 

Background The accurate prediction of genomic breeding values is central to genomic selection in both plant 
and animal breeding studies. Genomic prediction involves the use of thousands of molecular markers spanning 
the entire genome and therefore requires methods able to efficiently handle high dimensional data. Not surpris‑
ingly, machine learning methods are becoming widely advocated for and used in genomic prediction studies. These 
methods encompass different groups of supervised and unsupervised learning methods. Although several studies 
have compared the predictive performances of individual methods, studies comparing the predictive performance 
of different groups of methods are rare. However, such studies are crucial for identifying (i) groups of methods 
with superior genomic predictive performance and assessing (ii) the merits and demerits of such groups of methods 
relative to each other and to the established classical methods. Here, we comparatively evaluate the genomic predic‑
tive performance and informally assess the computational cost of several groups of supervised machine learning 
methods, specifically, regularized regression methods, deep, ensemble and instance-based learning algorithms, using 
one simulated animal breeding dataset and three empirical maize breeding datasets obtained from a commercial 
breeding program.

Results Our results show that the relative predictive performance and computational expense of the groups 
of machine learning methods depend upon both the data and target traits and that for classical regularized methods, 
increasing model complexity can incur huge computational costs but does not necessarily always improve predic‑
tive accuracy. Thus, despite their greater complexity and computational burden, neither the adaptive nor the group 
regularized methods clearly improved upon the results of their simple regularized counterparts. This rules out selec‑
tion of one procedure among machine learning methods for routine use in genomic prediction. The results also show 
that, because of their competitive predictive performance, computational efficiency, simplicity and therefore relatively 
few tuning parameters, the classical linear mixed model and regularized regression methods are likely to remain 
strong contenders for genomic prediction.
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Conclusions The dependence of predictive performance and computational burden on target datasets and traits 
call for increasing investments in enhancing the computational efficiency of machine learning algorithms and com‑
puting resources.

Keywords Genomic prediction, Genomic selection, Breeding value, Predictive accuracy, Predictive ability, High‑
dimensional data, Supervised machine learning methods

Background
Rapid advances in genotyping and phenotyping tech-
nologies have enabled widespread and growing use of 
genomic prediction (GP). The very high dimensional 
nature of both genotypic and phenotypic data, however, 
is increasingly limiting the utility of the classical statisti-
cal methods. As a result, machine learning (ML) meth-
ods able to efficiently handle high dimensional data are 
becoming widely used in GP. This is especially so because, 
compared to many other methods used in GP, ML meth-
ods possess the significant advantage of being able to 
model nonlinear relationships between the response and 
the predictors and complex interactions among predic-
tor variables. However, this often comes at the price of 
a very high computational burden. Often, however, com-
putational cost is less likely to present serious challenges 
if the number of SNPs in a dataset is relatively modest 
but it can become increasingly debilitating as the num-
ber of markers grows to millions or even tens of millions. 
Future advances in computational efficiencies of machine 
learning algorithms or using high-performance or more 
efficient programming languages may progressively ame-
liorate this limitation. Given their growing utility and 
popularity, it is important to establish the relative pre-
dictive performance of different groups of ML methods 
in GP. Even so, the formal comparative evaluation of the 
predictive performance of groups of ML methods has 
attracted relatively little attention. The rising importance 
of ML methods in plant and animal breeding research 
and practice, increases both the urgency and impor-
tance of evaluating the relative predictive performance of 
groups of ML methods relative to each other and to clas-
sical methods. This can facilitate identification of groups 
of ML methods that balance high predictive accuracy 
with low computational cost for routine use with high 
dimensional phenotypic and genomic data, such as for 
GP, say.

ML is perhaps one of the most widely used branches of 
contemporary artificial intelligence. Using ML methods 
facilitates automation of model building, learning and 
efficient and accurate predictions. ML algorithms can be 
subdivided into two major classes: supervised and unsu-
pervised learning algorithms. Supervised regression ML 
methods encompass regularized regression methods, 
deep, ensemble and instance-based learning algorithms. 

Supervised ML methods have been successfully used to 
predict genomic breeding values for unphenotyped geno-
types, a crucial step in genome-enabled selection [1–9]. 
Furthermore, several studies have assessed the relative 
predictive performance of supervised ML methods in GP, 
including two ensemble methods and one instance-based 
method [5]; four regularized and two adaptive regular-
ized methods [6]; three regularized and five regularized 
group methods [9] and several deep learning methods 
[1–4, 8]. However, no study has comprehensively evalu-
ated the comparative predictive performance of all these 
groups of methods relative to each other or to the classi-
cal regularized regression methods. We therefore rigor-
ously evaluate the comparative predictive performance 
as well as the computational complexity or cost of three 
groups of popular and state-of-the-art ML methods for 
GP using one simulated animal dataset and three empiri-
cal datasets obtained from a commercial maize breed-
ing program. We additionally offer brief overviews of the 
mathematical properties of the methods with emphasis 
on their salient properties, strengths and weaknesses 
and relationships with each other and with the classical 
regularization methods. While we offer a somewhat com-
prehensive review of genomic prediction methods with 
a specific emphasis on ML, our contribution extends to 
showcasing novel findings derived from comparative 
assessments of ML techniques across both real and simu-
lated datasets.

Besides ML methods, Bayesian methods are also 
becoming widely used for genomic prediction [3, 8, 10]. 
So, even though our goal is not to provide an exhaustive 
review of all genomic prediction methods, we offer two 
Bayesian methods for benchmarking the performance of 
the ML methods.

The rest of the paper is organized as follows. First we pre-
sent the synthetic and real datasets. Second, we detail the 
methods compared in this study. Next, the results from the 
comparative analyses of the data are presented. Finally, a 
discussion of the results and closing remarks follow.

Data
Simulated (animal) data
We consider one simulated dataset [9], an animal breed-
ing outbred population simulated for the 16-th QTLMAS 
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Workshop 2012 (Additional file 1). The simulation mod-
els used to generate the data are described in detail in 
[11] and are therefore not reproduced here. The data-
set consists of 4020 individuals genotyped for 9969 SNP 
markers. Out of these, 3000 individuals were phenotyped 
for three quantitative milk traits and the remaining 1020 
were not phenotyped (see [9] for details). The goal of the 
analysis of the simulated dataset is to predict the genomic 
breeding values (PGBVs) for the 1020 unphenotyped 
individuals using the available genomic information. The 
simulated dataset also provides true genomic breeding 
values (TGBVs) for the 1020 genotypes for all the traits.

As in [9], to enable model fitting for the grouping meth-
ods, markers were grouped by assigning consecutive SNP 
markers systematically to groups of sizes 10,  20,  ...,  100 
separately for each of the five chromosomes. Typically, 
the last group of each grouping scheme has fewer SNPs 
than the prescribed group size. Table 1 summarizes the 
simulated phenotypic data and highlights differences in 
the magnitudes of the three simulated quantitative traits 
T1 , T2 and T3.

Real (plant) data
For the application to empirical data sets, we use three 
empirical maize breeding datasets produced by KWS 
(breeding company) for the Synbreed project during 
2010, 2011 and 2012. We first performed separate phe-
notypic analyses of yield for each of the three real maize 
data sets to derive the adjusted means used in genomic 
prediction using a single stage mixed model assuming 
that genotypes are uncorrelated (Additional file  4, S1 
Text). The fixed effect in the mixed model comprised a 
tester (Tester) with two levels, genotypic group (GRP) 
with three levels, Tester×GRP and Tester×GRP× G 
(G=genotype). The random factors were location 
(LOC), trial (TRIAL) nested within location, replicate 
(REP) nested within trial and block (BLOCK) nested 
within replicate. The fitted random effects were LOC, 
LOC×TRIAL, LOC×TRIAL×REP, LOC×TRIAL×REP×
BLOCK, Tester×GRP×SWITCH2× G1 and Tester×GRP×
SWITCH1×G2. SWITCH1 and SWITCH2 in the last 
two effects are operators defined and explained briefly 
in the supplementary materials (Additional file  4, S1 
text; and Additional file  5, Section  1) and in greater 
detail in [12, 13]. All the three maize datasets involved 

two testers and three genotypic groups. Accordingly, 
prior to genomic prediction, we accounted for and 
removed the effect of the tester×genotypic group (GRP) 
effect from the adjusted means (lsmeans) of maize 
yield (dt/ha) by computing the arithmetic mean of the 
lsmeans for the interaction of testers with GRP for the 
genotyped lines. This mean was then subtracted from 
the lsmeans for each tester×GRP interaction term. The 
resulting deviations were subtracted from the lsmeans 
of the individual genotypes corresponding to each 
Tester×GRP interaction. This enabled us not to con-
sider the Tester×GRP effect in the genomic prediction 
model.

For all the years, every line was genotyped for 32217 SNP 
markers. A subset of the SNP markers with non-zero vari-
ances were split into groups of sizes 10, 20, 30, 40, 50, 60, 7
0,  80,  90 and 100. Groups were defined by systematically 
grouping consecutive and spatially adjacent markers, sepa-
rately for each of 10 chromosomes (Additional file  4, S2 
Text). All the checks (standard varieties) and check markers 
were deleted prior to genomic prediction. More details spe-
cific to the three datasets follow (Table 2 summarizes the 
number of genotypes in the training and validation data-
sets). The true breeding values are not known in this case.

For each of the 2010, 2011 and 2012 datasets, the 
genotypes or test crosses were genotyped for 32217 
SNPs and randomly split into 5 parts (folds) for 5-fold 
cross-validation (Additional file 4, S3 Text & S4 Text). 
The random splitting procedure was repeated 10 times 
to yield 10 replicates per dataset. The total number of 
genotypes and the number of individuals assigned to 
the training and validation sets for each dataset are 
provided in Table 2.

Table  3 summarizes the KWS phenotypic data for 
2010, 2011 and 2012. Each data split for each year 
(2010, 2011 and 2012) contained approximately 20% of 
the phenotypic observations and was obtained using 
stratified random sampling using the algorithm of [14]. 
The strata were defined by the combinations of the two 
testers and three genotypic groups.

Methods
In this section we describe the four supervised ML 
groups of methods.

Table 1 Summary statistics for the three quantitative traits ( T1 , T2 and T3 ) in the simulated training dataset ( n = 3000 genotypes)

Trait Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

T1 ‑584.993650 ‑116.244762 ‑1.711490 ‑0.000004 112.248515 587.189720 176.518911

T2 ‑32.233530 ‑6.502070 0.075480 ‑0.000004 6.615977 32.514590 9.514060

T3 ‑0.095720 ‑0.015893 0.000650 0.000005 0.016450 0.085240 0.024474
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Regularized regression methods
Consider the general linear regression model

where yi is the i-th observation of the response vari-
able, xij is the i-th observation of the j-th covariate (p is 
the number of all covariates), βj are the regression coef-
ficients (unknown fixed parameters), εi are i.i.d. random 
error terms with E(εi) = 0 and var(εi) = σ 2

e  , where σ 2
e  is 

an unknown random variance, and n is the sample size. 
The ordinary least squares estimator of β = (β0, . . . ,βp)

′ , 
which is unbiased, is obtained by minimizing the residual 
sum of squares (RSS), i.e.,

where

This estimator is typically not suitable when the 
design matrix X is less than full rank ( X has a full 
rank if the number of its linearly independent rows or 

(1)yi = β0 +
p

j=1

βjxij + εi, i = 1, ..., n

β̂ols = argmin
β

n∑

i=1

(
yi − β0 −

p∑

j=1

βjxij

)2
= argmin

β

�y − Xβ�22,

y = (y1 . . . , yn)
′
, X =





1 x11 x12 x13 . . . x1p
1 x21 x22 x23 . . . x2p
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 xn1 xn2 xn3 . . . xnp



 and �.�2is the ℓ2-norm.

columns k = min(p, n) ) or is close to collinearity (i.e., 
the covariates are close to being linear combinations of 
one another) [15]; problems that are frequently associ-
ated with p >> n.

In genomic prediction (GP) one is interested in estimat-
ing the p regression coefficients βj so that genomic breed-
ing values of non-phenotyped genotypes can be predicted 
from the fitted model. The response variable y is often 
some quantitative trait and the βj ’s are the coefficients 
of molecular markers spanning the whole genome, usu-
ally Single Nucleotide Polymorphisms (SNPs). Because 
in GP typically p >> n , the ordinary least squares (OLS) 
estimator breaks down and thus other methods for esti-
mating β in (1) must be sought. Indeed, the increasingly 
high dimensional nature of high-throughput SNP-marker 
datasets has prompted increasing use of the power and 
versatility of regularization methods in genomic predic-
tion to simultaneously select and estimate important 
markers and account for multicollinearity [5, 6].

Without loss of generality, we assume, consistent with 
the standard practice in regularized estimation where a dis-
tance-based metric is used for prediction, that the response 

Table 2 Number of genotypes in the training dataset (folds F1‑F4) and validation dataset (fold F5) for each of the 10 replicates of the 
5‑fold cross‑validation sets for the 2010, 2011 and 2012 KWS real maize datasets. Individuals were genotyped for a total of 32217 SNPs 
in all years

Folds

2010 2011 2012

F1-F4 F5 F1-F4 F5 F1-F4 F5

Data
     Training 859 856 685 688 1104 1108

     Validation 214 217 172 169 277 273

Total 1073 857 1381

Table 3 Summary statistics for maize yield (dt/ha) in the KWS real maize datasets for 2010, 2011 and 2012

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. Sd

2010 86.597600 121.550000 127.880000 126.806883 132.670000 149.930000 8.297735

2011 101.670000 139.310000 144.710000 144.221949 150.070000 164.060000 8.155595

2012 114.840000 139.160000 143.810000 143.719182 148.470000 169.160000 7.318531
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variable is mean-centered whereas the covariates in (1) are 
standardized, so that

Regularized regression methods minimize a non-nega-
tive loss function (RSS or other) plus a non-negative pen-
alty function. Standardizing the covariates prior to model 
fitting ensures that the penalty is applied evenly to all 
covariates. Mean-centering the response and the covari-
ates is usually done for notational simplicity but also 
eliminates the need to estimate the intercept β0.

After the penalized models have been fit, the final esti-
mates are obtained by back transformation to the original 
scale by re-introducing an intercept ( β0 ). In particular, 
for a mean-centered response y and standardized predic-
tor X∗ , predictions are obtained by

with β̂
∗ = (β̂∗

1 , . . . , β̂
∗
p ) , the regression coefficients from 

the model fit with the mean-centered response y and 
standardized covariates X∗ , X∗

j = (x1j , . . . , xnj)
′ the j-

th covariate and β0 = ȳ . One can also choose to predict 
using the original predictor X∗ without standardization. 
In that case one should back transform the β̂∗

j  to the orig-
inal scale and consider

with β̂j = β̂∗
j /sj , sj =

√
n−1

n∑
i=1

x2ij  the standard deviation 

of the j-th covariate X∗
j  and β0 = ȳ − X̃β̂ , where 

X̃j = (mj , . . . ,mj)
′ is a vector of size n with mj being the 

mean of the j-th covariate X∗
j .

The primary goal of regularization methods is to reduce 
model complexity resulting from high dimensionality by 
reducing the number of predictors in the model. This is 
achieved by either shrinking some coefficients to become 
exactly zero, and so drop out of the model, or shrinking 
all coefficients to be close to zero and each other but not 
exactly zero. Ideally, a desirable estimator of β should (i) 
correctly select the nonzero coefficients with probability 
converging to 1 (i.e. with near certainty; selection consist-
ency) and (ii) yield estimators of the nonzero coefficients 
that are asymptotically normal with the same means and 
covariances that they would have if the zero coefficients 
were known exactly in advance (asymptotic normality). 
An estimator satisfying these two conditions is said to 
possess the oracle property [16, 17].

n∑

i=1

yi = 0,

n∑

i=1

xij = 0 and n−1

n∑

i=1

x2ij = 1, j = 1, . . . , p.

ŷ = β0 +
p∑

j=1

X∗
j β̂

∗
j

ŷ = β0 +
p∑

j=1

X∗
j β̂j

For the remainder of the paper, we assume that X is a 
n× p marker matrix (e.g., with the genotypes {aa,Aa,AA} 
coded as {0, 1, 2} or {−1, 0, 1} for p biallelic SNPs under 
an additive model) with Xj denoting the j-th SNP covari-
ate and β = (β1, . . . ,βp) denoting the unknown vector 
of marker effects. Table  4 (upper half ) summarizes the 
methods discussed in this sub-section.

Bridge‑type estimators
The most popular regularization methods in genomic 
prediction include ridge regression (RR; [18]), the least 
absolute shrinkage and selection operator (LASSO; [19]) 
and the elastic net (ENET; [20]). All these methods are 
special cases of the bridge estimator [15, 21] given by

where the regularization parameter � balances the good-
ness-of-fit against model complexity and the shrinkage 
parameter γ determines the order of the penalty func-
tion. The optimal combination of � and γ can be selected 
adaptively for each dataset by grid search using cross-
validation (CV; if the focus is on predictive performance) 
or by information criteria (e.g., AIC or BIC; if the focus is 
on model fit). Bridge regression automatically selects rel-
evant predictors when 0 < γ ≤ 1 , shrinks the coefficients 
when γ > 1 and reduces to subset selection when γ = 0 . 
The bridge estimator reduces to the LASSO estima-
tor when γ = 1 and to the ridge estimator when γ = 2 . 
Specifically,

where ‖.‖1 is the ℓ1-norm, and

The bridge estimator also enjoys several other useful 
and interesting properties (see [22, 23] for more details). 
We summarize these salient properties with emphasis on 
the special cases of the LASSO ( γ = 1 ) and the ridge esti-
mators ( γ = 2 ). 

1 The asymptotic properties of bridge estimators have 
been studied in detail by [22]. In particular, where 
p < n , with p increasing to infinity as n grows, and 
under appropriate regularity conditions, bridge 
estimators enjoy the oracle property for 0 < γ < 1 . 
This implies that neither the LASSO nor the ridge 
estimator possesses the oracle property [16, 17]. 
If p >> n and no assumptions are imposed on the 
covariate matrix, then the regression parameters 

(2)β̂bridge = argmin
β

{
RSS+ �

p∑

j=1

|βj |γ
}
, γ > 0, � ≥ 0,

(3)β̂ lasso = argmin
β

{
RSS+ ��β�1

}
,

(4)β̂ridge = argmin
β

{
RSS+ ��β�22

}
.
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are generally non-identifiable. However, if a suitable 
structure is assumed for the covariate matrix, then 
bridge estimators achieve consistent variable selec-
tion and estimation [22].

2 Although the LASSO estimator performs automatic 
variable selection, it is a biased and inconsistent esti-
mator [24, 25]. Moreover, it is unstable with high-
dimensional data because it 

 (i) cannot select a larger number of predictors p 
than the sample size n if p >> n;

 (ii) arbitrarily selects one member of a set of pair-
wise highly correlated predictors and ignores 
the other.

3 The ridge estimator performs well for many pre-
dictors each of which has a small effect but cannot 
shrink the coefficients to become exactly zero. More-
over, the ridge estimator 

 (i) prevents coefficients of linear regression 
models with many correlated variables from 
being poorly determined and exhibiting high 
variance;

 (ii) shrinks coefficients of correlated predictors 
equally towards zero and towards each other;

 (iii) retains all predictor variables in the model lead-
ing to complex and less interpretable models.

  In addition, RR has close connections with marker-
based best linear unbiased prediction (BLUP) 
and genomic best linear unbiased prediction 
(GBLUP) [26], which we clarify in what fol-
lows. The ridge estimator is given by 

where, if � is estimated by cross-validation as sug-
gested above, then the ridge estimator may be 
denoted by RR-CV. Another way of looking at the 
ridge estimator is to assume in (1) that β ∼ N (0, Iσ 2

β ) 
is a random vector of unknown marker effects and 
that ε ∼ N (0, Iσ 2

e ) is an unknown random error 
term, where σ 2

β and σ 2
e  are the unknown marker-

effect and error variances, respectively. Model (1), 
written in matrix form as 

is now a linear mixed model and hence, the vari-
ances can be estimated via the restricted maxi-
mum likelihood (REML) method. Observing that 
y ∼ N (0,Kσ 2

β + Iσ 2
ε ) , where K = X′X is the kinship 

β̂ridge = (X′X + �I)−1X′y,

(5)y = Xβ + ε,

Table 4 A summary of the estimators and penalty functions for the bridge‑type and adaptive bridge‑type regularized regression 
methods used in this study. The adaptive methods have an a prefix in their names

Method Penalty Estimator

bridge
p�,γ (β) = �

p∑
j=1

|βj |γ β̂bridge = argmin
β

{
RSS+ �

p∑
j=1

|βj |γ
}
, γ > 0, � ≥ 0

(2)

• γ = 1:

LASSO p�(β) = ��β�1 β̂ lasso = argmin
β

{
RSS+ ��β�1

}
(3)

• γ = 2:

ridge p�(β) = ��β�22 β̂ ridge = argmin
β

{
RSS+ ��β�22

}
(4)

• Combination of LASSO and ridge penalties ( γ = 1, 2 , respectively):

ENET p�(β) = �1�β�1 + �2�β�22 β̂enet = (1+ �2)× argmin
β

{
RSS+ �1�β�1 + �2�β�22

}
(6)

 abridge
p�,γ (β) = �

p∑
j=1

wj |βj |γ β̂
abridge = argmin

β

{
RSS+ �

p∑
j=1

wj |βj |γ
} (7)

• γ = 1:

aLASSO p�(β) = ��wβ�1 β̂
alasso = argmin

β

{
RSS+ ��wβ�1

}
(8)

• Combination of aLASSO and ridge penalties ( γ = 1, 2 , respectively):

aENET p�(β) = �1�wβ�1 + �2�β�22 β̂
aenet = k × argmin

β

{
RSS+ �1�wβ�1 + �2�β�22

}
(9)
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or genomic relationship matrix, the BLUP solution 
for the marker effects under model (5) is given by 
([27]; p.270) 

  Now defining H = I
σ 2
ε

σ 2
β

 to simplify the notation and 

pre-multiplying β̂BLUP with 
(X

′
X +H)

−1
X
′
(K +H)K

−1
X we 

obtain 

  Finally, observing that 
(X

′
X +H)

−1
X
′
(K +H)K

−1
X = X

′
K
−1

X 
(see Appendix) and that X′K−1XX′ = X′ we find that 

establishing the equivalence of BLUP and RR [28, 29] 
and that one can actually estimate the ridge parame-
ter � by �̂ = σ̂ 2

e

σ̂ 2
β

 . Because we use REML to estimate 

the two variance components in β̂BLUP , we refer to 
this RR appproach as RR-REML. Our basic regres-
sion model (5) can be written as 

where, g = Xβ . Making the same assumptions as 
for RR-REML, i.e., assuming that β ∼ N (0, Iσ 2

β ) and 
ε ∼ N (0, Iσ 2

e ) , we have that g ∼ N (0,Kσ 2
β ) . The 

BLUP of g , also known as genomic estimated breed-
ing values (GEBV) or gBLUP, under this model is 
([27]; p.270) 

  Now pre-multiplying ̂gBLUP with X(X′
X +H)

−1
X
′
(K +H)K

−1 
we obtain 

  Finally, observing that X(X′
X +H)

−1
X
′
(K +H)K

−1 = I (see 
Appendix), we find that ĝBLUP = Xβ̂BLUP establish-
ing the equivalence of RR-REML and gBLUP [30, 31].

4 Due to the nature of the ℓ1 penalty, particularly for 
high values of � , the LASSO estimator will shrink 
many coefficients to exactly zero, something that 
never happens with the ridge estimator.

β̂BLUP = cov(β , y)× (var(y))−1y = X′σ 2
β (Kσ

2
β + Iσ 2

ε )
−1y = X′(K +H)−1y

(X′X +H)

−1X′
(K +H)K−1Xβ̂BLUP = (X′X +H)

−1X′y.

β̂BLUP =
(
X′X + σ 2

e

σ 2
β

I
)−1

X′y,

y = g + ε,

ĝBLUP = cov(g, y)× (var(y))−1y = Kσ 2
β (Kσ

2
β + Iσ 2

ε )
−1y = K

(
K + I

σ 2
ε

σ 2
β

)−1

y.

X(X′X +H)−1X′(K +H)K−1ĝBLUP = X(X′X +H)−1X′y = Xβ̂BLUP .

Elastic net estimator
The elastic net estimator blends two bridge-type estima-
tors, the LASSO and the ridge, to produce a composite 

estimator that reduces to the LASSO when �2 = 0 and to 
the ridge when �1 = 0 . Specifically, the elastic net estima-
tor is specified by

with k = 1+ �2 if the predictors are standardized (as 
we assume) or k = 1+ �2/n otherwise. Even when 
�1, �2  = 0 , the elastic net estimator behaves much like 
the LASSO but with the added advantage of being robust 
to extreme correlations among predictors. Moreover, the 
elastic net estimator is able to select more than n pre-
dictors when p >> n . Model sparsity occurs as a con-
sequence of the ℓ1 penalty term. Mazumder et  al. [32] 
proposed an estimation procedure based on sparse prin-
cipal components analysis (PCA), which produces an 
even more sparse model than the original formulation 
of the elastic net estimator [20]. Because it blends two 
bridge-type estimators, neither of which enjoys the oracle 
property, the ENET also lacks the oracle property.

Other competitive regularization methods that are 
asymptotically oracle efficient ( p < n with p increasing 
to infinity with n), which do not fall into the category of 
bridge-type estimators, are the smoothly clipped absolute 
deviations (SCAD [17, 33]) and the minimax concave 

penalty (MCP [25, 34]) methods. Details of the penalty 
functions and other important properties of both meth-
ods can be found elsewhere [9, 35].

Adaptive regularized regression methods
The adaptive regularization methods are extensions 
of the regularized regression methods that allow the 

(6)β̂enet = k × argmin
β

{
RSS+ �1�β�1 + �2�β�22

}
.
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resulting estimators to achieve the oracle property under 
certain regularity conditions. Table  4 (lower half ) sum-
marizes the adaptive methods considered here.

Adaptive bridge‑type estimators
Adaptive bridge estimators extend the bridge estima-
tors by introducing weights in the penalty term. More 
precisely,

where {wj}pj=1 are adaptive data-driven weights. As with 
the bridge-type estimator, the adaptive bridge estima-
tor simplifies to the adaptive LASSO (aLASSO) esti-
mator when γ = 1 and to the adaptive ridge estimator 
when γ = 2 . Chen et  al. [36] studied the properties of 
adaptive bridge estimators for the particular case when 
p < n (with p increasing to infinity with n), 0 < γ < 2 
and wj = (|β̂ init

j |)−1 with β̂
init = β̂ols . They showed that 

for 0 < γ < 1 , and under additional model assumptions, 
adaptive bridge estimators enjoy the oracle property. For 
p >> n , β̂ols cannot be computed and thus other initial 
estimates, such as β̂ridge , have to be used. Theoretical 
properties of the adaptive bridge estimator for p >> n 
do not seem to have been well studied thus far.

The adaptive LASSO estimator was proposed by [37] to 
remedy the problem of the lack of the oracle property of 
the LASSO estimator [16, 17]. The penalty for the adaptive 
LASSO is given by (adaptive bridge estimator with γ = 1)

where the adaptive data-driven weights {wj}pj=1 can be 
computed as wj = (|β̂ init

j |)−ν with β̂
init

 an initial root-n 
consistent estimate of β obtained through least squares 
(or ridge regression if multicollinearity is important) and 
ν is a positive constant. Consequently,

with ν chosen appropriately, performs as well as the ora-
cle, i.e., the adaptive LASSO achieves the oracle property. 
Nevertheless, this estimator still inherits the LASSO’s 
instability with high dimensional data. The values of � 
and ν can be simultaneously selected from a grid of val-
ues, with values of ν selected from {0.5, 1, 2} , using two-
dimensional cross-validation [37].

Grandvalet [38] shows that the adaptive ridge estimator 
(adaptive bridge estimator with γ = 2 ) is equivalent to the 
LASSO in the sense that both produce the same estimate 
and thus the adaptive ridge is not considered further.

(7)β̂
abridge = argmin

β

{
RSS+ �

p∑

j=1

wj |βj |γ
}
, γ > 0, � ≥ 0

p�(β) = �

p∑

j=1

wj|βj|

(8)β̂
alasso = argmin

β

{
RSS+ ��wβ�1

}

Adaptive elastic‑net
The adaptive elastic-net (aENET) combines the ridge and 
aLASSO penalties to achieve the oracle property [39] while 
at the same time alleviating the instability of the aLASSO 
with high dimensional data. The method first computes 
β̂enet as described above for the elastic net estimator, then 
constructs the adaptive weights as ŵj = (|β̂j,enet |)−ν , where 
ν is a positive constant, and then solves

where k = 1+ �2 if the predictors are standardized (as we 
assume) or k = 1+ �2/n otherwise. In particular, when 
�2 = 0 the adaptive elastic-net reduces to the aLASSO 
estimator. This is also the case when the design matrix is 
orthogonal regardless of the value of �2 [20, 37, 39].

Other adaptive regularization methods are the multi-
step adaptive ENET (maENET), the adaptive smoothly 
clipped absolute deviations (aSCAD) and the adaptive 
minimax concave penalty (aMCP) methods. Details of 
the penalty functions and noteworthy properties of the 
latter three methods are summarized elsewhere [6, 40].

Regularized group regression methods
Regularized regression methods that select individual pre-
dictors do not exploit information on potential grouping 
structure among markers, such as that arising from the 
association of markers with particular Quantitative Trait 
Loci (QTL) on a chromosome or haplotype blocks, to 
enhance the accuracy of genomic prediction. The nearby 
SNP markers in such groups are linked, producing highly 
correlated predictors. If such grouping structure is present 
but is ignored by using models that select individual pre-
dictors only, then such models may be inefficient or even 
inappropriate, reducing the accuracy of genomic prediction 
[9]. Regularized group regression methods are regularized 
regression methods with penalty functions that enable the 
selection of the important groups of covariates and include 
group bridge (gbridge), group LASSO (gLASSO), group 
SCAD (gSCAD) and group MCP (gMCP) methods (see 
[9, 41–46] for detailed reviews). Some grouping methods 
such as the group bridge, sparse group LASSO (sgLASSO) 
and group MCP, besides allowing for group selection, also 
select the important members of each group [43] and are 
therefore said to perform bi-level selection, i.e., group-wise 
and within-group variable selection. Bi-level selection is 
appropriate if predictors are not distinct but have a com-
mon underlying grouping structure.

Estimators and penalty functions for the regularized 
grouped methods can be formulated as follows. Consider 
subsets A1, . . . ,AL of {1, . . . , p} (L being the total number 

(9)

β̂
aenet = k × argmin

β

{
RSS+ �1�wβ�1 + �2�β�22

}
,
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of covariate groups), representing known covariate 
groupings of design vectors, which may or may not over-
lap. Let βAl

= (βk , k ∈ Al) be the regression coefficients 
in the l-th group and pl the cardinality of the l-th group 
(i.e., the number of unique elements in Al ). Regularized 
group regression methods estimate β = (βA1

, ...,βAL
)′ by 

minimizing

where X.l is a matrix with columns corresponding to the 
predictors in group l.

Because 
n∑

i=1

(
yi −

L∑

l=1

XilβAl

)2
 in (10) is equivalent to 

RSS some authors use the RSS formulation directly. It is 
assumed that all the covariates belong to at least one of 
the groups. Table  5 summarizes the methods described 
in this section.

Group bridge‑type estimators
Group bridge-type estimators use in (10) the penalty 

term p�(β) = �

L∑

l=1

cl�βAl
�γ1 with cl constants that adjust 

for the different sizes of the groups. The group bridge-
type estimators are thus obtained as

A simple and usual choice for the cl constants con-
sists in considering each cl ∝ p

1−γ

l  . When 0 < γ < 1 
group bridge can be used simultaneously for group and 
individual variable selection. Also, note that under these 
assumptions, the group bridge estimator correctly selects 
groups with nonzero coefficients with probability con-
verging to one under reasonable regularity conditions, 
i.e., it enjoys the oracle group selection property (see [47] 
for details). When the group sizes are all equal to one, i.e., 
pl = 1 ∀ 1 ≤ l ≤ L , then group bridge estimators reduce 
to the bridge estimators.

(10)FL
�,γ (β) =

n∑

i=1

(
yi −

L∑

l=1

XilβAl

)2
+ p�(β),

(11)

β̂
gbridge = argmin

β

RSS+ �

L∑

l=1

cl�βAl
�γ
1
, γ > 0, � ≥ 0.

Group LASSO and sparse group LASSO
Group LASSO regression uses in (10) the penalty func-

tion p�(β) = �

L∑

l=1

√
pl ||βAl

||2 . The group LASSO estima-

tor is thus given by

Unlike the group bridge estimator ( 0 < γ < 1 ), 
gLASSO is designed for group selection, but does not 
select individual variables within the groups. Indeed, its 
formulation is more akin to that of the adaptive ridge esti-
mator [47]. As with the group-bridge estimator, when the 
group sizes are all equal to one, i.e., pl = 1 ∀ 1 ≤ l ≤ L , 
the gLASSO estimator reduces to the LASSO estimator.

Because the gLASSO does not yield sparsity within a 
group (it either discards or retains a whole group of covari-
ates) the sparse group lasso (sgLASSO), which blends the 
LASSO and the gLASSO penalties, was proposed [48, 49]. 
Specifically, the sgLASSO estimator is given by

where α ∈ [0, 1] provides a convex combination of the 
lasso and group lasso penalties ( α = 0 gives the gLASSO 
fit, α = 1 gives the LASSO fit). The gLASSO is superior 
to the standard LASSO under the strong group sparsity 
and certain other conditions, including a group sparse 
eigenvalue condition [50]. Because the sgLASSO lacks 
the oracle property, the adaptive sparse group LASSO 
was recently proposed to remedy this drawback [51].

Note that there are two types of sparsity, i.e., (i) “group-
wise sparsity”, which refers to the number of groups with 
at least one nonzero coefficient, and (ii) “within group 
sparsity” that refers to the number of nonzero coeffi-
cients within each nonzero group. The “overall sparsity” 
usually refers to the total number of non-zero coefficients 
regardless of grouping.

Other group regularization methods are the hierarchi-
cal group LASSO (hLASSO), the group smoothly clipped 
absolute deviations (gSCAD) and the group minimax 

(12)β̂
glasso = argmin

β

{
RSS+ �

L∑

l=1

√
pl ||βAl

||2
}
, � ≥ 0.

(13)β̂
sglasso = argmin

β

{
RSS+ (1− α)�

L∑

l=1

√
gl ||β l ||2 + α�||β||1

}
,

Table 5 Penalty functions and estimators for some group regularized regression methods used in this study

Method Penalty Estimator

gbridge
p�,γ (β) = �

L∑

l=1

cl�βAl
�γ1 β̂

gbridge = argmin
β

{
RSS+ �

L∑

l=1

cl�βAl
�γ1

} (11)

gLASSO
p�(β) = �

L∑

l=1

√
pl�βAl

�2 β̂
glasso = argmin

β

{
RSS+ �

L∑

l=1

√
pl�βAl

�2
} (12)

sgLASSO
p�,α(β) = α�||β||1 + (1− α)�

L∑

l=1

√
gl ||β l ||2 β̂

sglassoargmin
β

{
RSS+ α�||β||1 + (1− α)�

L∑

l=1

√
gl ||β l ||2

} (13)
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concave penalty (gMCP) methods. Details of the penalty 
functions and salient properties of these methods can be 
found in [9, 52–55].

Bayesian regularized estimators
The two Bayesian methods we consider are based on the 
Bayesian basic linear regression model [10]. They assume a 
continuous response y = (y1, . . . , yn) so that the regression 
equation can be represented as yi = ηi + εi , where ηi is a 
linear predictor (the expected value of yi given predictors) 
and εi are independent normal model residuals with mean 
zero and variance w2

i σ
2
ε  , with wi representing user defined 

weights and σ 2
ε  is a residual variance parameter. The model 

structure for the linear predictor η is constructed as follows

with an intercept µ (equivalent to β0 in equation (1)), 
design n× p matrix X for predictor vectors Xj = (xij) and 
fixed effects vectors β j associated with the the predictors 
Xj.

The likelihood function of the data has the following 
conditional distribution:

with the general parameter vector θ representing the 
vector of all unknowns, such as the intercept, all the 
regression coefficients and random effects, the residual 
variance as well as parameters and hyper-parameters 
subject to inference in the hierarchical Bayesian model.

The prior distribution factorises as follows:

In the basic form of the model the following prior set-
tings are typically chosen:

• The intercept is assigned a flat prior p(µ) = 1√
2·πσM

e
− µ2

2·σ2M  
with prior hyper-parameter σ 2

M chosen to be very large 
to make the prior flat.

• The residual variance is assigned a scaled-inverse χ2 
density p(σ 2) = χ−2(Sε|dfε) with degrees of free-
dom parameter dfε(> 0) and scale parameter Sε(> 0).

The priors for the regression coefficients βjk can be chosen 
in different ways, for example, as flat priors similar to the 
intercept, which is considered an uninformative choice. 
Choosing informative priors not only provides a chance 

η = 1µ+
p∑

j=1

Xjβ j

p(y|θ) =
n�

i=1

N



yi|µ+
p�

j=1

xijβj , σ
2
ε w

2
i





p(θ) = p(µ)p(σ 2
ε )

p∏

j=1

p(β j)).

to introduce information on the coefficients known from 
previous runs of the study, but also allows performing 
penalized or regularized regression, such as Ridge regres-
sion or the LASSO through the choice of suitable priors.

Those coefficients utilizing flat priors are called 
“fixed” effects, as the estimation of the posterior is 
based only on information contained in the data itself, 
encoded by the likelihood. This is the reference model 
for regularised Bayesian models.

Choosing a Gaussian prior, according to [18], yields 
Ridge regression shrinkage estimation. Similar to [10] 
we call this approach the Bayesian ridge regression. 
Choosing double-exponential priors corresponds to the 
Bayesian LASSO model [10].

Ensemble methods
Ensemble methods build multiple models using a given 
learning algorithm and then combine their predictions 
to produce an optimal estimate. The two most commonly 
used algorithms are bagging (or bragging) and boosting. 
Whereas bagging is a stagewise procedure that combines 
the predictions of multiple models (e.g., classification or 
regression trees) to yield an average prediction, boost-
ing is a stagewise process in which each stage attempts 
to improve the predictions at the previous stage by up-
weighting poorly predicted values. Below, we briefly dis-
cuss two popular ensemble methods, namely, random 
forests, an extension of bagging, and gradient boosting 
algorithms. Note that, although variable scaling (center-
ing or standardizing) might accelerate convergence of the 
learning algorithms, the ensemble methods do not require 
it. Indeed, the collection of partition rules used with the 
ensemble methods should not change with scaling.

Random forests (RF)
The random forests algorithm is an ensemble algorithm 
that uses an ensemble of unpruned decision (classifica-
tion or regression) trees, each grown using a bootstrap 
sample of the training data, and randomly selected 
(without replacement) subsets of the predictor variables 
(features) as candidates for splitting tree nodes. The ran-
domness introduced by bootstrapping and selecting a 
random subset of the predictors reduces the variance of 
the random forest estimator, often at the cost of a slight 
increase in bias. The RF regression prediction for a new 
observation yi , say ŷBi  , is made by averaging the output of 
the ensemble of B trees {T (yi,�b)}b=1,...,B as [56]

ŷBi = 1

B

B∑

b=1

T (yi,�b)
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where �b characterizes the b-th RF tree in terms of split 
variables, cut points at each node, and terminal node val-
ues. Recommendations on how to select the number of 
trees to grow, the number of covariates to be randomly 
chosen at each tree node and the minimum size of ter-
minal nodes of trees, below which no split is attempted, 
are provided by [57, 58]. We refer to [56–58] for further 
details on the RF regression.

Stochastic gradient boosting (SGB)
Boosting enhances the predictive performance of base 
learners such as classification or regression trees, each 
of which performs only slightly better than random 
guessing, to become arbitrarily strong [56]. As with RF, 
boosting algorithms can also handle interactions, nonlin-
ear relationships, automatically select variables and are 
robust to outliers, missing data and numerous correlated 
and irrelevant variables. In regression, boosting is an 
additive expansion of the form

where β1, . . . ,βM are the expansion coefficients and the 
basis functions h(X; γ ) , base learners, are functions of 
the multivariate argument X , characterized by a set of 
parameters γ = (γ1, . . . , γM) . Typically these models are 
fit by minimizing a loss function L (e.g., the squared-
error loss) averaged over the training data

We used regression trees as basis functions in which 
the parameters γm are the splitting variables, split points 
at the internal nodes, and the predictions at the termi-
nal nodes. Boosting regression trees involves generating 
a sequence of trees, each grown on the residuals of the 
previous tree. Prediction is accomplished by weight-
ing the ensemble outputs of all the regression trees. We 
refer to [49, 56, 59] for further details on SGB (see, e.g., 
[59] for the interpretation of boosting in terms of regres-
sion for a continuous, normally distributed response 
variable).

Instance-based methods
For the instance-based methods, scaling before apply-
ing the method is crucially important. Scaling the vari-
ables (features) prior to model fitting prevents possible 
numerical difficulties in the intermediate calculations 
and helps avoid domination of numeric variables with 
smaller by those with greater magnitude and range.

y = f (X) =
M∑

m=1

βmh(X; γm)

min
βm,γm

n∑

i=1

L

(
yi,

M∑

m=1

βmh(xi; γm)
)
.

Support vector machines
Support vector machines (SVM) is a popular supervised 
learning technique for classification and regression of a 
quantitative response y on a set of predictors, in which 
case the method is called support vector regression or 
SVR [60]. In particular, SVR uses the model

with xi = (xi1, . . . , xip)
′ and where the approximating 

function f (xi) is a linear combination of basis functions 
h(xi)

T , which can be linear (or nonlinear) transforma-
tions of xi . The goal of SVR is to find a function f such 
that f (xi) deviates from yi by a value no greater than ε 
for each training point xi , and at the same time is as flat 
as possible. This so-called ε-insensitive SVR, or simply ε
-SVR, thus fits a model (14) using only those residuals 
which are smaller in absolute value than ε and a linear 
loss function for larger residuals. The choice of the loss 
function (e.g., linear, quadratic, Huber) usually consid-
ers the noise distribution pertaining to the data samples, 
level of sparsity and computational complexity.

If Eq. (14) is the usual linear regression model, i.e., 
yi = f (xi) = β0 + xTi β , one considers the following 
minimization problem

where � is the regularization parameter (cost) that con-
trols the trade-off between flatness and error toler-
ance, ‖.‖ refers to the norm under a Hilbert space (i.e., 
�x� =

√
�x,x� with x a p ≥ 1 dimensional vector) and

is an ε-insensitive linear loss. Given the minimizers of 
(15) β̂0 and β̂ , the solution function has the form

where α̂∗
i , α̂i are positive weights given to each obser-

vation (i.e., to the column vector xi ) estimated from the 
data. Typically only a subset of (α̂∗

i − α̂i) are non-zero 
with the observations associated to these so called sup-
port vectors, and thus the name of the method, SVM. 
More details on SVM can be found in [56].

Deep learning methods
Deep learning (DL) algorithms are implemented through 
neural networks, which encompass an assortment of 
architectures (e.g., convolutional, recurrent and densely 
connected neural networks) and depend on many 

(14)yi = f (xi) = β0 + h(xi)
Tβ ,

(15)min
β0,β

( n∑

i=1

V (yi − f (xi))+
�

2
�β�2

)

Vε(r) =
{
0, if |r| < ε

|r| − ε, otherwise

β̂ =
n∑

i=1

(α̂∗
i − α̂i)xi and f̂ (x) =

n∑

i=1

(α̂∗
i − α̂i)�x,xi� + β̂0
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parameters and hyperparameters whose careful optimi-
zation is crucial to enhancing predictive accuracy and 
minimizing overfitting (see [8, 61–65] for further insights 
into DL architectures and other particulars and the sup-
plementary materials https:// github. com/ migue lpere zenci 
so/ DLpip eline of [8] for a list of the main DL hyperparam-
eters, their role and related optimization issues). It can be 
very challenging to achieve great improvements in pre-
dictive accuracy in genomic prediction studies with DL 
because hyperparameter optimization can be extremely 
demanding and also because DL requires very large train-
ing datasets which might not always be available [1–4].

After selecting a DL architecture there is usually a large 
set of parameters to be set in order to minimize some 
fitting criterion such as least squares or some measure 
of entropy from some training data (network training). 
Therefore, an optimization method must also be selected. 
The three top ranked optimizers for neural networks 
are mini-batch gradient descent, gradient descent with 
momentum and adaptive moment estimation (ADAM; 
[66]). Among the three, the mini-batch gradient descent 
and Adam are usually preferred, because they perform well 
most of the time. In terms of convergence speed, ADAM is 
often clearly the winner and thus a natural choice [67].

Next, we offer a few more details on the feed-forward 
and convolutional neural networks, which, besides being 
some of the most popular DL architectures, are well suited 
for regression problems. These models can be represented 
graphically as a set of inputs linked to the outputs through 
one or more hidden layer. Figure  1a represents such a 
model (either FFNN or CNN) with a single hidden layer.

Further details on neural networks in general and FFNN 
and CNN in particular can be found in [1–4, 8, 56]. Note 
that, to avoid potential numerical difficulties, it is rec-
ommended that both the target (response variable; here 
assumed to be continuous and normally distributed), and 
the features (covariates) are standardized prior to training 
the network [8].

Feed‑forward neural network (FFNN)
A feed-forward neural network (FFNN), also known in 
the literature as a multi-layer perceptron (MLP), is a 
neural network that does not assume a specific struc-
ture in the input features (i.e., in the covariates). This 
neural network consists of an input layer, an output 
layer and multiple hidden layers between the input and 
output layers.

The model for a FFNN with one hidden layer expressed 
as a multiple linear regression model (1) is given by

yi = α +
∑

h

whφ

(
αh +

∑

j

wjhxij

)

where the yi (output) and xij (input) are defined as in 
model (1), α is the output bias, h runs over the units of 
the hidden layer, αh refers to the bias of the h-th unit 
of the hidden layer, wjh refer to the weights between 
the inputs and the hidden layer, wh refer to the weights 
between the hidden layer and the output, φ is the activa-
tion function of the hidden layer. The model parameters 
α , αh , wh and wjh are unknown network parameters that 
need to be estimated in the network training process.

Convolutional neural network (CNN)
A convolution neural network (CNN) is a neural network 
that contains one or more convolution layers, which are 
defined by a set of filters. Although a CNN generally 
refers to a 2-dimensional neural network, which is used 
for image analysis, in this study we consider a 1-dimen-
sional (1D) CNN. Here, the input to the 1D convolu-
tion layer is a vector x = (x1, . . . , xp) equal to one row 
of the n× p marker matrix X . The 1D convolution filter 
is defined by a vector v = (v1, . . . , vd) where d < p . The 
convolution of a filter v with x , which is called a channel, 
is a vector y = (y1, y2, . . . ) satisfying

where s, i.e., the stride length, is the shift displacement 
of the filter across the input data. An activation function 
is applied after each convolution to produce an output. 
Figure  1b depicts a 1D convolution of a filter (v1, v2, v3) 
on the input vector (x1, x2, . . . , x9, . . . ) , considering a 
stride of length s = 2 , which results in the output channel 
(y1, y2, . . . ) . Filter values v1, . . . , vd are model parameters 
that are estimated in the neural network training process.

Performance assessment
For the simulated dataset, we assessed predictive per-
formance using predictive accuracy (PA), the Pearson 
correlation between the predicted (PGBVs) and the 
simulated true (TGBVs) breeding values. For all the 
three KWS empirical data sets, predictive performance 
was expressed as predictive ability (PA), the Pear-
son correlation between the PGBVs and the observed 
(adjusted means estimated from phenotypic analy-
sis) genomic breeding values (OGBVs), also calculated 
using cross validation. The simulated true breeding 
values are specified in the simulation model and there-
fore are known exactly. In contrast, for empirical data, 
the true breeding values are unknown and are approxi-
mated by the observed breeding values estimated as 
adjusted means during phenotypic analysis. The higher 
the PA, the better is the relative predictive performance 
of a method. We additionally assessed the predictive 
performance of the methods using the out-of-sample 

yi = x1+s(i−1)v1 + x2+s(i−1)v2 + · · · + +xd+s(i−1)vd

https://github.com/miguelperezenciso/DLpipeline
https://github.com/miguelperezenciso/DLpipeline
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mean squared prediction error (MSPE) and the mean 
absolute prediction error (MAPE). Specifically,

where the yi and ȳ are, respectively, the TGBVs and mean 
TGBVs for the single simulated dataset, but the OGBVs 
and mean OGBVs for the empirical datasets, and the ŷi 
and ¯̂yi are, respectively, the PGBVs and mean PGBVs. 
10-fold CV is used to assess the PA for each method 
for the simulated datasets in contrast to the 5-fold CV 
used with the three empirical maize datasets. Although 
we report both the prediction errors and the PA, breed-
ers are primarily interested in the final ordering of the 

PA =

∑
i

(yi − ȳ)(ŷi − ¯̂y)
√∑

i

(yi − ȳ)2
∑
i

(ŷi − ¯̂y)2
, MSPE = 1

n

∑

i

(yi − ŷi)
2
, MAPE = 1

n

∑

i

|yi − ŷi|,

genotypes, which the PA captures better than the predic-
tion errors.

For the cross validation, we aimed to have at least 150 
individuals per fold. Accordingly, each phenotypic dataset 
was randomly split into k approximately equal parts. The 
breeding values for each of the k folds were predicted by 
training the model on the k − 1 remaining folds and a CV 
error (CVE) computed for each of the k folds. The method 
with the smallest CVE was selected to predict the breeding 
values for the unphenotyped genotypes for the simulated 
dataset, and the phenotyped genotypes in the validation 
sets for each of the three empirical maize datasets.

a

b

Fig. 1 Graphical representation of a a feed‑forward neural network (FFNN) with one hidden layer; and b a convolution of a filter (v1, v2, v3) , 
with stride=2, on the Input Channel (x1, x2, . . . ) . The result is in the Output Channel (y1, y2, . . . )
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All the methods are implemented in the R software and 
are available in various R packages [10, 32, 40, 43, 48, 54, 
58, 68–73]. Table  S1 (Additional file  5, Section  3) lists 
the R packages we used to analyse the synthetic and real 
datasets. For the deep learning methods, and because of 
fine tuning requirements, we used the Python software 
and packages Numpy, Pandas and Tensorflow [74, 75]. 
All R and Python codes referring to the simulated data 
are provided in Additional files 2 & 3.

Noteworthy details of model fitting are available in the 
supplementary materials (Additional file 5, Section 2).

Results
Although we did not fully quantify the computational 
costs of the different methods, the computational burden 
increased strikingly from the simple regularized through 
the adaptive to the grouped methods. A similar trend was 
also apparent from the ensemble, through the instance-
based to the deep learning methods. Computational time 
may be reduced greatly by parallelizing the estimation or 
optimization algorithms, but this strategy may not always 
be available and can be challenging to implement for 
some methods.

Simulated (animal) data
The relative performances of the various methods on 
the simulated data varied with the target trait and with 
whether performance was assessed in terms of predic-
tive accuracy or prediction error. Performance also var-
ied in terms of computational cost with some methods 
requiring considerably more time than others. Results of 
genomic prediction accuracy for the simulated data are 
displayed in Figs. 2, 3 and 4 and Tables S2-S5 (Additional 
file 5, Section 3). Tables S6 & S7 (Additional file 5, Sec-
tion  3) report the calibration details for the fitted feed-
forward and convolutional neural networks.

Table  6 displays the range of the observed predictive 
accuracies across all the classes of the regularized meth-
ods for traits T1 − T3 . Neither the adaptive, group, nor 
Bayesian regularized methods seem to improve upon the 
results of their regularized counterparts, although group 
regularized methods do provide some slight improve-
ment upon the results of the adaptive regularized meth-
ods. Even though all the regularized regression methods 
had comparable overall performance, the best compromise 
between high PA ( ≥ 0.77 for T1 , 0.82 for T2 and 0.81 for T3 ) 
and small prediction errors was achieved by the LASSO, 

Fig. 2 Prediction accuracy (PA) of the regularized, adaptive regularized and Bayesian regularized methods, computed as the Pearson correlation 
coefficient between the true breeding values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset, where T1 − T3 refer 
to three quantitative milk traits. The choice of � , where applicable, was based on the 10‑fold CV. The mean squared and absolute prediction errors 
are also provided. See Table S2 for details
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ENET, sENET and SCAD (Fig. 2 and Table S2; first half ). 
Within the class of adaptive regularized methods, the best 
compromise was achieved by aLASSO and aENET (Fig. 2 
and Table S2; second half; PA≥ 0.72 for T1 , 0.78 for T2 and 
0.80 for for T3 ). For the group regularized methods, a good 
compromise was achieved by the gLASSO and gSCAD 
(Fig. 2 and Table S2; mean PA values ≥ 0.76 for T1 , 0.82 for 
T2 and 0.81 for T3 ). Whereas the worst performing group 
regularized methods in terms of the estimated PAs were 
the cMCP and gel for T1 (PA< 0.7 ), sgLASSO and gel for 
T2 (PA< 0.8 ) and hLASSO and gel for T3 (PA< 0.8 ), the 
worst performing methods in terms of prediction errors 
were the gel ( T1 & T2 only) and sgLASSO ( T3 only). Of all 
the group regularized methods, the most time consuming 
were the sgLASSO and hLASSO, with sgLASSO requiring 
several more months to compute results for trait T1 than 
for traits T2 or T3 . In the comparisons between the two 
Bayesian regularized methods, Lasso Bayes consistently 
outperformed the Ridge Bayes method across all the three 
traits, demonstrating superior predictive accuracy and 
generally smaller prediction errors.

The ensemble, instance-based and deep learning meth-
ods did not improve upon the results of the regularized, 
the group or the Bayesian regularized methods (Fig.  4 
and Tables S4 & S5). Among the ensemble and instance-
based groups of methods, RF provided the best compro-
mise between high PA and small prediction errors. For 
the deep learning methods, the FFNN provided consist-
ently higher PA values than CNN across all the three 
traits from the simulated data.

Predictive performance varied not only among the 
methods but also with the target quantitative traits. Spe-
cifically, trait T3 had the highest predictive accuracies for 
the adaptive methods, whereas trait T2 was generally top 
ranked across all the remaining methods.

Real (plant) data
The ridge regression methods plus the overall best perform-
ing methods (high PA values and low prediction errors) for 
each class of methods based on the analysis of the simulated 
dataset, were applied to each of the three KWS empirical 
maize datasets. The specific methods fitted to the KWS 

Fig. 3 Prediction accuracy (PA) of the group regularized methods (mean and range values of PA across the different groupings), computed 
as the Pearson correlation coefficient between the true breeding values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset, 
where T1 − T3 refer to three quantitative milk traits. Choice of � was based on the 10‑fold CV. Display refers to the mean, max and min values of PA 
across all the 10 grouping schemes. The mean squared and absolute prediction errors are also provided. See Table S3 for details
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maize datasets comprised RR-CV, RR-REML, sENET, 
aENET (enet penalty), gLASSO, RF, FFNN and lBayes.

Results are displayed in Fig.  5 and Table  S8 (Additional 
file 5, Section 3). Across the three real maize datasets, the 
highest predicitive abilities were obtained for the 2010 data-
set. The estimated predictive abilities (PA) are under 0.7 for 
the 2010 dataset but under 0.6 for the 2011 dataset and gen-
erally under 0.6 for the 2012 dataset (RR-REML and lBayes 
excluded with estimated PAs of 0.616 and 0.624, respec-
tively), regardless of the method used. The lBayes and RR-
REML (2011 & 2012 datasets) and RF, RR-REML and lBayes 
(2010 dataset) are evidently the best performing methods 
(higher PA values and lower prediction errors). On the other 
hand, aENETe (2010 & 2011 datasets) and RF (2012 data-
set) are the worst performing methods (lower PA and higher 

prediction errors). Interestingly, the RF performed both 
the best (2010 dataset) and the worst (2012 dataset), clearly 
emphasizing that the methods are strongly data dependent.

Discussion
We have investigated the predictive performance of 
several state-of-the art machine learning methods in 
genomic prediction via the use of one simulated and 
three real datasets. All the methods showed reasonably 
high predictive performance for most practical selection 
decisions. But the relative predictive performance of the 
methods was both data and target trait dependent, com-
plicating and precluding omnibus comparative evalua-
tions of the genomic prediction methods, thus ruling out 
selection of one procedure for routine use in genomic 
prediction. These results broaden the findings of earlier 
studies (e.g. [9]) to encompass a wider range of groups 
of methods. If reproducibility of results, low computa-
tional cost and time are important considerations, then 
using the regularized regression methods comes highly 
recommended because they consistently produced, 
with relatively lower computational cost and computing 
time, reasonably accurate and competitive predictions 
relative to the other groups of methods for the simulated 
and the three real datasets. Even among the regularized 

Fig. 4 Prediction accuracy (PA) of the ensemble, instance‑based and deep learning methods, computed as the Pearson correlation coefficient 
between the true breeding values (TBVs) and the predicted breeding values (PBVs), for the simulated dataset, where T1 − T3 refer to three 
quantitative milk traits. See Tables S4‑S5 for details

Table 6 Range of the estimated predictive accuracies across the 
classes of regularized methods for traits T1 − T3

† Values refer to the range of the observed mean PAs

T1 T2 T3

Regularized 0.716− 0.779 0.770− 0.829 0.758− 0.817

Adaptive Regularized 0.645− 0.726 0.714− 0.789 0.730− 0.805

Group Regularized† 0.653− 0.766 0.758− 0.820 0.765− 0.814

Bayesian Regularized 0.730− 0.763 0.767− 0.807 0.756− 0.794
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regression methods, increasing model complexity from 
simple through the adaptive to grouped or even the 
Bayesian regularized methods, generally only increased 
computing time without clearly improving predictive 
performance.

The ensemble, instance-based and deep-learning ML 
methods need the tuning of numerous hyperparam-
eters thus requiring considerable computing time to 
adequately explore the entire hyperparameter space. 
This will not always be possible in most applications 
because of limiting time and computational resources 
leading to potentially less than optimal results and may 
well partly explain why these methods did not clearly 
outperform the classical ML methods. Indeed, the com-
putational costs of the ensemble, instance-based and 
deep learning methods can quickly become prohibitive, 
if all the parameters are tuned by searching over the 
often large grid of values. This will typically require not 
only proficiency in programming and algorithm paral-
lelization and optimization, but excellent computing 
resources. These constraints, plus the growing size of 
phenotypic and genomic data, make it difficult to iden-
tify methods for routine use in genomic prediction and 
call for greater focus on and investment in enhancing 

the computational efficiencies of algorithms and com-
puting resources.

We have considered only well tested and established 
off-the-shelf machine learning methods and one simu-
lated and three real datasets. We are extending this work 
to cover the following four objectives. (1) Comparing 
the performance of methods that use advanced tech-
niques for feature selection or dimensionality reduc-
tion on multiple synthetic datasets simulated using 
different configurations or scenarios. (2) Exploring how 
the methods generalize based on different training/
test splits across simulations/real-world datasets, indi-
viduals/samples, or chromosomes. (3) Evaluating the 
sensitivity of the different methods to hyperparameter 
selection. (4) Assessing the training and testing com-
plexity for the different methods.

Conclusions
Machine learning methods are well suited for efficiently 
handling high dimensional data. Particularly, supervised 
machine learning methods have been successfully used in 
genomic prediction or genome-enabled selection. How-
ever, their comparative predictive accuracy is still poorly 
understood, yet this is a critical issue in plant and animal 

Fig. 5 Predictive ability (PA; mean and range values computed across the 5‑fold validation datasets and 10 replicates) of the regularized 
and adaptive regularized methods, computed as the Pearson correlation coefficient between the observed breeding values (OBVs) 
and the predicted breeding values (PBVs), for the KWS datasets. The choice of � , where applicable, was based on 4‑fold CV. See Table S8 for details
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breeding studies given that increasing methodologi-
cal complexity can substantially increase computational 
complexity or cost. Here, we showed that predictive per-
formance is both data and target trait dependent thus 
ruling out selection of one method for routine use in 
genomic prediction. We also showed that for this reason, 
relatively low computational complexity and competitive 
predictive performance, the classical linear mixed model 
approach and regularized regression methods remain 
strong contenders for genomic prediction.

Appendix
Observation for β̂BLUP derivation:
 

Observation for ĝBLUP derivation:
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ADAM  Adaptive moment estimation
BLUP  Best linear unbiased prediction
CV  Cross‑validation
DL  Deep learning
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GP  Genomic prediction
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MAPE  Mean absolute prediction error
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ML  Machine learning
MLP  Multi‑layer perceptron
MSPE  Mean squared prediction error
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REML  Restricted maximum likelihood
RF  Random forests
RR  Ridge regression
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SGB  Stochastic gradient boosting
SNP  Single nucleotide polymorphism
TGBV  True genomic breeding value
SVM  Support vector machine
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group regularized methods, one for the Bayesian regularized methods, 
one for the ensemble methods, and one for the instance‑based methods.
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Table S2. Prediction accuracy (PA) of the regularized, adaptive regularized 
and Bayesian regularized methods, computed as the Pearson correlation 
coefficient between the true breeding values (TBVs) and the predicted 
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to three quantitative milk traits. The choice of � , where applicable, was 
based on the 10‑fold CV. The mean squared and absolute prediction 
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regularized methods (mean and range values of PA across the different 
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