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Abstract 

Background Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) 
regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcrip-
tional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. 
Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS fam-
ily members in legumes is still ongoing.

Results We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab 
purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total 
number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades 
based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the pro-
tein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently 
distributed across their genomes. A comparison of genomes and gene sequences showed that this family was sub-
jected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental 
duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the veg-
etative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development 
and differentiation of various organs, and have significant responses to salinity and drought stress.

Conclusion The MIPS genes in the genomes of legumes have been identified, characterized and their expression 
was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify 
the putative MIPS genes associated with different cell and tissue development.
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Background
Myo-inositol-1-phosphate synthase (MIPS; EC 5.5.1.4), 
is a key, rate-limiting enzyme for the initial reaction in 
the lipid-independent pathway of phytic acid biosynthe-
sis, wherein D-glucose-6-phosphate (G6P) is converted 
to inositol phosphate, which further is dephosphorylated 
to Myo-inositol (Ins), by Myo-inositol monophosphatase 
(IMP) [1]. MIPS genes are evolutionarily conserved and 
found in various species, including higher eukaryotes 
viz. humans and higher plants, as well as cyanobacteria, 
eubacteria, and archaea [2, 3]. It has also been found in 
a number of plants, including Arabidopsis thaliana [4], 
Oryza sativa [5], kiwi fruit [6], Glycine max [7, 8], Phase-
olus vulgaris [9], and Sesamum indicum [10]. The eukary-
otic MIPS family is homogeneous and yet distinct from 
the bacterial MIPS proteins in their sequence [11, 12]. 
This could be explained by the eukaryotic MIPS genes’ 
monophyletic origin. The MIPS sequences (approxi-
mately 510 amino acids), in all the eukaryotes, exhibit 
considerable conservation at the nucleotide level [13], 
signifying the crucial functions that MIPS play in vari-
ous biological processes such as seed germination and 
embryogenesis. The MIPS proteins have four amino 
acid domains, GWGGNNG (domain 1), LWTANTERY 
(domain 2), NGSPQNTFVPGL (domain 3) and SYN-
HLGNNDG (domain 4) that are highly conserved [14]. 
These domains perform crucial roles in MIPS protein 
binding for the catalysis of enzymatic processes and thus 
regulate MIPS activities [15].

The MIPS regulates the biosynthesis of Ins and its 
derivatives such as phosphoinositide phosphates (PtdIn-
sPs), Ins polyphosphates (IPs), and phospholipid phos-
phatidylinositol (PtdIns), which play important and 
varied roles in cell division, plant growth, organ develop-
ment as well as biotic and abiotic stress responses [16]. 
This gene was reported for the first time in Archaeoglo-
bus fulgidus and was observed to function at high tem-
peratures [17]. Earlier studies have shown that three 
MIPS genes play important roles in Arabidopsis embryo 
development [18]. Ma et al. [19] showed how the direct 
binding of two light-signaling protein molecules (FHY3 
and FAR1) to the MIPS1 promoter stimulated inositol 
synthesis in response to light-induced oxidative stress. 
Surprisingly, Latrasse et  al. [20] discovered that MIPS1, 
in addition to its role in enzymatic metabolic activity, is 
also transported to the nucleus where it regulates tran-
scription. Donahue et  al. discovered that mips2 loss-of-
function mutants of Arabidopsis are more susceptible 
to fungal, viral and bacterial diseases, whereas mips1 
mutants exhibited higher resistance to oomycete infec-
tions but also spontaneous cell death [1]. In addition, 
mips1 mutants were also susceptible to severe light stress 
[21]. There were no major phenotypic differences in the 

single mips mutants, but the mips1 mips2 double mutant 
as well as the mips1 mips2 mips3 triple mutant were 
fatal to the embryo [22]. Significant suppression of plant 
growth was observed when the activity of MIPS was 
greatly reduced [15, 23]. Lower IP6 levels in the potatoes 
produced by RNA interference (RNAi)-mediated MIPS 
suppression has altered the leaf shape, promoted leaf 
senescence, and reduced tuber yield [24].

Legumes (Fabaceae) occupy about 27% of the primary 
production of the world and are grown on about 12% 
of the planet’s arable land [25, 26]. They help in fixing 
atmospheric nitrogen through the nitrogen-fixing bacte-
ria that live symbiotically in their root nodules and thus 
are important nitrogen sources in crop systems [27]. 
Legumes are also gaining traction for the production of 
beneficial secondary metabolites that act as signaling 
molecules for attracting pollinators and seed dispersing 
animals and as chemical defenses against herbivores and 
microbes [28]. More efforts should be made to find and 
characterize genes associated with legume growth, devel-
opment, and stress responses because they are among the 
world’s most important crops [29, 30]. Currently, knowl-
edge about the MIPS gene family in Fabaceae and their 
contribution in legume growth and development is very 
little. A comparative analysis was carried out between the 
MIPS gene family in nonlegume (Arabidopsis and rice) 
and legume crops, to comprehend their roles in legumes, 
especially in seed germination, plant growth, and devel-
opment, which included molecular traits, phylogenetic 
classifications, chromosome distribution, conserved 
motifs and synteny analysis. This is the first work on 
the MIPS gene family in legumes, which will support its 
functional research in related crops.

Methods
MIPS gene identification and characterization
The genomes and annotation files of 10 legume species 
including Arachis hypogea (peanut), Cicer arietinum 
(chickpea), Cajanus cajan (pigeon pea), Glycine max 
(soybean), Lablab purpureus (Dolichos bean/hyacinth 
bean), Medicago truncatula (barrel medic), Pisum sati-
vum (pea), Phaseolus vulgaris (French bean/common 
bean), Trifolium pratense (clover), and Vigna unguicu-
lata (cowpea) were retrieved from the Legumes database 
(https:// plants. ensem bl. org/ index. html (accessed July 16, 
2023)) and the Phytozome v13 database (http:// www. 
phyto zome. net (accessed July 16, 2023)) [31], and was 
used for the identification and annotation of MIPS genes 
(more information is available in Table 1). Further, three 
MIPS protein sequences (IDs: AT5G10170, AT4G39800 
and AT2G22240) of Arabidopsis were obtained from the 
TAIR database (https:// www. arabi dopsis. org/). These 
sequences were used as query to perform BLASTp 

https://plants.ensembl.org/index.html
http://www.phytozome.net
http://www.phytozome.net
https://www.arabidopsis.org/
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(e-value < 1 ×  10–5) against various legumes to retrieve 
MIPS sequences. Thereafter, all the retrieved MIPS pro-
teins were analyzed using the Pfam (http:// pfam. xfam. 
org) [32], CDD (https:// www. ncbi. nlm. nih. gov/ cdd, [33] 
(accessed June 20, 2022)) and SMART (http:// smart. 
embl- heide lberg. de (accessed June 20, 2022)) [34] data-
bases, to validate the presence of the signature domains 
(Inos-1-P Synth; PF01658 and NAD_5 Binding; PF07994) 
in MIPS.

The DNA and protein characteristics of MIPS, includ-
ing DNA sequence length, protein molecular weight, 
protein length, pI, and signal peptide prediction, were 
generated using ExPASy protparam (https:// web. expasy. 
org/ protp aram, (accessed July 18, 2023)) [35], Phytozome 
v13 and UniProt (https:// www. unipr ot. org/ (accessed 
July 18, 2023)) [36].

Multiple sequence alignment and phylogenetic analysis
To investigate the evolutionary relationships among the 
MIPS peptide sequences of legumes, multiple sequence 
alignment (MSA) of the amino acid sequences of all 
the ten legumes along with three MIPS proteins from 

Arabidopsis, was performed using CLUSTALW in 
MEGA version 11.0.13 [37]. The phylogenetic tree was 
constructed in MEGA using the following parameters: 
(1) Scope: all selected taxa, (2) phylogenetic test: boot-
strap technique, (3) neighbour-joining (NJ) statistical 
approach, (4) 1000 bootstrap replicates, (5) Substitution 
types: amino acid, (6) Poisson model, (7) Uniform rates 
applied across all sites, (8) Homogeneous (same) ancestry 
pattern, and (9) Pairwise elimination for the treatment 
of gaps/missing. To visualize the phylogenetic tree, the 
iTOL45 web server (https:// itol. embl. de/, [38]) was used.

Gene structures, organization of motif, and prediction 
of domain
The Gene Structure Display Server (GSDS 2.0; http:// 
gsds. cbi. pku. edu. cn/ Gsds_ abou. php) program was used 
to compare the CDS sequences with their corresponding 
genomic DNA sequences, to analyze the organization of 
the exonic and intronic regions as well as the untrans-
lated region of the MIPS genes. The Motif Elicitation 
(MEME) program was employed to envisage the con-
served motif with the parameters set to find out 20 motifs 

Table 1 Comprehensive information of MIPS genes from ten legume species

a Start position; E Exons, L Length (aa), NA Not available

Gene name Gene ID Chromosome/ Locationa Gene 
length (bp)

Exon/ intron Protein

L pI MW (KDa)

CcMIPS1 KYP45217.1 1; 64,348..68643 4295 10/9 510 8.15 56.37143

CcMIPS2 KYP64058.1 1; 2,587,488..2590628 3140 10/9 510 5.7 56.52288

LpMIPS2 Labpu03g041840.1 3; 56,635,636..56640873 5237 10/9 510 5.55 56.41651

LpMIPS3 Labpu06g001800.1 6; 1,422,274..1426489 4215 10/9 510 5.24 56.46354

CaMIPS1 Ca_09586 6; 7,894,342..7898451 4109 10/9 510 5.51 56.17

CaMIPS2 Ca_12683 5; 43,684,761..43687739 2978 10/9 510 5.37 56.17

AhMIPS3 arahy.23HYFJ.2 1; 127,510,321..127515306 4985 9/8 510 5.47 56.488

AhMIPS1 arahy.96MT2N.1 1; 14,202,165..14206221 4056 10/9 510 5.47 56.61474

AhMIPS2 arahy.NNJC7T.1 1; 21,695,121..21699129 4008 10/9 510 5.47 56.62877

GmMIPS3 Glyma.05G180600 5; 36,870,767..36875196 4429 10/9 510 5.55 56.42054

GmMIPS4 Glyma.11G238800.1 11; 33,319,225..33322244 3019 9/8 509 5.31 56.47567

GmMIPS1 Glyma.08G138200 8; 10,592,506..10597043 4537 10/9 526 5.74 58.90235

GmMIPS2 Glyma.18G018600 18; 1,365,144..1368075 2931 10/9 510 5.37 56.44452

MtMIPS1 Medtr3g087590 3; 39,697,586..39701455 3869 10/9 510 5.44 56.58172

MtMIPS2 Medtr8g091320.1 8; 38,077,427..38081222 3795 10/9 510 5.46 56.47743

PvMIPS1 Phvul.001G251000.1 1; 50,146,237..50149206 2969 10/9 510 5.75 56.44763

PvMIPS2 Phvul.002G261700 2; 43,366,988..43371400 4412 10/9 510 5.42 56.47854

TpMIPS1 Tp57577_TGAC_v2_gene1741 3; 8895..12131 3236 9/8 414 5.31 45.83665

TpMIPS2 Tp57577_TGAC_v2_gene22605 8; 7,181,230..7185372 4142 1/0 126 6.7 14.07147

TpMIPS3 Tp57577_TGAC_v2_gene1515 11 6329..9176 2937 5/4 199 8.52 22.33476

VuMIPS4 Vigun03g073900 3; 6,093,230..6097413 4183 10/9 510 5.48 56.4385

VuMIPS1 Vigun01g235400 1; 40,693,586..40696720 3134 10/9 510 5.39 56.4205

PsMIPS2 KAI5406008.1 5; 204,536,777..204540143 3366 5/4 510 5.44 56.55

PsMIPS1 KAI5384408.1 7; 96,888,617..96,891,115 2498 9/8 529 5.39 58.63

http://pfam.xfam.org
http://pfam.xfam.org
https://www.ncbi.nlm.nih.gov/cdd
http://smart.embl-heidelberg.de
http://smart.embl-heidelberg.de
https://web.expasy.org/protparam
https://web.expasy.org/protparam
https://www.uniprot.org/
https://itol.embl.de/
http://gsds.cbi.pku.edu.cn/Gsds_abou.php
http://gsds.cbi.pku.edu.cn/Gsds_abou.php
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(http:// meme- suit. org; [39]) and their structures were 
visualized using the TBtool software [40].

Gene nomenclature, duplication, chromosomal location, 
and analysis of cis‑regulatory elements
The MIPS genes reported in Arabidopsis were used to 
determine the nomenclature of the genes in each leg-
ume species. The closest orthologs to the MIPS genes of 
Arabidopsis in the evolutionary tree were used to deter-
mine the nomenclature of the genes in each legume spe-
cies. From NCBI, the chromosome coordinates and the 
gene and protein IDs were obtained. The position of each 
gene on each chromosome was plotted on chromosome 
maps generated for each species using the MG2C tool 
(http:// mg2c. iask. in). For the analysis of the cis-regula-
tory elements (CREs) of MIPS, the sequences upstream 
(2000 bp) to the start codon were also retrieved from the 
corresponding database. The PlantCARE online server 
(https:// bio. tools/ plant care) was used to identify the 
CREs in MIPS genes [41].

Nuclear localization signals, GO analysis and subcellular 
localization
To predict the MIPS NLS, the online tool cNLS Map-
per (https:// nls- mapper. iab. keio. ac. jp) [42] was used. The 
PANNZER server (Protein ANNotation with Z-scoRE) 
(http:// ekhid na2. bioce nter. helsi nki. fi/ sansp anz) [43] was 
employed to get the gene ontology (GO) annotation of 
the legume MIPS using their respective gene ID. Further, 
for predicting subcellular localization of legume MIPS, 
online resource WoLF PSORT II (https:// www. gensc ript. 
com/ wolf- psort. html? src= leftb ar) [44] was used.

Plant materials and optimum growing conditions
Dolichos bean (Dolichos lablab L. cv. Hima) seeds were 
grown at ambient temperature (25 °C) in the greenhouse 
with a light/dark cycle of 14  h/10  h in pots filled with 
sterile mixtures (1:1) of agro-peat and vermiculite. The 
tissue-specific gene expression was analysed, for which 
the bud, leaf and root tissues were collected at the flow-
ering stage (three months). All tissues were collected in 
three biological replicates and kept at -80  °C until used. 
PEG-6000 (20%) was used to induce drought stress in 
dolichos bean plants.

Isolation of total RNA, cDNA preparation and RT‑qPCR 
validation
Purelink® Plant RNA purification reagent was used to 
isolate the total RNA, from 100  mg of tissue, follow-
ing the manufacturer’s guidelines. From this, 5.0  µg of 
total RNA was treated using the RNase-Free DNase Set 
(Qiagen) for removing the contaminating DNA. Using 

nano-volume spectrophotometer (NanoDrop Technolo-
gies) and Bioanalyzer (Agilent Technologies), the quan-
tity and quality of the RNA samples were evaluated. Only 
RNA samples with the following characteristics were 
selected for analysis: 260/230 absorbance ratios between 
2.0 and 2.4, 260/280 ratios between 1.9 and 2.1, and an 
RNA integrity number (RIN) larger than 7.0. The Rever-
tAid First Strand cDNA Synthesis Kit (ThermoScientific) 
was used to create cDNA from the total RNA, following 
the manufacturer’s instructions. A reaction mix of 10 µL 
containing 2X SyBr Green Master mix (5.0 µL) (Applied 
Biosystems™), 10 mM of each primer, and cDNA (100 ng) 
was used to perform the real-time PCR assay on the 
Applied Biosystems™ qPCR, and the temperature pro-
file for the reaction was 95 °C (2 min), 40 cycles of 95 °C 
(15 s) and 60 °C for 1 min. Supplementary Table S1 pro-
vides the details of the primers used in this study. Three 
each of biological and technical replicates were made in 
each reaction. The  2−△△Ct technique was followed to 
analyze the data and calculate the relative expression.

Results
Identification and characterization of MIPS genes 
from legume genomes
To find the genes encoding proteins containing the 
MIPS domain, genome-wide searches were conducted 
by BLASTp. Further, HMMER was used for a thorough 
search and identification of MIPS genes in each of the 
legume proteomes. Results obtained were confirmed for 
the presence of the MIPS domain using Pfam, SMART, 
and NCBI Conserved Domains Database. A few protein 
sequences that were incomplete in the N-terminal region 
of the characteristic MIPS domain were excluded. In total, 
we found 24 potential MIPS genes and 47 different tran-
scripts from 10 legume species (Supplementary Table S2). 
We gave each MIPS protein a unique name based on the 
MIPS genes reported in Arabidopsis and their chromo-
somal or scaffold position, using the species abbreviation 
as a prefix. Each legume had 2–3 MIPS genes, except soy-
bean, which had four MIPS genes (Table  1, Supplemen-
tary Table S2).

The basic parameters of the identified proteins such 
as protein length, isoelectric point, molecular weight, 
subcellular localization, and functional annotation 
are presented in Table 1 and Supplementary Table S2. 
The length of MIPS genes in different legumes ranged 
from 2498 (PsMIPS1) to 5237  bp (LpMIPS2), and 
their average was 3770  bp. The length of MIPS pro-
tein sequences showed a bimodal distribution, ranging 
from 126 aa (TpMIPS4) to 529 aa (PsMIPS1) and the 
average was 479 aa. The length of the MIPS proteins 
fell into any one of two categories: (i) 509–529 amino 

http://meme-suit.org
http://mg2c.iask.in
https://bio.tools/plantcare
https://nls-mapper.iab.keio.ac.jp
http://ekhidna2.biocenter.helsinki.fi/sanspanz
https://www.genscript.com/wolf-psort.html?src=leftbar
https://www.genscript.com/wolf-psort.html?src=leftbar
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acid residues for 21 MIPS proteins or (ii) 129–414 
amino acid residues for three MIPS proteins. The pre-
dicted molecular weight of the proteins ranged from 
14.07 (TpMIPS2) to 58.90  kDa (GmMIPS1), and the 
average molecular weight was 53.01 kDa. The range of 
isoelectric points of the proteins was 5.24 to 8.52.

The analysis of subcellular locations had shown that 
the proteins are localized in multiple organelles and 
most were located in the cytoplasm, plasma mem-
brane, and vacuole (Fig. 1).

Phylogenetic analysis and classification of MIPS genes
To comprehend the evolutionary relationships of MIPS 
genes, a multiple sequence alignment of 24 full-length 
peptide sequences from the legumes was performed and 
a phylogenetic tree was constructed using the neighbour-
joining method (Fig.  2A). The MIPS proteins were thus 
classified into five clusters. Clusters B, C and D had boot-
strap values > 80% and hence considered to have different 
phylogenetic lineages. The clusters A and E had boot-
strap values less than 60%, having large variability among 

Fig. 1 The MIPS genes’ subcellular localization. The heatmap was created using WoLF PSORT data, and the colour scale depicts the abundance 
of organelles. Higher expression levels were shown in red, while lower levels were shown in blue
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the members. To understand the phylogenetic relation-
ship among the MIPS genes of legumes and Arabidopsis, 
an evolutionary tree was constructed with 24 sequences 
from legumes and three from Arabidopsis. The MIPS pro-
teins from these species were distributed across almost 
all the branches. The evolutionary tree was divided 
into five subclades. Among them, subclades MIPS1 and 

MIPS2 have accommodated one sequence each, while 
MIPS4 had 15 and subclades MIPS3 and MIPS2 had 
seven and three sequences, respectively (Fig. 2B).

Gene structure and conserved motif analysis
Clear gene structure patterns were seen, which varied 
across groups but conserved within a group (Fig.  3A). 

Fig. 2 Two unrooted phylogenetic trees of MIPS genes were constructed by MEGA11: the evolutionary tree of the MIPS family was constructed 
using the neighbor-joining method, and the interspecific evolutionary tree of MIPS was constructed using the maximum likelihood method. 
A Phylogenetic tree of the MIPS family protein sequences in legume; B Phylogenetic relationships of 24 MIPS proteins from 10 legumes, 
and Arabidopsis 

Fig. 3 Genetic structure of the MIPS gene family in legume species A Phylogenetic tree of the MIPS gene family. B Motif pattern diagram 
of the MIPS gene family C Exon structure diagram of the MIPS gene family
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The most common number of exons was ten, found in 
17 MIPS genes (70.83%) (Fig.  3B). In total, there were 
17 genes with nine introns each (70.83%), two with four 
introns (8.33%), four with eight introns (16.66%) and one 
gene (TpMIPS4) with no introns (4.16%). A, C, D and E 
group genes had eight to nine introns. On the contrary, 
genes in group B varied greatly with four to zero introns.

The validation of the classification of MIPS using 
MEME analysis [45] showed 10 conserved motifs that 
were statistically significant (E value lower than  e−100) 
(Fig. 3C, Supplementary Table S3). The amino acid motif 
length ranged from 29 to 50. The consensus sequences of 
these conserved motifs and their amino acid lengths are 
shown in Supplementary Table S3. These ten motifs were 
observed in all legume genes except CaMIPS1, TpMIPS2 
and TpMIPS3 and the pattern in which the motifs were 
arranged was also similar in 21 proteins (Fig.  3C). This 
suggests that MIPS is highly conserved in legumes.

Location of MIPS on the chromosomes and gene 
duplication events
The distribution of the MIPS genes on the chromosomes 
of legumes was mapped with the programme MapIn-
spect. We also examined the events of gene duplica-
tion in the MIPS gene family, and the output showed 
that MIPS gene pairs arose by tandem and segmental 

duplication and are connected by lines or shown in grey 
(Fig. 4). The legume chromosomes had an uneven distri-
bution of MIPS genes. Tandem duplication contributed 
only slightly to the gene expansion of the MIPS family in 
legumes, but segmental duplication still had a significant 
impact. Seven pairs of genes evolved through tandem 
duplication and 17 pairs through segmental duplication 
were detected.

Out of all these legumes, it was observed that the gene 
duplication (including tandem and segmental duplica-
tion) of soybean was the most complicated, possibly due 
to hybridization [46, 47]. However, the gene expansion 
of the MIPS family in the lablab genome was only due to 
segmental duplication, whereas in the peanut genome, 
we did not find any indication of either tandem or seg-
mental duplication of MIPS genes. Interestingly, many 
genes were duplicated both through tandem and segmen-
tal methods. For instance, ‘TpMIPS1 and TpMIPS2’ and 
‘GmMIPS1 and GMMIPS4’ are gene pairs that denote 
tandem duplicates, while ‘CcMIPS2 and CcMIPS1’ is 
a gene pair resulting from chromosomal segmental 
duplication.

MIPS gene pairs that were segmentally duplicated are 
observed in all five groups (from A to E) of the phylo-
genetic tree, but such segmental duplication events are 
more prevalent between sister groups or within the same 

Fig. 4 Chromosomal localization and gene duplication of MIPS genes in Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab 
purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata., and tandem duplication of gene pairs 
during evolution is shown by lines
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phylogenetic group. Fifteen of the 24 gene pairs that 
were segmentally duplicated had both the gene pairs in 
the same cluster and the remaining genes were mostly 
in pairs between two sister groups, such as ‘B and C’ or 
‘D and E’. However, one exceptional gene pairing was 
between the MtMIPS1 in group A in red clover, which 
paired with TpMIPS1 in group B and TpMIPS5 in group 
E. Tandem gene duplication was observed only in phylo-
genetic groups D and E, where the genes were paired only 
within the same phylogenetic group. Furthermore, the 
sequence similarity of all the tandemly duplicated gene 
pairs was comparatively higher (> 75%). Among them, 
“CaMIPS1 and CaMIPS2” and “PsMIPS2 and PsMIPS3” 
showed more than 90% similarity.

Moreover, to find out the explanation for the legume 
MIPS gene expansion, the gene duplications were exam-
ined in the legume genomes, and a total of 43 duplication 
pairs were observed. The Ka/Ks value for the duplicated 

gene pairs was less than 1 for all gene pairs, with a mean 
value of 0.205 (Supplementary Table S2). These results 
indicate that in legume species, the MIPS genes are con-
stantly evolving through purifying selection.

Analysis of the cis ‑regulatory elements in MIPS
To comprehend the likely role of MIPS genes in modu-
lating growth and development of legume species, the 
possible CREs were searched within 2000 bp upstream of 
MIPS genes. A total of 6797 CREs, representing 88 types 
of CREs, were observed in the 24 MIPS genes (Fig.  5). 
These cis-acting elements were mainly elements related 
to plant growth (992; 44.22%), elements responsive to 
abiotic stress (728; 32.45%), followed by elements con-
trolling hormone regulation (655; 15.55%), and elements 
responsive to light (288; 12.83%). CREs of legume MIPS 
genes involved in plant growth and development include 
the AAGAA motif, the TATA box, the CAT box, the A 

Fig. 5 Representation of the number of cis-regulatory elements (CREs) belonging to the following four categories (stress-responsive, hormonal 
regulation, plant development, and light-responsive) per legume MIPS gene as a heat map
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box, the AT -rich element and the CTAG motif, which 
are predominant in legume MIPS genes compared to 
other growth-related elements. Plant hormone-related 
CREs include TCA element (salicylic acid responsive 
elements), abscisic acid responsive elements (ABRE), 
gibberellin responsive elements (P-box, GARE motif ), 
methyl jasmonate responsive elements (CGTCA motif, 
TGACG motif ), auxin responsive elements (AuxRR core, 
TGA element) and ethylene responsive elements (ERE), 
which were the third most abundant cis-elements. These 
results suggest that MIPS genes may play an important 
role in regulating plant growth, and also in various abi-
otic stress responses.

GO annotation of MIPS gene
GO enrichment was also carried out for the MIPS genes 
to learn more about their roles and the results show that 
the MIPS gene was involved in the synthesis, metabo-
lism and phospholipid metabolism of inositol (phytic 
acid) (Fig. 6). According to this GO-annotation, they are 
proven to be crucial for the production of phytic acid and 
drought tolerance.

MIPS gene expression profile
To examine the probable biological role of the legume 
MIPS genes, an expression analysis was carried out in 
Dolichos bean. Among leaf, stem, flower bud and flower, 
the stem tissue had the least expression for DlMIPS and 
flower bud had maximum expression (52.55-fold higher 
compared to the stem). The DlMIPS expression in flower 
and leaf tissues was 20.68-fold and 14.25-fold higher, 
respectively compared to that in stem (Fig. 7A).

Expression analysis of MIPS gene in dolichos bean 
plants subjected to drought induction using 20% PEG-
6000, was done through RT-qPCR. The expression of the 
MIPS gene under drought stress was normal until 24  h 
and subsequently up-regulated by 10.65-fold, compared 
to the control (Fig. 7B).

Discussion
The L-myo-inositol-1-phosphate synthase, also known 
as D-myo-inositol-3-phosphate synthase or MIPS (EC 
5.5.1.4), is a crucial enzyme in the biosynthesis of inositol 
and phosphoinositides and is considered an ancient pro-
tein, as it is found in a variety of organisms with different 

Fig. 6 Bubble plot displaying the most enriched GO, BP, CC and MF terms. GO, Gene Ontology; BP, biological process; CC, cellular component; MF, 
molecule function
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evolutionary histories, including fungi, bacteria, animals, 
and plants [13]. The myo-inositol biosynthetic pathway 
(MIB) is controlled by MIPS, which converts the precur-
sor glucose-6-phosphate into free myo-inositol. Myo-
inositol and its derivatives are vital in plants for several 
growth and developmental processes, including auxin 
storage and transport, membrane biogenesis, biosyn-
thesis of phytic acid, signal transduction, etc. [48–50]. 
The MIPS fulfils the basic physiological functions and is 
involved in a number of plant stress responses [51–53]. 
Myo-inositol, synthesised through the MIB pathway, is 
essential for the formation of phosphoinositide mole-
cules used in evolutionarily well-defined signalling path-
ways, particularly in the signalling of osmotic stress [54].

The MIPS genes have been studied in various plants 
including, wheat [15], cotton [55], Brachypodium dis-
tachyon [56], Soybean [7], and Rose [57]. However, the 
comprehensive identification and characterization of 
these genes in the legume family has not been done. 
In this study, a total of 24 genes were identified and 
described in 10 bean species. In previous studies, 3, 12, 
and 51 MIPS genes were found in A. thaliana, Gossyp-
ium hirsutum, and Rosa chinensis, respectively [8, 14, 57]. 
With the exception of soybean, which contains four MIPS 
genes, the MIPS gene number in the rest of the legumes 
is similar to that in A. thaliana, which ranges from two 
to three. This is most likely due to the tetraploid genome 
of soybean, which is partially diploidised and may have 
undergone many duplications [46]. However, the dispar-
ity in the number of MIPS genes between plant species is 
not entirely due to genome size. The genome of rice, for 
example, is only about 430 Mb in size but has 38 MIPS 
genes [58]. Avena sativa, on the other hand, has a genome 
size of up to 11 Gb, but only two MIPS genes [59]. Hence, 

it is crucial to find and describe more MIPS genes from 
different species of plants to understand the several gene 
expansion methods in various plants.

Phylogenetic analysis revealed that 24 MIPS from 10 
different legume species are divided into five different 
clades. Interestingly, all clades had MIPS genes from 
all the species studied, proving that these were con-
served and evolved even before the divergence of leg-
ume species. Scattered occurrence of the majority of 
proteins from Arabidopsis and legumes, across the sub-
clades, shows that MIPS proteins are functionally con-
served in dicots. In addition, most of the legume genes 
shared MIPS exon–intron, motif, and domain arrange-
ments. The amino acid sequence of MIPS has numerous 
important catalytic domains that are largely conserved 
across evolutionary lineages, suggesting that they are 
catalytically active [60]. All the ten species had the four 
amino acid stretches that are highly conserved, namely 
LWTANTERY, GWGGNG, GIKPLSIASYN, and ING-
SPQNTFVPG. These ten motifs were observed in all leg-
ume genes except CaMIPS1, TpMIPS2 and TpMIPS3 and 
the pattern in which the motifs were arranged was also 
similar in 21 proteins (Fig. 3C). This suggests that MIPS 
is highly conserved in legumes.

Studies on subcellular localization revealed that most 
MIPS are positioned in the cytoplasm. Previous studies 
in various plant species have shown that MIPS is gener-
ally found in the cytoplasm but can also be detected in 
the plasma membrane, endomembrane, and nucleus. 
These results suggest that MIPS may be associated with 
signal transduction, membrane trafficking, and gene 
expression regulation [14, 57].

The genomes of the land plants and gene family sizes 
have been shaped by genome duplication followed by 

Fig. 7 Relative expression level of MIPS in different plant tissue, during drought stress. A Relative expression level of LpMIPS2 and LpMIPS3 
in different plant tissue. B The relative expression level of LpMIPS in leaf tissue at different times (0 h, 6 h, 12 h, and 24 h) treated with 20% PEG 
and the effect of drought stress. Paired Student’s t-test was used to evaluate the significance of the differences between the samples, with p-values 
of *p < 0.05 and **p < 0.01 being considered significant
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whole-genome fractionation [61]. Multiple tandem and 
segmental duplication events also had a key function in the 
formation of the MIPS gene family, as revealed by a gene 
duplication study of MIPS genes in the whole-genomes 
of Arabidopsis and legumes. Recognition of MIPS gene 
orthology may be impacted by the high frequency of gene 
duplications. Through this study, we could predict 88 
types of CREs located on the promoter region of legume 
MIPS genes, which were linked with hormonal regulation, 
response to abiotic stress, plant development, and photo-
sensitivity. Drought-responsive CREs (ABRE, DRE, ARE, 
MYC, MYB, and F-box) were predominant in the legume 
MIPS gene when compared to other stress-responsive ele-
ments, which points to the fact that legume MIPS genes 
may have a role in stress response in addition to regulating 
growth and development in plants. Similar studies in other 
plant species yielded similar results [51, 62, 63]. For exam-
ple, Gangwar et al. [57] reported that among the various 
CREs involved in abiotic stress response, CREs related to 
drought response were the most abundant.

MIPS genes are associated with the control of plant 
growth and development [57]. The wide variation (up 
to 52.55-fold) of MIPS in various plant tissues show that 
this gene also plays essential roles in growth and devel-
opment of Lablab plants. MIPS has also been shown to 
play a critical role in tolerance to drought [64] and heat 
[65]. As per the GO analysis, it was observed that MIPS 
genes are mainly involved in the synthesis, metabolism 
and phospholipid metabolism of inositol (phytic acid). 
Myoinositol and its derivatives (e.g., pinitol, ononitol, 
galactinol, and raffinose) play important dual functions 
as both signals and essential metabolites for osmotic 
adjustment and ROS scavenging in response to drought 
stress [64]. In peanut, the MIPS gene was identified as a 
drought-responsive gene that was elevated in transgenic 
lines that were more drought resistant [66]. Similarly, 
MIPS gene expression was increased during drought 
stress in Nicotiana glauca [67], rose [57], cotton [14], 
Arabidopsis [68], and many others. Overexpressing the 
HhMIPS1D gene of cotton in transgenic Arabidopsis 
improved drought tolerance [14]. Under drought stress, 
the MIPS gene (OsMIPS1) splice variants were also 
increased in rice [65]. Zhai et  al. [2016] reported that 
a myo‐inositol‐1‐phosphate synthase gene, IbMIPS1 
has enhanced the tolerance to salinity and drought and 
resistance to stem nematodes in transgenic sweet potato 
[64]. Tan et  al. [2013] found that through the ectopic 
expression of MfMIPS1 (Medicago falcata MIPS) in 
tobacco, tolerance to drought is increased [69]. In the 
current study, a substantial increase in the MIPS gene 
expression was detected under the drought stress in 
Lablab, indicating a positive function of the MIPS gene 
for drought resistance in lablab. In addition, we detected 

drought-responsive elements CREs (i.e. DRE, ABRE, 
MYC and MYB) in the promoter sequence of MIPS, 
suggesting the involvement of MIPS in plant tolerance 
under low-water conditions.

Conclusion
We discovered 24 MIPS genes belonging to five clades, 
from ten legume species. Total length of the gene was 
6085 bp and gene structure analysis had shown one to 
nine exons. The presence of multiple components in the 
promoter sequence, including the growth- and stress-
sensitive elements, suggests that MIPS plays a critical 
role in many developmental processes as well as abi-
otic stresses in legumes. Analysis of LpMIPS expression 
has confirmed the importance of MIPS in plant devel-
opment and drought stress resistance. Current results 
provide precise data on MIPS genes, which could serve 
as a solid platform for the functional characterization 
of this important gene family.
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