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Abstract 

Background Pseudomonas putida S12 is a gram-negative bacterium renowned for its high tolerance to organic sol-
vents and metabolic versatility, making it attractive for various applications, including bioremediation and the produc-
tion of aromatic compounds, bioplastics, biofuels, and value-added compounds. However, a metabolic model of S12 
has yet to be developed.

Results In this study, we present a comprehensive and highly curated genome-scale metabolic network model 
of S12 (iSH1474), containing 1,474 genes, 1,436 unique metabolites, and 2,938 metabolic reactions. The model 
was constructed by leveraging existing metabolic models and conducting comparative analyses of genomes 
and phenomes. Approximately 2,000 different phenotypes were measured for S12 and its closely related KT2440 
strain under various nutritional and environmental conditions. These phenotypic data, combined with the reported 
experimental data, were used to refine and validate the reconstruction. Model predictions quantitatively agreed well 
with in vivo flux measurements and the batch cultivation of S12, which demonstrated that iSH1474 accurately repre-
sents the metabolic capabilities of S12. Furthermore, the model was simulated to investigate the maximum theoreti-
cal metabolic capacity of S12 growing on toxic organic solvents.

Conclusions iSH1474 represents a significant advancement in our understanding of the cellular metabolism of P. 
putida S12. The combined results of metabolic simulation and comparative genome and phenome analyses identi-
fied the genetic and metabolic determinants of the characteristic phenotypes of S12. This study could accelerate 
the development of this versatile organism as an efficient cell factory for various biotechnological applications.
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Background
Pseudomonas putida is a gram-negative gamma-proteo-
bacterium widely distributed in soil and water environ-
ments. P. putida has a broad metabolic range and can 
tolerate and degrade various organic compounds [1, 2]. 

Therefore, it has been extensively used in bioremediation 
to remove organic pollutants from contaminated sites. 
This bacterium exhibits rapid growth, metabolic versatil-
ity, and inherent robustness to physicochemical stresses, 
making it an ideal candidate for producing biofuels, bio-
plastics, and other industrial products using renewable 
feedstocks [1, 3].

P. putida S12 is exceptionally tolerant to various organic 
solvents and aromatic compounds that are toxic to most 
bacteria [4]. It was first isolated using styrene as the sole 
carbon source [5], and it can grow on supersaturated 
concentrations of styrene, octanol, or heptanol as the sole 
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carbon source [6]. Due to its high solvent tolerance and 
versatile metabolism, S12 has been used in the synthesis 
of organic compounds such as phenol [7], p-hydroxysty-
rene [8], p-hydroxybenzoate [9], and 2,5-furandicarbox-
ylic acid [10]. The complete genome of S12 consists of a 
chromosome of 5,798,534 bp and a megaplasmid pTTS12 
of 583,900 bp [11]. The S12 is phylogenetically closest to 
the plant growth-promoting rhizobacterium P. putida 
BIRD-1 [12], which harbors a chromosome without 
plasmid [13]. The chromosome size of S12 is compara-
ble to that of P. putida BIRD-1 (5,731,541  bp) [12], and 
is less than that of the best characterized saprophytic P. 
putida KT2440 (6,181,873 bp) lacking a plasmid [14]. The 
pTTS12 represents the largest megaplasmid identified in 
P. putida, encoding many unique features such as styrene 
catabolism, the solvent-resistance pump and resistance to 
heavy metals [11].

A genome-scale metabolic network model (GEM) of 
an organism is a computational representation of the 
entire metabolism that integrates genome annotation, 
biochemical information, and experimental data to gen-
erate a comprehensive inventory of the metabolic path-
ways and reactions occurring in the organism [15]. GEMs 
have been developed for diverse organisms [16] and 
have been used to understand metabolic capabilities and 
genotype–phenotype relationships and to design meta-
bolically engineered strains for various biotechnological 
applications [17–19]. Strain-specific metabolic models 
have been reconstructed for non-pathogenic and patho-
genic Pseudomonas genera. These include opportunistic 
human pathogenic P. aeruginosa strains PAO1 [20] and 
PA14 [20–22], endophytic P. stutzeri A1501 [23], and P. 
fluorescens SBW25 [24]. Among the P. putida strains, 
GEMs have been developed exclusively for KT2440 [25–
28], while a GEM for S12 has yet to be reported.

In this study, we developed a comprehensive and highly 
curated GEM for S12 by leveraging the published GEMs 
of P. putida KT2440 and P. aeruginosa PAO1 and per-
forming comparative genome and phenome analyses. 
Phenotype microarray (PM) tests was performed for 
S12 and KT2440 to validate and update the model. The 
resulting GEM was simulated to explore the metabolic 
features of S12.

Results
Construction of a metabolic network model
Draft S12 GEM reconstruction was initiated by iden-
tifying homologs of S12 in genes contained in the pub-
lished GEMs of P. putida KT2440 (iJN1462) [25] and 
P. aeruginosa PAO1 (iPAE1146) [20] (Fig.  1). P. putida 
KT2440 was chosen as it is a well-characterized model 
strain of P. putida [1] and it is closely related to S12. P. 
aeruginosa PAO1 has a high-quality genome annotation 

through the Pseudomonas community annotation pro-
ject [29]. Homology searches were performed using the 
genomes of KT2440 [14] and PAO1 [30] against the S12 
chromosome [11]. The EDGAR server (version 3.0) [31] 
was used to identify additional S12 homologs in KT2440 
and PAO1. As a result of these homology searches, 1,349 
metabolic genes of S12 were observed to have homologs 
in the KT2440 GEM, and 2,841 associated metabolic 
reactions. Eighteen homologs of S12 were identified in 
the PAO1 GEM, which were not observed in the KT2440 
GEM, and their 31 associated metabolic reactions were 
retrieved.

Automated metabolic reconstruction of S12 using the 
RAVEN toolbox [32] identified 28 metabolic genes and 
14 metabolic reactions that were absent in iJN1462 and 
iPAE1146 (Table S1). Homology searches were performed 
using the S12 chromosome against the NCBI non-redun-
dant (NR) database, which yielded 61 additional meta-
bolic genes with potential metabolic roles. Twenty-eight 
associated metabolic reactions were retrieved from the 
MetaCyc database [33]. Seventeen metabolic genes and 
six reactions encoded by the megaplasmid pTTS12 were 
retrieved from a previous study [34].

The reconstruction was manually gap-filled. The ini-
tial version of the model was constructed by gathering 
reactions and metabolites from iJN1462, iPAE1146, 
and the automated metabolic reconstruction of 
S12. When the FBA simulation was run using the 
model, it showed no growth, indicating the absence 
of certain reaction(s) required for generating specific 
component(s) in the biomass equation. Therefore, the 
reactions of iJN1462 and iPAE1146, which were pre-
viously left out due to the absence of an associated 
S12 homolog, were sequentially added to the model, 
however, these additions did not lead to the simulated 
growth. Iteratively adding pairs of reactions identi-
fied two reactions leading to the simulated growth. 
They were NADS1 and CLt3_2pp, which are medi-
ated by ammonia-dependent NAD( +) synthetase and 
chloride channel protein, respectively, contained in 
iJN1462. NADS1 is associated with the S12 gene that 
didn’t satisfy the criteria for the homolog search, while 
CLt3_2pp is not associated with any S12 gene. Addi-
tionally, 350 exchange reactions for external metabo-
lites were included in the model.

For functionality of the model, the model includes 
artificial reactions of sink and demand reactions pre-
sent in iJN1462 [25]. To remove dead end metabo-
lites [35], the model contains 31 demand reactions, of 
which 24 are related to various forms of polyhydroxy-
alkanoate (PHA). Pseudomonas species is well-known 
for storing PHAs as a reverse for carbon and energy 
under unbalanced growth conditions [36]. As PHAs are 
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accumulated intracellularly, they become a dead end 
metabolite that needs to be removed through demand 
reactions. As PHAs are not a part of the biomass equa-
tion, in silico growth does not require PHA synthesis. 
Inclusion of the demand reactions for PHAs are pri-
marily to represent the characteristics of the P. putida. 

The model also contains two sink reactions to generate 
metabolites whose biosynthetic pathways are not fully 
known; "sink_PHAg," which supplies the PHA granule 
needed for PHA biosynthesis, and "sink_pqqA," which 
provides the initial peptide required for biosynthesis of 
pyrroloquinoline-quinone (PQQ). Based on PM tests 

Fig. 1 Workflow of the reconstruction of the metabolic network model of P. putida S12. The numbers of metabolic genes and reactions identified 
in each step are shown
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and previous reports, the model was revised, and 16 
additional metabolic reactions were incorporated (see 
below).

To provide annotation information of genes, reac-
tions, and metabolites in the sbml file of the model, web 
links to public databases were generated by COBRApy 
[37]. To annotate the genes, UniProt [38] annotations 
were obtained by searching the MetaCyc database. We 
included gene annotation links for refseq_locus_tag, 
ncbigi, and refseq_name, even though they are currently 
inaccessible, because this information was sourced from 
the RefSeq GenBank file of S12. The nomenclature of the 
metabolic reactions and metabolites followed the BiGG 
model database [16]. The resulting S12 GEM (iSH1474) is 
available in Excel (Table S2) and SBML formats (File S1).

Generation of the biomass equation
The biomass equation of iSH1474 was generated 
based on the KT2440 GEM (iJN1462) [25] by adjust-
ing S12-specific factors (Table S3). Compositions of 
amino acids, deoxynucleotides (dNTPs), and nucleo-
tides (NTPs) were estimated using the genome sequence 
of S12, according to Thiele and Palsson [35]. To calcu-
late the non-growth-associated maintenance energy 
(NGAM), an experimental plot of the growth rate 
versus glucose uptake rate was generated using the 

maintenance coefficient and maximum growth yield, 
which were determined from glucose-limited chemo-
stat cultures of P. putida S12 growing aerobically on a 
minimal medium [39]. NGAM value of 1.67 mmol ATP/
gDCW/h was calculated from the y-intercept of the 
experimental plot (Fig. S1). While keeping the NGAM 
value fixed, flux balance analysis (FBA) was performed 
by varying the value of the growth-associated main-
tenance energy (GAM) in the biomass equation to 
determine the value that provided the closest fit to the 
experimental plot (42.31 mmol ATP/gDCW) [35].

Metabolic pathways featured in P. putida S12
To identify the metabolic gene clusters specific to S12, 
the S12 genome was compared to the KT2440 genome. 
Fourteen metabolic gene clusters containing at least three 
genes were observed exclusively in S12. In contrast, only 
five metabolic gene clusters were observed in KT2440 
(Table S4). On the S12 chromosome, these unique gene 
clusters encode enzymes involved in the catabolism of 
tricarballylate, cynate/carbamate, D-serine, nicotinoni-
trile, and formamide (Fig.  2A). One notable cluster was 
a four-membered gene cluster resembling the tricarbal-
lylate utilization locus (tcuRABC) of Salmonella enterica 
serovar Typhimurium [40, 41]. Within this locus, RPPX_
RS24175, RPPX_RS24170, and RPPX_RS24165 showed 

Fig. 2 Metabolic gene clusters and their corresponding metabolic pathways present only in S12 compared to KT2440. A Metabolic gene 
clusters. (a-e) Gene clusters in the S12 chromosome: catabolism of tricarballylate (a), cynate and carbamate (b), D-serine (c), nicotinonitrile (d), 
and formamide (e). (f-i) Gene clusters in the pTTS12 plasmid: catabolism of styrene (f), phenylacetate (g), solvent efflux pump (h), and mercury (i). 
For clarity, the locus tags RPPX_ and PP_ were removed from the locus names of S12 and KT2440, respectively. B Metabolic pathways. Among 
the reactions mediated by the gene clusters shown in panel A, those specific to S12 are colored in red, and those common to S12 and KT2440 are 
shown in black. Reactions not associated with the S12-specific gene clusters are colored in grey
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homology to the regulatory protein (TcuR), tricarballylate 
dehydrogenase (TcuA), and a putative electron shuttle 
protein (TcuB), respectively. However, the gene RPPX_
RS24160, annotated as a citrate symporter, showed less 
homology with the tricarballylate transporter TcuC (21% 
amino acid identity). This locus in S12 replaced 30 genes 
in the KT2440 genome, including ABC transporters 
and KT2440-specific genes, such as FMN reductase and 
dimethyl sulfone monooxygenase. Regarding D-serine 
metabolism, both S12 and KT2440 possess the D-amino 
acid dehydrogenase (DadA), which converts D-serine 
into β-hydroxy pyruvate. However, only S12 contains a 
D-serine utilization locus (dsdXAC) that includes genes 
for the D-serine transporter (DsdX), D-serine deaminase 
(DsdA), and LysR-type regulator (DsdC) [42, 43]. In the 
megaplasmid pTTS12, several gene clusters were identi-
fied in S12, including those involved in styrene degrada-
tion (encoded by styABCD), phenylacetate degradation 
(paa gene cluster), solvent efflux pumps (srp genes), and 
resistance to heavy metals such as mercury, tellurite, and 
chromate (mer genes) [34]. The paa gene cluster, which 

lacks paaN and has a different gene order, was observed 
on the chromosomes of both S12 and KT2440. All these 
unique gene clusters observed in P. putida S12 and asso-
ciated metabolic reactions were added to the S12 GEM 
(Fig. 2B).

Phenome analysis
The PM tests assess phenotypic growth on approximately 
2,000 substrates using microtiter plates (PM1 to PM20) 
containing many different carbon, nitrogen, and phos-
phorus sources and other compounds [44]. To investi-
gate the metabolic behavior and strain-specific metabolic 
capacity of S12, PM tests were conducted on both S12 
and KT2440 (Fig. S2A and Table S5). S12 and KT2440 
exhibited similar growth patterns on most digestible sub-
strates (PM1 to PM8), suggesting that both strains pos-
sessed comparable metabolic capabilities for utilizing 
these substrates. Among the 190 carbon sources tested 
(PM1 and PM2), S12 and KT2440 exhibited aerobic 
growth on 58 and 56 substrates, respectively (Fig.  3A). 
S12 grew on two carbon sources, tricarballylic acid and 

Fig. 3 Comparison of carbon source utilization of P. putida S12 with other strains. A P. putida S12 vs. P. putida KT2440. B P. putida S12 vs. E. coli 
BL21(DE3). Growth curves in all the cells of PM1 and PM2 are colored red for faster growth of S12, green for faster growth of KT2440 or BL21(DE3), 
and yellow for similar growth of both strains. PM wells showing strain-specific cell growth are boxed. The complete list of PM results is available 
in Table S2 and Fig. S2
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D-serine, which KT2440 could not utilize. This can be 
attributed to the presence of gene clusters (tcuRABC and 
dsdXAC) in S12, which are involved in the utilization of 
tricarballylate and D-serine (Fig. 2). Among the 59 phos-
phorus sources tested (PM4), S12 and KT2440 showed 
the same growth patterns, with 37 sources growing and 
22 sources not growing.

Both S12 and KT2400 could grow regardless of the type 
of inhibitory compounds present in PM11–PM20, which 
included antibiotics, antimetabolites, and other inhibi-
tors. However, certain inhibitory compounds prevented 
growth at high concentrations. S12 exhibited additional 
growth in 19 wells containing high concentrations of 
specific compounds compared with KT2440. These 
compounds included 3-amino-1,2,4-triazole, acriflavine, 
boric acid, cefsulodin, cobalt(II) chloride, coumarin, 
dodecyltrimethylammonium bromide, dodine, doxycy-
cline, enoxacin, hexaminecobalt(III) chloride, kanamycin, 
minocycline, potassium chromate, potassium tellurite, 
protamine sulfate, sodium dichromate, sodium metab-
orate, and tobramycin. In contrast, KT2440 showed 
growth at higher concentrations of eight different chemi-
cals: alexidine, cadmium chloride, crystal violet, methyl-
trioctylammonium chloride, rifampicin, ruthenium red, 
sulfanilamide, and tetrazolium violet. These results indi-
cate that S12 and KT2440 resist a broad range of inhibi-
tory compounds. Their tolerance can vary depending on 
the specific chemical compound.

To further explore the metabolic capacity and tolerance 
of S12, its PM data were further compared to the PM data 
of another popular industrial host, E. coli BL21(DE3) [45] 
(Fig. S2B and Table S5). Regarding carbon sources, S12 
and BL21(DE3) showed substantial differences in their 
ability to utilize different substrates for growth. S12 grew 
on 58 carbon sources, while BL21(DE3) grew on a larger 
number of carbon sources (91 ea) (Fig. 3B). Only 36 car-
bon sources were utilized by both strains. S12 exhibited 
growth on 22 carbon sources that BL21(DE3) could not 
utilize, including citric acid and β-phenylethylamine. 
Conversely, BL21(DE3) grew on 55 carbon sources, 
including L-arabinose and D-xylose, which S12 did not 
utilize. S12 could grow under aberrant osmolarity and 
pH conditions, whereas BL21(DE3) did not show such 
tolerance, suggesting that S12 has a higher tolerance to 
variations in osmolarity and pH. Furthermore, compared 
to that in BL21(DE3), S12 displayed greater tolerance to 
a wider range of toxic chemical compounds. S12 grew 
in the presence of 17 chemicals (2,2′-dipyridyl, captan, 
carbenicillin, ciprofloxacin, cobalt(II) chloride, enoxa-
cin, furaltadone, nalidixic acid, nitrofurazone, norfloxa-
cin, ornidazole, potassium chromate, protamine sulfate, 
sulfisoxazole, tinidazole, tolylfluanid, and trimethoprim), 
while BL21(DE3) did not. This divergence in tolerance to 

toxic compounds further emphasizes the different meta-
bolic capabilities and adaptabilities of the two gamma-
proteobacteria. The observed differences in nutrient 
utilization and tolerance capacities between S12 and 
BL21(DE3) imply that these two gamma-proteobacteria 
have distinct metabolic profiles, likely resulting from 
variations in their genetic makeup, environmental adap-
tations, or evolutionary histories.

Model refinement and validation
The draft model was revised by comparing its predic-
tions with the PM data. The simulated growth did not 
agree with the experimental growth for 15 of the 190 car-
bon sources tested. False positives were observed among 
these disagreements, where the model predicted growth. 
However, the PM tests showed non-growth for utilizing 
seven carbon sources (2,3-butanediol, acetoacetic acid, 
glycine, L-homoserine, L-phenylalanine, L-threonine, 
and uridine). S12 did not grow on D-ribose in the PM 
test; however, its growth on D-ribose has been reported 
to occur during prolonged cultivation after 240  h [46], 
which agreed with the model prediction. The exchange 
reactions for these carbon sources were removed from 
the model to align with the experimental non-growth 
observations. Conversely, there were false negatives 
where the PM tests showed growth. However, the model 
predicted non-growth for eight carbon sources (tween 
20, tween 40, bromosuccinic acid, mono-methylsucci-
nate, D-ribono-1,4-lactone, butyric acid, L-alanyl-gly-
cine, and tricarballylic acid).

The MetaCyc database [33] was searched for transport 
reactions for these carbon sources, and then their asso-
ciated genes were BLASTP-searched to find homologs 
in the S12 genome. The S12 genome was found to pos-
sess genes associated with utilization of three carbon 
sources (butyric acid, L-alanyl-glycine, and tricarbal-
lylic acid). The remaining five carbon sources were con-
sidered unusable due to the absence of genes associated 
with their catabolic or transport reactions. To transport 
the three carbon sources, exchange reactions (from the 
extracellular environment to the periplasm) and trans-
port reactions (from the periplasm to the cytosol) were 
added to the model (Table S1). For tricarballylate utiliza-
tion, the gene RPPX_RS24160 was considered the tricar-
ballylate transporter (TcuC), and its associated reaction 
(TCBt2pp) was added to the model. This assignment was 
based on the essential role of TcuC in S. enterica growth 
using tricarballylate as the sole carbon source [41]. The 
transporter reaction for L-alanyl-glycine (ALAGLYab-
cpp) was included, and its gene-protein-reaction rule 
was assigned to existing aminopeptide transporter genes. 
Although these genes showed high protein sequence sim-
ilarity to genes in the MetaCyc database (> 94% identity 
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and 100% coverage), however, were not included in the 
automatic reconstruction using RAVEM for unknown 
reason. The transporter reaction for butyric acid (BUT-
t2rpp) was added, and its gene-protein-reaction rule was 
assigned to RPPX_RS22845, which showed homology 
with the E. coli atoE gene (33% identity and 95% cover-
age) encoding a short-chain fatty acid transporter gene.

Regarding utilizing organic solvents as the sole carbon 
source, it was reported that S12 could grow on three sol-
vents (heptanoate, octanol, and styrene). In contrast, it 
did not grow on ten other solvents (benzene, cyclohex-
ane, decane, dimethylphthalate, ethylbenzene, fluoroben-
zene, hexane, p-xylene, propylbenzene, and toluene) [6]. 
The model predictions for the three organic solvents 
(octanol, styrene, and benzene) did not agree with the 
experimental results. To reflect these discrepancies, the 
artificial transport reactions for octanol (OCTANOLpp 
and OCTANOLtex) and styrene (styrenepp) were added 
to the model, based on the experimental evidence [5, 6].

After conducting a thorough manual curation pro-
cess, the final version of the S12 GEM (named iSH1474) 
consisted of 1,474 genes, 1,436 unique metabolites, and 
2,938 metabolic reactions (Table 1). To assess the predic-
tive accuracy of the model, the simulated growths were 
compared with the experimental results for 203 carbon 
sources (190 carbon sources from the PM test (Table S6) 
and 13 organic solvents). The growth predictions using 
iSH1474 qualitatively agreed well with the experimen-
tal observations for 197 carbon sources, with a predic-
tive accuracy of 97.5% (Fig. 4A). This contrasts with the 
predictive accuracy of 88.2% achieved by the KT2440 

iJN1462 model when simulating the same experimental 
data, demonstrating the significance of iSH1474 model in 
accurately predicting S12 phenotype.

The overall quality of iSH1474 was evaluated using 
MEMOTE, a metabolic model-testing tool. MEMOTE 
evaluates different aspects of a metabolic model, and 
the final score is the weighted sum of all individual test 
results [47]. The subsections “Consistency” and “SBO 
annotation” have higher weights of 3 and 2, respectively, 
as they are crucial for the overall quality and utility of the 
model. The other subsections covering annotations of 
metabolites, reactions and genes have lower weights of 
1. The iSH1474 model received the individual scores for 
consistency (56.1%), systems biology ontology (99.9%), 
and annotation of genes (41.3%), reactions (78.6%), and 
metabolites (76.4%). The final score (76.3%) was higher 
than that of the high-quality KT2440 iJN1462 model 
(75.8%) (Fig.  4B). The high quality score indicates that 
iSH1474 is a reliable and accurate representation of S12’s 
metabolic capabilities.

Comparison of quantitative simulations with experimental 
data
To further validate the quality of iSH1474, the predicted 
fluxes were compared with the experimentally reported 
fluxes obtained from 13C-based metabolic flux analysis 
(13C-MFA) of S12 grown in glucose-containing minimal 
medium [48]. The reported S12 fluxes showed a higher 
correlation with the iSH1474-based fluxes (Pearson cor-
relation coefficient r = 0.88), compared to the iJN1462-
based fluxes (r = 0.76) (Fig. 4C and Fig. S3). Both GEMs 
failed to predict flux through pyruvate shunt which con-
verts malate to pyruvate by the malic enzyme (ME2) and 
then to oxaloacetate by pyruvate carboxylase (PC). The 
pyruvate shunt is the characteristics of P. putida to gen-
erate a high level of NADPH crucial for tolerance to oxi-
dative stress [48, 49]. However, as this pathway is energy 
inefficient and the carbon flux control at the PEP-pyru-
vate-oxaloacetate node is complex [50, 51], FBA cannot 
predict the accurate flux distribution through this path-
way [25]. Despite this intrinsic limitation of the FBA, 
the higher predictive accuracy of iSH1474 over iJN1462 
highlights iSH1474 is well suited to predict flux distribu-
tion in the central carbon metabolism of S12.

To assess if iSH1474 can be used to accurately simu-
late the metabolic behavior of S12 in response to the 
environmental change over time, dynamic flux balance 
analysis (dFBA) [52, 53] was performed for the batch 
cultivation of S12 aerobically growing in a minimal 
medium supplemented with glucose as the sole carbon 
source [39] (Fig. 4D). The simulation results qualitatively 
aligned well with the experimental data for both biomass 
(r = 0.99) and glucose concentration (r = 0.98). This high 

Table 1 Comparison of the metabolic network model of P. 
putida strain S12 (iSH1474) and KT2440 (iJN1462)

Metabolic Model iSH1474 (S12) iJN1462 
(KT2440)

Genes 1474 1462

Metabolic reactions 2938 2929

 Enzymatic reactions 1723 1720

 Transport reactions 834 827

 Exchange reactions 350 351

 Demand reactions 31 31

Gene-reaction association 2938 2929

 Gene-associated reactions 2067 2089

 Not gene-associated reactions 831 800

 Spontaneous reactions 40 40

Metabolites 2167 2155

 Cytoplasmic 1339 1341

 Periplasmic 471 465

 Extracellular 357 349

Unique metabolites 1436 1434
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correlation indicates that iSH1474 can effectively predict 
the metabolic adjustments of S12 under varying culture 
conditions.

Gene essentiality analysis
Identifying essential genes provides valuable insights into 
the key components and metabolic pathways vital for 
sustaining growth in an organism. To analyze the candi-
date essential genes in S12 growing aerobically in a mini-
mal glucose medium, simulations of single-gene deletions 
were performed using iSH1474. The predicted 256 essen-
tial genes of S12 (Table S7) were compared with the 262 
essential genes of KT2440 predicted using iJN1462. S12 
and KT2440 shared the predicted 249 essential genes 
(Fig. S4A), indicating a significant overlap of essential 
genes in these strains. However, seven genes were consid-
ered essential only in the S12 GEM. These genes included 

RPPX_RS01240, RPPX_RS10345 (dapF), RPPX_RS11450 
(hisI), RPPX_RS14405, RPPX_RS15620, RPPX_RS23635 
(hemB), and RPPX_RS17065 (tmk) (Fig. S4B). The met-
abolic reactions related to these genes, except for tmk, 
were associated with several genes in KT2440, suggest-
ing that the loss of any of these genes in KT2440 could 
be compensated for by the presence of another gene with 
overlapping functions. The gene tmk, which encodes thy-
midylate kinase, was only present in S12, which is homol-
ogous to a gene in P. aeruginosa PAO1. Conversely, 13 
genes were predicted to be essential only in the KT2440 
GEM. One gene (PP_3959) was absent in S12. Four 
other genes in KT2440 (PP_0321, PP_0527, PP_1995, 
and PP_4862) corresponded to the S12 genes, whose 
associated reactions could be carried out by alternative 
reactions in S12. The metabolic reactions related to the 
remaining eight genes are associated with several genes 

Fig. 4 Model validation. A Comparison of growth predictions using iSH1474 (Simulation) and experimental growths on 190 carbon sources 
contained in the phenotype microarray and 13 organic compounds (Experiment). The number in the parenthesis denotes the number of growth 
predictions using iJN1462. B Comparison of MEMOTE reports of iSH1474 (S12) and iJN1462 (KT2440). C Comparison of flux distribution in the central 
carbon metabolism of S12 from in vivo measurements and in silico predictions. Reported experimental flux values (on the x-axis) are compared 
with the predicted fluxes (y-axis) using iSH1474 (S12) and iJN1462 (KT2440). The flux values are normalized to the experimental glucose uptake rate. 
D Dynamic flux balance analysis using iSH1474 for time profiles of biomass and glucose concentration in aerobic batch growth of S12 on glucose 
as the sole carbon source. Black and white circles denote experimental data of biomass and glucose concentration in the culture medium [39], 
respectively. Solid and dashed red lines represent the model predictions for biomass and glucose concentration, respectively
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in S12. This gene essentiality information provides valu-
able insights into the industrial applications of S12, such 
as the design of metabolically engineered strains.

Simulation of the utilization of organic solvents
Following the completion of the metabolic model con-
struction and subsequent model validation, we used 
iSH1474 to explore metabolic features of S12 that had 
not been previously investigated. To investigate the maxi-
mum theoretical metabolic capacity of S12 growing on 
toxic organic solvents, iSH1474 was simulated for its 
aerobic utilization of three organic solvents (heptanoate, 
octanol, and styrene) as well as glucose for comparison. 
The simulated catabolic routes for these carbon sources 
revealed distinct metabolic pathways (Fig. 5A). All these 
are converted into acetyl-CoA to enter the tricarboxylic 
acid (TCA) cycle. For glucose and styrene, the carbon 
flux was divided between the full TCA cycle and the gly-
oxylate shunt at a ratio of 1:1.1. In contrast, a significant 
proportion of the carbon flux, 82% for heptanoate and 
100% for octanol, flowed through the glyoxylate shunt. 
This indicates that the glyoxylate shunt plays a promi-
nent role in the metabolism of heptanoate and octanol. 
Glucose catabolism was predicted to depend on the 
Entner–Doudoroff (ED) pathway because P. putida lacks 
6-phosphofructokinase, which is a key enzyme in the 
Embden–Meyerhof–Parnas (EMP) pathway, leading to 
the utilization of the ED pathway instead [27, 54]. How-
ever, simulation of the catabolism of heptanoate, octanol, 
and styrene did not involve the ED pathway. Instead, 
it utilized the incomplete EMP pathway to a certain 
extent by generating glyceraldehyde 3-phosphate from 
isocitrate.

The predicted growth rate, ATP production, and 
NAD(P)H regeneration varied depending on the carbon 
source (Fig.  5B). The simulated growth rate was high-
est (0.99   h−1) when glucose was used as the sole carbon 
source, followed by octanol (0.70), heptanoate (0.67), and 
styrene (0.52). NADH regeneration was highest when 
octanol was used as the carbon source. This is because 
the metabolic pathway specific to octanol degradation 
involves several steps that produce NADH as a byprod-
uct. Acetate was predicted to be produced as a byprod-
uct during the catabolism of heptanoate and octanol, 
and not during the catabolism of glucose and styrene. 
Although GEMs inherently cannot take into account 
the solvent tolerance mechanisms of S12, including sol-
vent efflux systems, toxin-antitoxin modules, and altered 
membrane composition [55, 56], these simulations sug-
gest that iSH1474 can provide insights into the metabolic 
potentials and pathways associated with the catabolism 
of toxic organic solvents, which can contribute to a better 

understanding of the metabolism and potential applica-
tions of S12.

Discussion
The metabolic versatility of P. putida strains varies in 
terms of their metabolic reaction content and substrate 
range [25]. As outlined in Fig.  1, the draft S12 meta-
bolic model was constructed through a series of succes-
sive refinements beginning with mapping from GEMs 
of P. putida KT2440 (iJN1462) and P. aeruginosa PAO1 
(iPAE1146) to the S12 genome, alongside incorporat-
ing the result from metabolic reconstruction using the 
RAVEN. This was followed by the adding of S12-spe-
cific reactions through manual effort. Phenotypic dif-
ferences in S12 and KT2440 were assessed using PM 
data and the reported experimental data. This infor-
mation was used to refine the metabolic model in 
order to ensure that it accurately represents the S12’s 
metabolic capabilities. Therefore, both the draft model 
and the final iSH1474 differs largely from iJN1462 in 
terms of genetic and metabolic makeups. The differ-
ences in metabolic gene content between iSH1474 and 
iJN1462 were reflected in the results of gene essential-
ity analysis, which revealed S12- and KT2440-specific 
essential genes. To validate the model, its predictions 
were compared with various experimental data, includ-
ing growth capabilities under different carbon sources, 
13C-MFA data, and batch cultivation data (Fig. 4). This 
study highlights the importance of leveraging exist-
ing knowledge and comparative genome and phenome 
analyses in the reconstruction of strain-specific meta-
bolic models.

iSH1474 was further evaluated using the metabolic 
model-testing suite MEMOTE [47], which assesses the 
quality and comprehensiveness of metabolic models. The 
overall score of iSH1474 was similar to that of the lat-
est KT2440 GEM (Fig.  4B); however, there is still room 
for improvement compared to the most comprehensive 
GEMs of E. coli strains [57, 58]. Due to the insufficient 
external references for annotating genes, metabolites, and 
reactions of S12, the automatic reconstruction alone was 
insufficient. Therefore, extensive manual intervention 
was essential to overcome this limitation and enhance the 
quality of the model. Furthermore, a comparison of the 
model predictions with 13C-MFA data (Fig. 4C) showed 
that the S12 metabolism might be tightly regulated in 
response to environmental and cellular conditions. This 
suggests that integrating regulatory mechanisms, such as 
transcriptional regulation and signaling pathways, into 
the model would greatly enhance its accuracy and predic-
tive capabilities.

Comparative genome and phenome analyses revealed 
that the observed differences in nutrient utilization 
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between S12 and KT2440 (Fig.  3) may be associated 
with genetic differences (Fig.  2). Interestingly, only 
S12 harbors dsdCXA, which could explain the growth 
of S12 using D-serine as the sole carbon source. The 
role of dsdCXA has been demonstrated in detoxifying 

uropathogenic E. coli CFT073 from inhibitory levels of 
the host metabolite D-serine during infection [59]. The 
presence of dsdCXA in S12 could provide a selective 
advantage by allowing the strain to tolerate and utilize 
D-serine in environments with this metabolite.

Fig. 5 Model predictions of growth capability of S12 growing aerobically on heptanoate, octanol, styrene, and glucose. A The simulated 
catabolic routes. Metabolites are in the box, and metabolic reactions are in italic bold. Arrows denote directions of the predicted metabolic fluxes, 
and dashed arrows indicate the multi-step reaction. Metabolites colored above the arrows indicate cofactors of ADP, ATP, NAD(P), and NAD(P)H. The 
metabolites (acetyl-CoA [accoa], glyceraldehyde 3-phosphate [g3p], succinyl-CoA [succoa], and pyruvate [pyr]) duplicated on the map are labeled 
with an asterisk. Each catabolic route is indicated by a different color. B Predicted growth rate, ATP production, and NAD(P)H regeneration according 
to the carbon source utilized. “Reactions for ATP production” and “Reactions for NAD(P)H regeneration” are reactions responsible for > 90% of total 
ATP production and total NAD(P)H regeneration, respectively, in descending order. For flux balance analysis, the upper limits of oxygen and each 
carbon source were set to 18.5 and 10 mmol/gDCW/h, respectively. Abbreviations are given in Table S2
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S12 has excellent tolerance to various organic solvents 
[4, 6]. This unique property and its versatile metabolism 
make S12 a promising host for bioremediation and bio-
technological applications. However, the development 
of bioprocesses utilizing S12 has been limited because of 
the lack of a comprehensive metabolic network model. 
As illustrated in Fig.  5, this model serves as a valuable 
tool for understanding the S12 metabolism and predict-
ing its behavior under different conditions. In addition, 
iSH1474 has great potential for guiding experimental 
studies and identifying targets for metabolic engineering 
to improve industrial applications.

Methods
Identification of metabolic genes and reactions in P. putida 
S12
To identify the metabolic genes and reactions of S12 
present in the published Pseudomonas GEMs, whole 
protein sequences of the genomes of P. putida KT2440 
(RefSeq accession number: NC_002947.4) and P. aer-
uginosa PAO1 (NC_002516.2) were BLASTP-searched 
against those of the P. putida S12 chromosome (NZ_
CP009974.1), using BLOSUM62 as a scoring matrix. As 
S12 is phylogenetically closely related to KT2440 than to 
PAO1, the initial homology searches for S12 genes were 
performed against the KT2440 genome. For any S12 
genes without homologs identified in KT2440, a subse-
quent homology search was performed against the PAO1 
genome. As a result, when S12 genes have homologs both 
in KT2440 and PAO1, the annotations from KT2440 
were assigned to their corresponding S12 homologs. If 
the percentage of amino acid residues that are identical 
in the aligned region (percent identity) was over 90% and 
the aligned region was over 90% of the query length, the 
pair of sequences was considered a homolog.

To identify metabolic genes and reactions in S12 that 
are not present in iJN1462 and iPAE1146, the RAVEN 2.0 
toolbox using the MetaCyc-based reconstruction module 
[32] was used for the automated metabolic reconstruc-
tion of S12. Genes with potential metabolic roles were 
further searched using BLASTP against the NCBI NR 
database with a cut-off query coverage of 90% and 40% 
identity, and their associated reactions were retrieved 
from the MetaCyc database. The maximum E-value for 
the search results was 2E-21.

Calculation of GAM and NGAM
According to Pirt’s equation [60], the maximum growth 
yields and the maintenance coefficients can be calcu-
lated from linear regression: 1/Y = (m/μ) + (1/YG), where 
Y is the observed growth yield, YG is the maximum 
growth yield, μ is the observed specific growth rate, and 
m is the maintenance coefficient which is the specific 

rate of substrate consumption required for maintenance 
purpose. Previously, Isken et  al. [39] had determined 
the linear regression values, using data from glucose-
limited chemostat cultures of P. putida S12 growing 
aerobically on a minimal glucose medium: 1/Ypro-

tein = (0.023/D) + 3.00, where Yprotein is the protein yield (g 
protein/g glucose) and D is the dilution rate equivalent to 
the observed specific growth rate (μ). In this equation, the 
maintenance coefficient was 0.023 g glucose/g protein/h, 
and maximum protein yield was 1/3 g protein/g glucose. 
Considering that protein constitutes 60% of the total 
DCW in P. putida S12 [39], values of m and 1/YG were 
converted as in the units of g dry cell weight (DCW) and 
molar glucose. These converted values were used to gen-
erate another form of Pirt’s equation [60]: q = μ/YG + m 
or q = 10 μ + 0.077, where q is the specific rate of glucose 
consumption (mmol/gDCW/h). NGAM was predicted 
by running FBA simulation with iSH1474 by setting glu-
cose uptake rate as 0.077 mmol glucose/gDCW/h and the 
reaction for ATP maintenance requirement (ATPM) as 
an objective function. This flux represents the ATP con-
sumption even when the cell is not growing. The calcu-
lated NGAM (1.67 mmol ATP/gDCW/h) used to setting 
lower bounds of ATPM reaction in iSH1474. For GAM 
calculation, FBA was performed varying GAM values in 
the biomass equation to find the GAM value leading to 
the closest fit of the experimental plot of μ vs. q (Equa-
tion 3) (Fig. S1). The calculated GAM (42.31 mmol ATP/
gDCW) was integrated to the model by biomass reaction.

Phenotypic microarray test
P. putida strains S12 and KT2440 were purchased from 
the American Type Culture Collection. Preconfigured 
96-well plates (Biolog Inc., Hayward, CA), known as 
PMs, contained various types of carbon (PM1 and PM2), 
nitrogen (PM3), phosphorus, sulfur (PM4), and auxo-
trophic supplements (PM5 to PM8). The PM9 and PM10 
test stresses were molarity and pH, respectively. PM11 to 
PM20 contained inhibitory compounds, such as antibiot-
ics, antimetabolites, and other inhibitors. Cells were cul-
tured overnight at 37 °C on a BUG + B (Biolog universal 
growth medium + 5% sheep blood) agar plate. Colonies 
were picked from the agar surface and suspended in an 
inoculating fluid (IF) containing tetrazolium violet indi-
cator dye. IF-0 media were used for plates PM1 to PM8 
and IF-10 for plates PM9 to PM20. Sodium succinate was 
added with ferric citrate to the inoculation solutions of 
PM3–PM8. All PM plates were inoculated with cell sus-
pensions at 100 µL/well and incubated at 37 °C for 48 h 
in an OmniLog incubator (Biolog Inc.). PM tests for each 
strain were performed in duplicate. PM data were ana-
lyzed using the opm package in R [61].
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Flux balance analysis
The FBA was performed as described previously [58] 
using the Python package COBRApy [37] and GLPK 
(https:// www. gnu. org/ softw are/ glpk/) as the linear pro-
gramming solver. The default objective function was 
the maximum growth rate of the biomass equation for 
iSH1474. To simulate aerobic growth, the upper limit of 
the oxygen uptake rate was set at 18.5 mmol/gDCW/h.

To simulate cell growth on the various carbon sources 
contained in PM1 and PM2, the composition of the 
defined medium used in the PM plates was retrieved 
from the BioCyc website [62] and used as the upper 
limit of the uptake rate of the corresponding compo-
nent. The maximum uptake rate of each carbon source 
was set at 10 mmol/gDCW/h. A substrate was consid-
ered unutilized if the simulated growth rate was less 
than 5% of the growth objective value calculated for 
the cell growth on glucose. The flux distribution using 
heptanoate, octanol, styrene, or glucose as the sole car-
bon source was simulated using in silico M9 minimal 
medium with its maximum uptake rate of 10  mmol/
gDCW/h.

To identify the essential genes, the maximum growth 
rates of single-gene deletions were simulated using 
an in silico M9 minimal medium [25] with a maxi-
mum glucose uptake rate of 6  mmol/gDCW/h. This 
was achieved by removing all the metabolic reactions 
associated with each gene from the metabolic model. 
A gene was considered essential if its removal from 
the model reduced the growth rate to less than 5% of 
the growth objective value calculated for the wild-type 
parental strain.

dFBA was performed using the “dynamicFBA” function 
in the COBRA toolbox v3.0 [63] running in MATLAB 
v9.6. The concentrations of glucose and biomass in the 
starting culture medium were set to 10 mM and 0.01 g/L, 
respectively. The maximum glucose uptake rate was set at 
6.5 mmol/gDCW/h.
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