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Abstract 

Background  Nonspecific orbital inflammation (NSOI) is an idiopathic, persistent, and proliferative inflammatory 
condition affecting the orbit, characterized by polymorphous lymphoid infiltration. Its pathogenesis and progression 
have been linked to imbalances in tumor metabolic pathways, with glutamine (Gln) metabolism emerging as a critical 
aspect in cancer. Metabolic reprogramming is known to influence clinical outcomes in various malignancies. How-
ever, comprehensive research on glutamine metabolism’s significance in NSOI is lacking.

Methods  This study conducted a bioinformatics analysis to identify and validate potential glutamine-related mole-
cules (GlnMgs) associated with NSOI. The discovery of GlnMgs involved the intersection of differential expression anal-
ysis with a set of 42 candidate GlnMgs. The biological functions and pathways of the identified GlnMgs were analyzed 
using GSEA and GSVA. Lasso regression and SVM-RFE methods identified hub genes and assessed the diagnostic 
efficacy of fourteen GlnMgs in NSOI. The correlation between hub GlnMgs and clinical characteristics was also exam-
ined. The expression levels of the fourteen GlnMgs were validated using datasets GSE58331 and GSE105149.

Results  Fourteen GlnMgs related to NSOI were identified, including FTCD, CPS1, CTPS1, NAGS, DDAH2, PHGDH, 
GGT1, GCLM, GLUD1, ART4, AADAT, ASNSD1, SLC38A1, and GFPT2. Biological function analysis indicated their involve-
ment in responses to extracellular stimulus, mitochondrial matrix, and lipid transport. The diagnostic performance 
of these GlnMgs in distinguishing NSOI showed promising results.

Conclusions  This study successfully identified fourteen GlnMgs associated with NSOI, providing insights into poten-
tial novel biomarkers for NSOI and avenues for monitoring disease progression.
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Introduction
Non-specific orbital inflammation (NSOI) is a benign 
inflammatory condition of the orbit that lacks a specific 
infectious or local etiology. It accounts for 6%-16% of 
all ocular lesions and 11% of orbital malignancies [1, 2]. 
NSOI predominantly affects middle-aged individuals, 
particularly women. The precise pathophysiological basis 
of NSOI remains uncertain. Some studies have suggested 
associations with Streptococcal pharyngitis, viral upper 
respiratory infection, or other autoimmune conditions 
such as rheumatologic disease, multifocal fibrosis, and 
Crohn’s disease [3, 4]. NSOI manifests a spectrum of clini-
cal presentations, ranging from lacrimal gland inflam-
mation, known as dacryoadenitis, to myositis affecting 
one or several extraocular muscles, alongside a cadre of 
other less typical symptoms [5]. Systemic corticoster-
oids, by virtue of empirical evidence, are entrenched as 
the standard therapeutic recourse, yet their prolonged 
administration is marred by a well-documented profile 
of adverse effects [6]. Evenwith efficacious corticosteroid 
interventions, the propensity for recurrence eclipses 50%, 
underscoring a pressing need for enhanced understand-
ing of the molecular intricacies of NSOI [7]. Such insights 
hold the key to forging novel therapeutic avenues, which 
are pivotal for staving off relapse and enhancing the prog-
nostic landscape for patients. This imperative drives the 
scientific quest to elucidate the underpinnings of NSOI, a 
quest that promises to recalibrate the management para-
digms for this enigmatic condition.

Metabolic processes are the cornerstone of vitality 
and proliferation within the biosphere, underpinning 
the survival and propagation of all biotic entities. In the 
realm of oncology, the concept of metabolic reprogram-
ming has emerged as a critical facilitator of neoplastic 
cell proliferation and resilience. Contemporary insights 
reveal that oncogenic transformation precipitates the 
genesis of discrete metabolic signatures within tumorous 
cells, which in turn exerts profound modulatory effects 
on the tumor microenvironment (TME). The TME rep-
resents a labyrinthine ecosystem, comprising a diverse 
array of cellular entities. This environment is frequently 
marred by suboptimal oxygen and nutrient availability, a 
consequence of an aberrant or underdeveloped vascular 
network [8]. With the advent of refined scientific com-
prehension, the significance of the infiltrating non-malig-
nant immune contingents within the TME has been cast 
into the spotlight, heralding a new paradigm in cancer 
research. Accruing evidence underscores a deep entan-
glement between the immune response and salient shifts 
in tissue metabolism, encompassing nutrient scarcity, 
augmented oxygen consumption, and the biogenesis of 
reactive nitrogen and oxygen species [9]. Concurrently, 
a plethora of microenvironmental factors are known to 

exert influence over the maturation and functional orien-
tation of immune cells. This intricate interplay alludes to 
the potential of metabolic modulation as a strategic axis 
to potentiate the therapeutic efficacy of immune-based 
interventions, presenting a frontier of translational sig-
nificance in the ongoing crusade against cancer [10].

Glutamine (Gln), being the most abundant circulat-
ing amino acid, is rapidly taken up by cultured tumor 
cells. It plays a crucial role in cellular aerobic glycoly-
sis by supporting tricarboxylic acid (TCA) cycle flux or 
serving as a citrate source for reductive carboxylation in 
lipid synthesis. Moreover, glutaminolysis contributes to 
cell survival by reducing oxidative stress and maintain-
ing mitochondrial membrane integrity [11]. M2 mac-
rophages heavily rely on Gln metabolism, while reduced 
Gln metabolism can shift macrophages towards the pro-
inflammatory M1 phenotype [12]. Thus, targeting Gln 
metabolism may potentially reprogram tumor-associated 
macrophages from M2 to M1, thereby enhancing the 
anti-tumor inflammatory immune response. Gln metab-
olism also impacts Th1 cell differentiation and effector T 
cell activation, suggesting that modulating Gln metabo-
lism could reshape the tumor microenvironment (TME) 
and improve the efficacy of immunotherapies. Alzhei-
mer’s disease is typified by the aberrant assembly of 
inflammasomes-substantial multiprotein structures con-
vened by specific pattern recognition receptors. These 
inflammasomes orchestrate the formation of membrane 
breaches and catalyze the maturation of proinflamma-
tory cytokines, culminating in pyroptosis-a fiery and 
inflammatory demise of cells. While orchestrating a 
strategy that simultaneously targets Gln metabolism and 
immunotherapy emerges as a beacon of hope for NSOI, 
the intricacies of Gln metabolism within the scope of 
immune recognition and immunotherapeutic interven-
tions remain enigmatic [13]. This study embarked on 
a methodical appraisal of GlnMgs and their interplay 
with immunotherapy in the NSOI context. The resulting 
insights delineate a novel therapeutic vista targeting puri-
nosome biogenesis and Gln metabolic pathways. Despite 
these advances, the explicit role of Gln metabolism in 
the modulation of immunogenicity and the orches-
tration of immunotherapy for NSOI warrants a more 
granular probe. Therefore, we undertook this investiga-
tion to furnish a holistic assessment of GlnMgs and their 
nexus with immunotherapy in NSOI, a pursuit poised to 
unravel novel corridors for clinical innovation.

The integration of bioinformatics methodologies with 
the prowess of high-throughput [14]. data analytics 
has been a cornerstone in the dissection of functional 
genomic constellations across a spectrum of disease par-
adigms, providing a fertile ground for elucidating com-
plex molecular mechanisms [15]. The advent of expansive 



Page 3 of 16Wu et al. BMC Genomics  (2024) 25:71	

transcriptomic sequencing repositories, coupled with 
the clinical delineations proffered by the NSOI Initiative, 
affords an unprecedented opportunity to interrogate the 
transcriptional alterations and the interlinked molecular 
cascades germane to NSOI. The deployment of such bio-
informatic explorations has rendered new vistas into the 
pathobiological intricacies and the foundational mecha-
nisms operative in NSOI, offering a multi-dimensional 
understanding of its nature [16, 17]. Despite the rich 
potential of such approaches, the involvement of GlnMgs 
within the context of NSOI has yet to be systematically 
scrutinized through the bioinformatics lens. Anchor-
ing on this gap, the present study endeavored to inter-
rogate the NSOI-related GEO dataset with a focused 
aperture on GlnMgs. The aim was to illuminate their 
conjectural involvement in NSOI, enriching the existing 
compendium of knowledge as delineated in Fig. 1 of our 
exposition.

Materials and methods
The methodologies proposed by Zi-Xuan Wu et  al. in 
2023 were employed in this study [18]. NSOI patients’ 
data were gathered from GEO databases, and the GlnMgs 
were then matched to perform difference analysis and 
risk model creation, respectively. GSE132903 was utilized 

as the main body, while GSE63060 was used to validate 
the model with excellent grouping, and GlnMgs associ-
ated with NSOI patient prognosis were obtained. The 
functions associated with GlnMgs were then identified 
using GO, KEGG, and GSEA studies on numerous data-
bases. Finally, immune cells, function, and RNA altera-
tions were investigated.

Raw data
GEO was searched for mRNA expression. Series: 
GSE58331 and GSE105149. Platform: GPL570-55999. 
GSE58331 and GSE105149 were used as the trian and 
test groups respectively. Strategy for searching (’eye’ 
[MeSH] mRNA [All Fields] and normal) AND (’Homo 
sapiens’ [Organism] AND ’Non-coding RNA profiling by 
array’ [Filter]). A total of 79 GlnMgs were included from 
the MSigDB (Table S1).

Analysis of Differentially Expressed Genes (DEGs)
Perl (https://​github.​com/​Perl) matched and sorted tran-
scription data to acquire exact mRNA data. The IDs were 
converted into gene names. After the data standardiza-
tion of GSE58331 using the normalize Between Arrays 
function in the “limma” package, PCA was conducted 
by using the “factoextra” package. The Differentially 

Fig. 1  Framework. The data of NSOI patients were obtained from GEO databases, and then the GlnMgs were matched to carry out difference 
analysis and risk model construction, respectively. GSE132903 was used as the main body and GSE63060 was used to verify the model with good 
grouping, and GlnMgs related to the prognosis of NSOI patients were obtained. Then, GO, KEGG and GSEA analyses were performed with multiple 
databases to obtain the functions related to GlnMgs. Last, the immune cells, function and RNA changes were analyzed

https://github.com/Perl
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expressed genes (DEGs) between NSOI and controls 
were analyzed. The DEGs were screened with the criteria 
of |Fold2FC|>1 and p<0.05. To show significantly deregu-
lated genes, a heat map was created using ggplot2 and the 
"ComplexHeatmap" package. Pearson’s correlation coeffi-
cient was employed to analyze the statistically significant 
and highly correlated genes within modules using the 
correlation analysis provided by the corrplot package.

GO and KEGG Analysis
The biological pathways associated with the DEGs were 
then examined using Gene Ontology (GO). Biologi-
cal processes (BP), molecular functions (MF), and cel-
lular components (CC) controlled by the differentially 
expressed genes participating in autophagy were further 
investigated using R software, clusterProfiler, org.Hs.eg.
db, enrichplot, and ggplot2 package based on KEGG 
data.

Model construction and analysis of immune cell infiltration
For model construction, the glmnet package was 
employed for Lasso regression analysis along with cross-
validation. Additionally, the support vector machine 
recursive feature elimination algorithm (SVM-RFE) 
was utilized to build a machine learning model using 
the e1071 package. SVMs epitomize a class of general-
ized linear classifiers that operate under the paradigm of 
supervised learning, with the primary objective of exe-
cuting binary classification on datasets. The architecture 
of SVMs incorporates the hinge loss function as a com-
putational tool to quantify empirical risk. In a quest for 
optimizing structural risk, SVMs employ regularization 
terms within their resolution framework, thereby endow-
ing these classifiers with inherent sparsity and robust-
ness. Moreover, SVMs are adept at transcending the 
linearity barrier by leveraging kernel methods, situating 
them prominently within the sphere of kernel learning 
methodologies. Cross-validation was used to assess the 
model’s error and accuracy. Furthermore, the significance 
of the feature genes was ranked using the Lasso and SVM 
models. Immune cell composition was analyzed using the 
CIBERSORT method.

GSEA and GSVA
GSEA and GSVA was used to find related functions and 
pathway variations in several samples, and Perl were 
used to import information. The associated score and 
graphs were wont to verify whether the functions and 
routes within the numerous Risk groups were dynamic. 
Every sample was classified as ’H’ or ’L’ depending on 
whether it had been a high-risk cluster of prognosis-
related GlnMgs. The associated scores and visualiza-
tions were employed to assess the dynamic activities 

and pathways within different risk subcategories. R 
was employed to investigate the impact of differentially 
expressed GlnMgs on BP, MF, and CC, and pathways.

Drug‑gene interactions
As bioinformatics advancements have led to the identi-
fication of potential biomarkers, it has become increas-
ingly important to develop biological models and 
discover effective biomarkers for diagnosing diseases. 
However, it is crucial to understand how to effectively 
utilize these biomarkers in a clinical setting. Therefore, 
predicting drug responses based on informative mark-
ers will be vital for future prevention and treatment 
strategies for NSOI. Validated biomarkers serve as 
reference points for targeted therapies. Thus, accurate 
drug prediction is of utmost importance. In this study, 
the DGIdb (https://​dgidb.​genome.​wustl.​edu/) database 
was utilized to predict drug interactions with the iden-
tified hub genes.

Identification of common miRNAs and lncRNAs
In the intricate tapestry of genetic regulation, non-
coding RNA transcripts, inclusive of microRNAs (miR-
NAs) and long non-coding RNAs (lncRNAs), emerge 
as pivotal orchestrators. MiRNAs, in their capacity to 
modulate gene expression, wield influence through 
mechanisms that encompass both the augmentation 
and attenuation of mRNA degradation and translation. 
LncRNAs, distinguished as non-coding RNA entities 
typically spanning in the vicinity of 200 nucleotides, 
preside over a spectrum of physiological and bio-
chemical cellular phenomena, mediating chromosomal 
modifications, transcriptional activation, and intricate 
networks of interference.The recent proliferation of 
studies in this domain has cast light upon a complex 
interplay between miRNAs and lncRNAs, revealing a 
competitive landscape where these entities vie for bind-
ing affinities with a myriad of regulatory targets. Within 
this competitive arena, certain competitive endogenous 
RNAs (ceRNAs) have surfaced, distinguished by their 
ability to sequester miRNAs, thus unfolding a novel 
dimension of lncRNA functionality.

With this backdrop, our investigation seeks to delve 
into the intricacies of these interactions, probing the 
question of whether miRNAs and lncRNAs share com-
mon regulatory motifs and partake in parallel devel-
opmental trajectories within the context of TED. To 
navigate this inquiry, we have enlisted the computational 
prowess of Perl software, aiming to illuminate the shared 
pathways and regulatory networks that intertwine miR-
NAs and lncRNAs in a dance of genetic regulation.

https://dgidb.genome.wustl.edu/
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Construction of a network of common 
mRNA‑miRNA‑lncRNA Genes
In the quest to unravel the intricate regulatory networks 
underpinning common miRNAs and lncRNAs, our study 
delved into the wealth of data harbored in miRTarBase 
and PrognoScan—two empirically validated reposito-
ries that serve as treasuries of information on miRNA-
lncRNA-target gene interactions. These databases stand 
as pillars in the scientific community, providing a robust 
foundation for the exploration of molecular relation-
ships. Employing a meticulous approach, we crafted a 
regulatory network by forging connections between the 
target genes of the miRNA-mRNA-lncRNA triad and 
the shared genetic components identified within the 
NSOI landscape. This intricate web of interactions was 
subsequently brought to life through visualization using 
Cytoscape software, a tool renowned for its ability to 
translate complex data into comprehensible and informa-
tive graphical representations.

Results
Elucidation of differentially expressed genes 
and dimensionality reduction via principal component 
analysis
In the intricate biological tapestry of GlnMgs, a subset of 
42 was meticulously analyzed. This exploration unveiled a 
panoply of significant fluctuations in expression profiles. 
A sophisticated gene clustering algorithm artfully demar-
cated the distinct expression topologies characteristic of 

the treated cohorts as opposed to the controls. Within 
the treatment paradigm, a suite of GlnMgs emerged as 
prominent, namely CTPS1, ASNS, SLC38A1, SLC39A8, 
AGMAT, and GGT1. Contrasting these, the control 
constellation comprised OAT, GMPS, GLUD2, GCLC, 
GLUD1, GCLM, and PFAS, among others, delineating a 
unique gene expression milieu (Fig. 2a). Complementing 
the gene expression profiling, a correlation analysis was 
meticulously carried out among the GlnMgs, culminat-
ing in the construction of a comprehensive correlation 
matrix. This matrix serves as a graphical abstract of the 
intricate interplay of gene expression, providing a clear 
visual representation of the relationships between the 
genes studied (Fig. 2b; Table S2).

Functional enrichment and pathway analysis of glutamine 
metabolism genes
The comprehensive GO enrichment analysis has meticu-
lously delineated a consortium of 515 pivotal target genes 
within the realm of GlnMgs, which are stratified across 
three fundamental categories: BP, MF, and CC. The find-
ings in the MF domain were predominantly aligned with 
an array of transporter activities, including anion trans-
membrane transporter activity (GO:0008509), active 
transmembrane transporter activity (GO:0022804), and 
secondary active transmembrane transporter activ-
ity (GO:0015291). This indicates a significant role 
for GlnMgs in the facilitation of molecular traffick-
ing across cellular membranes. In the realm of CC, the 

Fig. 2  Principal Component Analysis. a Analysis of difference (green: low expression level; red: high expression level) of the genes participating 
in autophagy between the normal (N, brilliant blue) and the NSOI tissues (T, red). P values were showed as:*P < 0.05; **P < 0.01; ***P < 0.001). b 
Analysis of correlation
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enrichment was notably concentrated within the mito-
chondrial matrix (GO:0005759), highlighting the central-
ity of mitochondria in glutamine metabolism. This was 
alongside significant associations with the basal part of 
the cell (GO:0045178) and the basal plasma membrane 
(GO:0009925), underscoring the structural compo-
nents critical for cellular function and integrity. Within 
the BP category, the response to extracellular stimuli 
(GO:0009991), lipid transport (GO:0006869), and the 
metabolic processing of purine-containing compounds 
(GO:0072521) were particularly highlighted, reflect-
ing the diverse and crucial roles that GlnMgs execute in 
the cellular response to the external environment, lipid 
dynamics, and nucleotide metabolism. Supplementary 
to the GO analysis, KEGG pathway enrichment offered 

a more nuanced insight, with upregulated genes pre-
dominately orchestrating the metabolic symphony of 
Arginine and proline (hsa00330), Alanine, aspartate, and 
glutamate (hsa00250), Glutathione (hsa00480), and the 
interlinked pathways of Glycine, serine, and threonine 
(hsa00260) metabolism. These findings, depicted in Fig. 3 
and Tables  S3a-b, underscore the multi-faceted roles of 
GlnMgs in maintaining cellular homeostasis and meta-
bolic plasticity.

Model construction synthesis of a predictive gene 
signature model
Within the quantitative tapestry of gene analysis, we have 
engineered a prognostic gene signature utilizing the pre-
cision of LASSO logistic regression coupled with Cox 

Fig. 3  For GlnMgs, GO, and KEGG analyses were performed. a Bubble graph for GO enrichment (the bigger bubble means the more genes 
enriched, and the increasing depth of red means the differences were more obvious; q-value: the adjusted p-value); The GO circle shows the scatter 
map of the logFC of the specified gene. b Barplot graph for KEGG pathways (the longer bar means the more genes enriched, and the increasing 
depth of red means the differences were more obvious); The KEGG circle shows the scatter map of the logFC of the specified gene. The higher 
the Z-score value indicated, the higher expression of the enriched pathway
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proportional hazards regression analysis. This dual ana-
lytical approach has been calibrated to pinpoint an opti-
mal penalization parameter that refines the gene selection 
process, an endeavor that is graphically encapsulated in 
Fig. 4a-b. To rigorously assess the predictive prowess and 
stability of our constructed model, we enlisted the aid of 
a machine learning algorithm-SVM-RFE. This model has 
exhibited commendable predictive accuracy, manifest-
ing an impressive score of 0.886 and a concomitant error 
rate of a mere 0.114, as depicted in Fig. 4c-d. This robust 
validation underpins the potential clinical applicabil-
ity of our model. The analytical rigor was further inten-
sified by the intersection of fourteen GlnMgs discerned 
through both LASSO and SVM-RFE methodologies, 
which corroborated a remarkable consistency, detailed in 
Fig. 4e. In a focused examination of the model utilizing 
these 14 hub genes, the diagnostic veracity was quanti-
fied through ROC values, yielding high accuracy for indi-
vidual genes: FTCD (AUC = 0.678), CPS1 (AUC = 0.792), 
CTPS1 (AUC = 0.725), NAGS (AUC = 0.661), DDA 
H2 (AUC = 0.702), PHGDH (AUC = 0.727), GGT1 
(AUC = 0.681), GCLM (AUC = 0.798), GLUD1 (AUC = 
 0.857), ART4 (AUC = 0.668), AADAT (AUC = 0.629), 
ASNSD1 (AUC = 0.757), SLC38A1 (AUC = 0.793), 
GFPT2 (AUC = 0.793), which are visually represented 
in Fig.  4f. The clinical relevance and robustness of our 
model were further substantiated through its applica-
tion to an independent dataset (GSE58331), in which it 
achieved an optimal AUC of 1.000 within a 95% confi-
dence interval, as illustrated in Fig.  4g. This pinnacle of 

predictive performance indicates an exceptional level of 
accuracy and robustness of our model, offering a power-
ful tool for the prognostication based on GlnMgs signa-
tures (Table S4).

Delineation of key genes via gene set enrichment analysis
In an endeavor to pinpoint the pivotal genes instrumen-
tal to NSOI, we embarked on a meticulous review of the 
literature coupled with a sensitivity analysis of hub genes 
within our predictive model. This approach heralded the 
identification of GGT1 and GLUD1 as candidates of par-
amount relevance to the pathophysiology of NSOI. GO 
analysis illuminated the role of GGT1 in a trio of biologi-
cal processes: it is a key player in the biosynthesis of his-
tamine pivotal to the inflammatory response, engages in 
the post-translational modification of proteins through 
nitrosylation, and is instrumental in the immune system’s 
recognition of bacterial molecules. Conversely, GLUD1 
emerged as a regulatory sentinel in several critical cellu-
lar processes. It governs the initiation of translation via 
the phosphorylation of eif2 alpha, a crucial regulatory 
point for protein synthesis. It also modulates the stimula-
tory signaling pathways mediated by Fc receptors, and is 
essential for the import of nuclear localization sequence 
(NLS)-bearing proteins into the nucleus, as graphically 
represented in Fig.  5a. Parallel insights were garnered 
from KEGG pathway analysis. GGT1 was found to be 
primarily linked with pathways integral to protein export, 
RNA degradation, and the ubiquitin-mediated proteo-
lytic system. GLUD1, meanwhile, was associated with the 

Fig. 4  The development of the GlnMgs signature. a Regression of the 14 NSOI-related genes using LASSO. b Cross-validation is used in the LASSO 
regression to fine-tune parameter selection. c-d Accuracy and error of this model. e Venn. f AUC of 14 hub genes. g AUC of train group



Page 8 of 16Wu et al. BMC Genomics  (2024) 25:71

regulation of the mammalian circadian rhythm, protein 
export mechanisms, and components of the spliceosome. 
These pathways underscore the multifaceted roles of 
these genes in cellular function and systemic regulation 
(Fig. 5b; Table S5).

Immune cell landscape analysis in NSOI
The convoluted interplay within the immune microen-
vironment is increasingly recognized as a pivotal deter-
minant in the pathogenesis of NSOI. To dissect this 
complexity, we employed violin plots to elucidate the 
differential expression patterns of immune cell popu-
lations between the affected and control cohorts. The 
results underscored a pronounced expression of B cells 
naive, Plasma cells, CD4 naive T cells, T follicular helper 
cells, Macrophages M0, and activated Mast cells within 
the treatment group, suggestive of an active immune 
response. In stark contrast, the immune milieu of the 
control group was characterized by an augmented pres-
ence of B cells memory, activated NK cells, M2 mac-
rophages, and resting Mast cells. These findings, captured 

in Fig.  6a, reflect the dynamic nature of the immune 
landscape in NSOI. To further unravel the interactions 
between these immune cells and our previously identi-
fied gene signatures, we conducted a correlation analy-
sis. This analysis sought to demystify the associations 
that may influence the behavior of immune cells within 
the context of NSOI. The correlation heatmap presented 
in Fig. 6b reveals these intricate relationships, offering a 
window into the potential mechanisms driving immune 
cell function and interaction in the disease state.

Gene Set Variation Analysis (GSVA)
Within the framework of GO analysis, GGT1 was iden-
tified as a key regulator of several biological processes, 
notably cell differentiation implicated in phenotypic 
switching. This gene is also pivotal in the srp-dependent 
co-translational protein targeting to membranes, a pro-
cess essential for signal sequence recognition, and plays 
a role in the formation of the cellular signal recognition 
particle component. In parallel, GLUD1 was highlighted 
for its integral role within the cellular troponin complex, 

Fig. 5  GSEA of Analysis in GGT1 and GLUD1. a GO. b KEGG
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a critical component of muscle contraction mechanisms. 
Additionally, it is involved in the metabolic processing 
of xenobiotics through glucuronidation, and the metab-
olism of flavonoids, a class of compounds with vari-
ous biological activities. The molecular function of ccr6 
chemokine receptor binding further implicates GLUD1 
in the modulation of immune responses, as depicted in 
Fig.  7a. The insights extend into KEGG pathway analy-
sis, where GGT1 was associated with crucial metabolic 
pathways such as oxidative phosphorylation and the bio-
synthesis of branched-chain amino acids (valine, leucine, 
and isoleucine). This gene also plays a role in the regula-
tion of the proteasome, a complex responsible for protein 
degradation. GLUD1’s involvement is marked in gly-
cosphingolipid biosynthesis, specifically in the lacto and 

neolacto series, which have implications in cell–cell rec-
ognition and signaling. It also plays a role in the genetic 
predispositions to MODY and interacts within the intri-
cate network of neuroactive ligand-receptor interactions, 
suggesting a broad spectrum of influence in metabolic 
and signaling pathways, as shown in Fig. 7b.

Pharmacogenomic interactions between candidate drugs 
and hub genes
In a bid to elucidate potential therapeutic avenues, our 
analysis forecasted a network of interactions between 
a repertoire of pharmacological agents and the four-
teen hub genes delineated in our study. Among these, 
twenty-three drugs emerged as prime candidates, with 
the potential to modulate the gene expression signature 

Fig. 6  Expression of Immune cells. a Expression of immune cells in different clusters. b Correlation between GlnMgs and immune cells



Page 10 of 16Wu et al. BMC Genomics  (2024) 25:71

characteristic of NSOI. Noteworthy among these are 
CARGLUMIC ACID, METHIONINE, TAMOXIFEN, 
DITIOCARB, PIROXICAM, and DICLOFENAC, each 
presenting a unique profile of interaction with our genes 
of interest. To render these complex interactions com-
prehensible, we harnessed the capabilities of Cytoscape 
3.7.1, a platform for visualizing molecular interaction 
networks. The resulting visual schema, Fig.  8, offers an 
intuitive representation of the drug-gene interplay, lay-
ing the groundwork for further exploration into the phar-
macogenomics of NSOI and providing a springboard for 
future targeted therapeutic strategies, as cataloged com-
prehensively in Table S6.

Elucidation of non‑coding RNA networks and integration 
with miRNA‑lncRNA‑gene interactions
In our comprehensive analysis, we mined three exten-
sive databases to identify non-coding RNAs implicated 
in the molecular tapestry of NSOI. This search yielded a 
substantial cohort of 293 microRNAs (miRNAs) and 334 
long non-coding RNAs (lncRNAs) posited to be involved 
in the pathogenesis of NSOI, detailed within Table S7a-
b. These databases include miRanda [19], miRDB [20], 
and TargetScan [21]. When the corresponding database 
matched the relevant miRNA, the score was marked 
as 1. It can be seen that when all three databases can 

be matched, it is 3 points. The miRNA was matched by 
spongeScan database [22] to obtain the corresponding 
lncRNA data. The miRNA-lncRNA-gene network was 
constructed by intersecting these non-coding RNAs with 
the shared genes obtained through Lasso regression and 
SVM-RFE. The resulting miRNA-lncRNA-gene network 
represents a robust framework comprising 254 lncRNAs, 
235 miRNAs, and a core set of shared genes, including 
twelve notable hub genes: SLC38A1, GCLM, GLUD1, 
NAGS, AADAT, GFPT2, CPS1, ASNSD1, PHGDH, 
DDAH2, GGT1, and FTCD. The architectural represen-
tation of this network is showcased in Fig.  9, offering a 
multidimensional perspective on the regulatory axes 
that may underlie the complexity of NSOI. This network 
serves as a nexus for understanding the multifaceted 
interactions that span the coding and non-coding realms, 
shedding light on potential regulatory cascades that 
could be harnessed for therapeutic interventions.

Empirical verification of central genes
The imperative of substantiating the predictive model’s 
integrity led us to employ the GSE105149 dataset for a 
rigorous validation exercise. Within the constellation 
of fourteen GlnMgs that were posited as central in our 
model, GGT1 and GLUD1 emerged with pronounced 
differential expression patterns in the GSE105149 dataset 

Fig. 7  GSVA of Analysis in GGT1 and GLUD1. a GO. b KEGG
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analysis. This empirical evidence corroborates their pro-
posed significance in the pathobiology of NSOI, as illus-
trated in Fig. 10. The consistency of these findings across 
independent datasets enhances the credibility of these 
biomarkers, underscoring their utility in deciphering the 
molecular underpinnings of NSOI.

Discussions
NSOI emerges as a clinically enigmatic entity, presenting 
typically with unilateral, painful orbital edema devoid of 
identifiable viral or systemic etiologies, and harbors the 
potential for optic nerve compromise. The molecular 
intricacies that underpin this idiopathic ocular affliction 
remain largely enshrouded in uncertainty [23]. Nonethe-
less, it is becoming increasingly recognized that the regu-
lation of gene expression may hold the key to unraveling 
the pathophysiological conundrums of NSOI. Gln, 
lauded as one of the most profuse nonessential amino 
acids within the circulatory milieu, assumes pivotal roles 
across a plethora of biosynthetic conduits in the realm of 
proliferating cellular populations [24]. It is esteemed for 
its role as a nitrogen donor in the biosynthesis of purines 
and pyrimidines and serves as an indispensable substrate 
for the synthesis of proteins and glutathione. Moreover, 
Gln-derived α-ketoglutarate (α-KG) is a crucial input 
for the TCA cycle, an essential metabolic pathway that 

is commandeered by cancerous cells engaging in glu-
taminolysis to maintain an uninterrupted supply of vital 
biomolecules [25]. Notably, the metabolic voracity of pro-
liferating neoplastic cells extends beyond glucose, with 
Gln being requisitioned not only as an energy source but 
also as a fundamental scaffold for cellular architecture 
and function. This reliance is so pronounced that many 
tumor cell lineages exhibit a heightened dependence 
on exogenous Gln, to the extent that their very survival 
becomes compromised in its absence [26].

The dysregulation of Gln metabolism has been impli-
cated in cancer development, and drugs targeting Gln 
metabolism have been approved for various malignan-
cies. As cancer progresses from premalignant lesions to 
clinically detectable tumors and eventually to metastatic 
malignancies, metabolic demands and phenotypes may 
undergo changes. Gln metabolism has emerged as a fasci-
nating regulatory node that exhibits variations in diverse 
clinical settings. Gln, the most abundant nonessential 
amino acid in circulation, plays a critical role in multi-
ple cellular metabolic functions [27]. Glutaminase, an 
enzyme responsible for deaminating Gln to produce glu-
tamate, serves as a key intermediate metabolite with ver-
satile metabolic functions in the cell [28]. Recent studies 
have shed light on the involvement of GlnMgs in various 
age-related diseases. For instance, Dai et al. investigated 

Fig. 8  Drug-gene interactions. Note: Red circles are up-regulated genes, green hexagons are down-regulated genes, and blue squares are 
associated drugs
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the potential roles of Gln metabolism-related genes in 
hepatocellular carcinoma [29], while Liu et al. established 
a Gln metabolism signature for predicting prognosis in 
lung adenocarcinoma [30]. Although most studies have 
focused on the impact of individual regulators of Gln 
metabolism in cancer, the collective contributions of 
multiple Gln metabolism-related genes in other diseases 
remain unclear [31]. With the growing understanding 
of tumorigenesis, researchers have increasingly directed 
their attention to non-tumor aspects. Exploring distinct 
patterns of Gln metabolism during the progression of 

NSOI may provide insights into the role of Gln metabo-
lism in NSOI pathogenesis and guide the development of 
appropriate therapeutic strategies.

In this investigation, we elucidated a cohort of 42 
DEGs intricately connected with glutamine metabo-
lism in NSOI. An integrative approach employing the 
intersection of DEGs, Lasso regression, and SVM-RFE 
analysis culminated in the identification of fourteen 
pivotal GlnMgs-namely FTCD, CPS1, CTPS1, NAGS, 
DDAH2, PHGDH, GGT1, GCLM, GLUD1, ART4, 
AADAT, ASNSD1, SLC38A1, and GFPT2. These hub 

Fig. 9  miRNAs-LncRNAs shared Genes Network. Note: Red circles are mrnas, blue quadrangles are miRNAs, and green triangles are lncRNAs
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genes manifested notable diagnostic potential, as sub-
stantiated by external dataset validation, intimating 
their probable entanglement in the molecular tapestry of 
NSOI pathogenesis. Whilst these insights lay the ground-
work for subsequent exploration, it is imperative to 
acknowledge the extant paucity of evidence delineating 
the nexus between these genes and the orchestration of 
specific transcription factors within glutamine metabo-
lism. Concurrent literature survey further discerned that 
GGT1 and GLUD1 may reside at the core of the associa-
tion with NSOI. Further biological function analysis cast 
light upon their roles in myriad processes, including the 
response to extracellular stimuli, localization within the 
mitochondrial matrix, and lipid transport dynamics. 

This underscores the potential of GlnMgs to modulate a 
diverse array of biological mechanisms, possibly by steer-
ing immune-related pathways, which in turn could influ-
ence the pathophysiological trajectory of NSOI.

GGT1 overexpression has been implicated in vari-
ous human diseases, including asthma, reperfusion 
injury, and cancer [32]. Previous studies have suggested 
that GGT1 and HNF1A genes may contribute to the 
abnormal glucose metabolism and altered lipid profile 
observed in Polycystic ovary syndrome, a significant 
clinical feature of the disorder [33]. Baumann et al. pro-
vided evidence demonstrating that recombinant and iso-
lated hepatic human GGT1 has the ability to transform 
SG-3M3SH to Cys-Gly-3M3SH in  vitro. This finding 

Fig. 10  Fourteen hub genes were validated
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highlights the role of GGT1 as a key enzyme involved 
in the biosynthesis of Cys-Gly-3M3SH [34]. Ionotropic 
GluD1 and GluD2 possess the molecular architecture of 
postsynaptic ionotropic glutamate receptors, but they 
also form trans-synaptic adhesion complexes by bind-
ing to secreted cerebellins, which in turn interact with 
presynaptic neurexins1-4 [35]. Dai et  al.’s research [36] 
in hippocampal synapses demonstrated that the binding 
of presynaptic neurexin-cerebellin complexes to postsyn-
aptic GluD1 controls glutamate receptor activity with-
out affecting synapse numbers. GluD proteins serve as 
signaling molecules that modulate NMDA and AMPA 
receptors through an unconventional transduction 
mechanism, bypassing their ionotropic receptor archi-
tecture and directly converting extracellular neurexin-
cerebellin signals into postsynaptic receptor responses 
[37]. These findings provide further support for the valid-
ity and plausibility of our results, as GlnMgs, particularly 
GGT1 and GLUD1, have been implicated in the context 
of NSOI patients examined in this study. According to 
the GSE105149 research, a Gln Metabolism-related trait 
could serve as an effective prognostic predictor. However, 
only a limited number of studies have investigated the 
gene alterations associated with Gln Metabolism thus far.

Within the scope of NSOI, emerging perspectives 
contend that the augmented immune response tran-
scends the activity of CD4 + T cells. This amplifica-
tion appears to be rooted in an established milieu of 
T-regulatory cells and a concomitant cytokine dis-
equilibrium, thereby precipitating a spectrum of pro-
inflammatory and regulatory responses [38]. The 
perturbed reconstitution of immune competence, 
particularly against a backdrop of active or erstwhile 
opportunistic infections, is believed to exacerbate 
the progression of NSOI. Such infections-spanning 
tuberculosis, cytomegalovirus, progressive multifocal 
leukoencephalopathy, Kaposi sarcoma, along with a 
cadre of autoimmune maladies-may potentiate or cov-
ertly persist within NSOI. Notably, cytomegalovirus 
retinitis has garnered attention for its frequent linkage 
with immune reconstitution inflammatory syndrome, 
specifically immunological recovery uveitis [39, 40]. 
Mounting evidence posits that the augmentation of 
intracellular cAMP could serve as a salient mecha-
nism to attenuate persistent inflammation. One tacti-
cal approach to this end involves the inhibition of its 
degradation, which has fostered the advancement of 
targeted small molecule PDE4 inhibitors [41, 42]. Such 
compounds have demonstrated therapeutic efficacy in 
a suite of inflammatory conditions, including inflam-
matory bowel disease, atopic dermatitis, rheumatoid 
arthritis, amongst others. Concomitantly, our investi-
gation delved into the expression patterns of glutamine 

metabolism genes (GlnMgs) within the immune land-
scape, thereby extending the arc of prior research. Our 
observations delineated an upregulated expression of 
naive B cells, plasma cells, naive CD4 + T cells, follicu-
lar helper T cells, M0 macrophages, and activated mast 
cells in the cohort subjected to treatment. Contrast-
ingly, the control arm manifested a predominance of 
memory B cells, activated NK cells, M2 macrophages, 
and resting mast cells. These empirical insights under-
score the critical role of GlnMgs in the pathophysio-
logical matrix of NSOI, particularly in relation to the 
orchestration of inflammatory and immunological 
responses.

The investigation of biomarkers and their associa-
tion with NSOI has received limited attention in the 
existing literature. Currently, there are several studies 
utilizing bioinformatics analysis to uncover the rela-
tionship between metabolism and eye diseases [43–45]. 
For instance, Liu et  al. identified hub genes for NSOI 
through Weighted Gene Coexpression Network Analy-
sis. Hu et al. developed a bioinformatics model for thy-
roid eye disease and identified 11 hub genes (ATP6V1A, 
PTGES3, PSMD12, etc.). Huang et al. utilized advanced 
comprehensive bioinformatics analysis and in vivo vali-
dation to identify six genes (CD44, CDC42, TIMP1, 
BMP7, RHOC, FLT1) as significant genes for diabetic 
retinopathy. Despite the burgeoning corpus of research 
delineating various metabolic pathways implicated 
in neurological disorders, a profound lacuna persists 
regarding the nexus between glutamine metabolism 
and NSOI. Bridging this critical knowledge chasm, our 
investigation casts new light on the metabolic under-
pinnings of NSOI, proffering a promising scaffold for 
the development of metabolic-centric therapeutic strat-
agems. Employing an innovative methodological frame-
work, our study diverges from the trodden path of prior 
inquiries by harnessing an expansive compendium of 
GlnMgs extracted from the GEO, thereby enriching 
the granularity and potential utility of our metabolic 
analysis. Despite this robust theoretical foundation 
and methodological ingenuity, we must acknowledge 
the nascent state of our findings. The cryptic intrica-
cies governing the pathophysiological mechanisms of 
NSOI stubbornly elude complete scientific elucida-
tion. Thus, it is incumbent upon the scientific commu-
nity to undertake a rigorous sequence of in  vivo and 
in  vitro experimentation to substantiate the prelimi-
nary connections posited by our research. Moreover, 
the interplay between prognostic genes and glutamine 
metabolism, a domain still shrouded in mystery, beck-
ons for a concerted investigative effort. Unraveling this 
relationship may unearth pivotal insights into the role 
of GlnMgs in NSOI pathobiology. As we stand on the 
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precipice of these investigative forays, it is evident that 
the terrain ahead holds fertile ground for groundbreak-
ing discoveries and innovative research trajectories.

To further advance our understanding and improve 
the management of NSOI, the following suggestions are 
proposed for future research: Increase the number of 
data sources: ① In future studies, expanding the range 
of data sources will contribute to a more comprehensive 
analysis and interpretation of NSOI-related molecu-
lar mechanisms. ② Explore the potential of effective 
medications: Investigate whether therapeutic interven-
tions targeting these GlnMgs can modulate the immune 
microenvironment and reduce the levels of inflamma-
tory factors associated with NSOI. This may lead to the 
development of novel treatment strategies for NSOI. By 
addressing these research directions, we can further elu-
cidate the intricate relationship between GlnMgs and 
NSOI, paving the way for improved diagnostic and ther-
apeutic approaches in the future. By addressing these 
research directions, we can further elucidate the intri-
cate relationship between GlnMgs and NSOI, paving the 
way for improved diagnostic and therapeutic approaches 
in the future.

Conclusions
The pathogenesis and progression of NSOI are the 
result of complex, multifactorial interactions encom-
passing a multitude of targets, pathways, signaling 
entities, and regulatory frameworks. These compo-
nents engage in a synergistic and reciprocal dance that 
underlies the condition’s intricate nature. Central to 
this biological interplay are the GlnMgs, which are cru-
cial in the biosynthesis of a series of proteins includ-
ing FTCD, CPS1, CTPS1, NAGS, DDAH2, PHGDH, 
GGT1, GCLM, GLUD1, ART4, AADAT, ASNSD1, 
SLC38A1, and GFPT2. Of particular note, GGT1 and 
GLUD1 are underscored for their prominent roles. 
Through their activity, they hold the capacity to exert 
significant influence on the metabolic circuitry, with 
implications that extend beyond mere biochemical 
pathways, potentially impacting the clinical course and 
therapeutic targets in NSOI.

Abbreviations
NSOI	� Nonspecific orbital inflammation
GO	� Gene Ontology
TCM	� Traditional Chinese medicine
MF	� Molecular functions
KEGG	� Kyoto Encyclopedia of Genes and Genomes
GEO	� Gene Expression Omnibus
GlnMgs	� Gln-metabolism genes
BP	� Biological processes
CC	� Cellular components
DEGs	� Differentially Expressed Genes

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​023-​09946-6.

Additional file 1: Table S1. Glutamine Metabolism genes. Table S2. 
42 DEGs linked to Glutamine Metabolism genes. Table S3. a. Analysis of 
GO. Table S3. b. Analysis of KEGG. Table S4. a. LASSO genes. Table S4. 
b. SVM-RFE genes. Table S4. c. InterGenes. Table 5. a. GGT1 of GSEA 
analysis. Table 6. Drug prediction. Table 7. a. Gene-miRNA. Table 7. b. 
Gene-lncRNA.

Acknowledgements
Thanks to professor Qinghua Peng and professor Xiaolei Yao for his strict guid-
ance on this paper, and thanks to Dr. Yuan Gao and Dr. Liyuan Cao of support 
for this paper. Thanks to reviewers and editors for their sincere comments.

Authors’ contributions
Zixuan Wu and Na Li drafted and revised the manuscript. Yuan Gao and Liyuan 
Cao were in charge of data collection. Qinghua Peng and Xiaolei Yao conceived 
and designed this article, in charge of syntax modification and revised of the 
manuscript. All the authors have read and agreed to the final version manuscript.

Funding
Financial support was provided by the National Natural Science Foundation 
of China (30772824,81574031); Key Laboratory of TCM Prevention and Treat-
ment of Ent Diseases of Hunan Province (2017TP1018); Changsha Science 
and Technology Plan Project (K1501014-31, KC1704005); Central government 
financial support for the construction of local universities (2018–2019); State 
Administration of Traditional Chinese Medicine Key Discipline of Ophthalmol-
ogy construction project; Key discipline construction project of TCM Five 
Senses Science in Hunan Province; Hunan Graduate Research Innovation 
Project (CX20220780); "Yifang" Graduate Innovation Project, Hunan University 
of Chinese Medicine (2022YF01).

Availability of data and materials
The datasets generated during and/or analyzed during the current study are 
available in the appendix. Authors need to include the GEO Data set number 
(GSE58331 and GSE105149) here.

Declarations

Ethics approval and consent to participation
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan 
Province, China. 2 Dongying People’s Hospital (Dongying Hospital of Shandong 
Provincial Hospital Group), Dongying, Shandong 257091, People’s Repub-
lic of China. 3 Department of Ophthalmology, the First Affiliated Hospital 
of Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan 
Province, China. 

Received: 14 September 2023   Accepted: 27 December 2023
Published: 17 January 2024

References
	1.	 Eshraghi B, Dehghan A, Javadi N, Fazel M. Nonspecific orbital inflamma-

tion and thyroid eye disease, a rare comorbidity: report of two cases and 
review of literature. BMC Ophthalmol. 2021;21(1):251.

https://doi.org/10.1186/s12864-023-09946-6
https://doi.org/10.1186/s12864-023-09946-6


Page 16 of 16Wu et al. BMC Genomics  (2024) 25:71

	2.	 Garrity JA. Not a tumor-nonspecific orbital inflammation. J Neurol Surg B 
Skull Base. 2021;82(1):96–9.

	3.	 Yoon JC, Kim SE. A man with a spontaneously swollen eye. J Am Coll 
Emerg Phys Open. 2021;2(3): e12459.

	4.	 Braich PS, Kuriakose RK, Khokhar NS, Donaldson JC, McCulley TJ. Factors 
associated with multiple recurrences of nonspecific orbital inflammation 
aka orbital pseudotumor. Int Ophthalmol. 2018;38(4):1485–95.

	5.	 Rosenbaum JT, Choi D, Harrington CA, Wilson DJ, Grossniklaus HE, Sibley 
CH, Salek SS, Ng JD, Dailey RA, Steele EA, et al. Gene expression profiling 
and heterogeneity of nonspecific orbital inflammation affecting the 
lacrimal gland. JAMA Ophthalmol. 2017;135(11):1156–62.

	6.	 Eshraghi B, Sonbolestan SA, Abtahi MA, Mirmohammadsadeghi A. Clini-
cal characteristics, histopathology, and treatment outcomes in adult and 
pediatric patients with nonspecific orbital inflammation. J Curr Ophthal-
mol. 2019;31(3):327–34.

	7.	 Zhang XC, Statler B, Suner S, Lloyd M, Curley D, Migliori ME. Man with a 
swollen eye: nonspecific orbital inflammation in an adult in the emer-
gency department. J Emerg Med. 2018;55(1):110–3.

	8.	 Jo DH, Kim JH, Kim JH. Tumor environment of retinoblastoma intraocular 
cancer. Adv Exp Med Biol. 2020;1296:349–58.

	9.	 Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al. The 
cancer metabolic reprogramming and immune response. Mol Cancer. 
2021;20(1):28.

	10.	 Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: 
understanding the characteristics of tumor-infiltrating immune cells and 
their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21.

	11.	 Nandigama R, Upcin B, Aktas BH, Ergun S, Henke E. Restriction of 
drug transport by the tumor environment. Histochem Cell Biol. 
2018;150(6):631–48.

	12.	 Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, 
Blosser RL, Patel CH, et al. Targeting glutamine metabolism enhances 
tumor-specific immunity by modulating suppressive myeloid cells. J Clin 
Invest. 2020;130(7):3865–84.

	13.	 Place DE, Kanneganti TD. The innate immune system and cell death 
in autoinflammatory and autoimmune disease. Curr Opin Immunol. 
2020;67:95–105.

	14.	 Peng CD, Wang L, Jiang DM, et al. Establishing and validating a spotted 
tongue recognition and extraction model based on multiscale convolu-
tional neural network. Digit Chin Med. 2022;5(1):49–58.

	15.	 Li P, Yi N, Ding CS, et al. Research on classification diagnosis model of pso-
riasis based on deep residual network. Digit Chin Med. 2021;4(2):92–101.

	16.	 Al-Ghazzawi K, Baum SH, Pfortner R, Philipp S, Bechrakis N, Gortz G, Eck-
stein A, Mairinger FD, Oeverhaus M. Evaluation of orbital lymphoprolifera-
tive and inflammatory disorders by gene expression analysis. Int J Mol Sci. 
2022;23(15):8609.

	17.	 Ang T, Juniat V, Selva D. Autoimmune markers in screening for orbital 
inflammatory disease. Eye (Lond). 2023;37(6):1088–93.

	18.	 Wu Z, Liu P, Huang B, Deng S, Song Z, Huang X, Yang J, Cheng S. A novel 
Alzheimer’s disease prognostic signature: identification and analysis of 
glutamine metabolism genes in immunogenicity and immunotherapy 
efficacy. Sci Rep. 2023;13(1):6895.

	19.	 De Carvalho TR, Giaretta AA, Teixeira BF, Martins LB. New bioacoustic and 
distributional data on Bokermannohyla sapiranga Brandao et al, 2012 
(Anura: Hylidae): revisiting its diagnosis in comparison with B. pseudop-
seudis (Miranda-Ribeiro, 1937). Zootaxa. 2013;3746:383–92.

	20.	 Chen Y, Wang X. miRDB: an online database for prediction of functional 
microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–31.

	21.	 Mon-Lopez D, Tejero-Gonzalez CM. Validity and reliability of the targets-
can ISSF Pistol & Rifle application for measuring shooting performance. 
Scand J Med Sci Sports. 2019;29(11):1707–12.

	22.	 Furio-Tari P, Tarazona S, Gabaldon T, Enright AJ, Conesa A. spongeScan: 
a web for detecting microRNA binding elements in lncRNA sequences. 
Nucleic Acids Res. 2016;44(W1):W176–80.

	23.	 Manta A, Ugradar S, Murta F, Ezra D, Cormack I. Immune reconstitution 
inflammatory syndrome in a case of nonspecific orbital inflammation. 
Ophthalmic Plast Reconstr Surg. 2018;34(2):e54–6.

	24.	 DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in 
metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24.

	25.	 Li T, Le A. Glutamine metabolism in cancer. Adv Exp Med BIOL. 
2018;1063:13–32.

	26.	 Still ER, Yuneva MO. Hopefully devoted to Q: targeting glutamine addic-
tion in cancer. Br J Cancer. 2017;116(11):1375–81.

	27.	 Li T, Copeland C, Le A. Glutamine metabolism in cancer. Adv Exp Med 
Biol. 2021;1311:17–38.

	28.	 Natarajan SK, Venneti S. Glutamine metabolism in brain tumors. Cancers 
(Basel). 2019;11(11):1628.

	29.	 Dai W, Xu L, Yu X, Zhang G, Guo H, Liu H, Song G, Weng S, Dong L, Zhu 
J, et al. OGDHL silencing promotes hepatocellular carcinoma by repro-
gramming glutamine metabolism. J Hepatol. 2020;72(5):909–23.

	30.	 Liu A, Lin L, Xu W, Gong Z, Liu Z, Xiao W. L-Theanine regulates glutamine 
metabolism and immune function by binding to cannabinoid receptor 1. 
Food Funct. 2021;12(13):5755–69.

	31.	 Jiang Z, Shen H, Tang B, Yu Q, Ji X, Wang L. Quantitative proteomic analy-
sis reveals that proteins required for fatty acid metabolism may serve as 
diagnostic markers for gastric cancer. Clin Chim Acta. 2017;464:148–54.

	32.	 Terzyan SS, Nguyen LT, Burgett A, Heroux A, Smith CA, You Y, Hanigan 
MH. Crystal structures of glutathione- and inhibitor-bound human GGT1: 
critical interactions within the cysteinylglycine binding site. J Biol Chem. 
2021;296: 100066.

	33.	 Baumann T, Bergmann S, Schmidt-Rose T, Max H, Martin A, Enthaler B, 
Terstegen L, Schweiger D, Kalbacher H, Wenck H, et al. Glutathione-con-
jugated sulfanylalkanols are substrates for ABCC11 and gamma-glutamyl 
transferase 1: a potential new pathway for the formation of odorant 
precursors in the apocrine sweat gland. Exp Dermatol. 2014;23(4):247–52.

	34.	 Xu X, Qin L, Tian Y, Wang M, Li G, Du Y, Chen ZJ, Li W. Family-based analysis 
of GGT1 and HNF1A gene polymorphisms in patients with polycystic 
ovary syndrome. Reprod Biomed Online. 2018;36(1):115–9.

	35.	 Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone 
CR, Mullarky E, Shyh-Chang N, et al. Glutamine supports pancreatic 
cancer growth through a KRAS-regulated metabolic pathway. Nature. 
2013;496(7443):101–5.

	36.	 Dai J, Patzke C, Liakath-Ali K, Seigneur E, Sudhof TC. GluD1 is a sig-
nal transduction device disguised as an ionotropic receptor. Nature. 
2021;595(7866):261–5.

	37.	 Hoover AH, Pavuluri R, Shelkar GP, Dravid SM, Smith Y, Villalba RM. 
Ultrastructural localization of glutamate delta 1 (GluD1) receptor 
immunoreactivity in the mouse and monkey striatum. J Comp Neurol. 
2021;529(7):1703–18.

	38.	 Flogel U, Schluter A, Jacoby C, Temme S, Banga JP, Eckstein A, Schrader J, 
Berchner-Pfannschmidt U. Multimodal assessment of orbital immune cell 
infiltration and tissue remodeling during development of graves disease 
by (1) H(19) F MRI. Magn Reson Med. 2018;80(2):711–8.

	39.	 Sagiv O, Kandl TJ, Thakar SD, Thuro BA, Busaidy NL, Cabanillas M, Jimenez 
C, Dadu R, Graham PH, Debnam JM, et al. Extraocular muscle enlarge-
ment and thyroid eye disease-like orbital inflammation associated with 
immune checkpoint inhibitor therapy in cancer patients. Ophthalmic 
Plast Reconstr Surg. 2019;35(1):50–2.

	40.	 Yang C, Cho RI. Bilateral Diffuse Extraocular Muscle Enlargement in 
Nonspecific Orbital Inflammation. Ophthalmic Plast Reconstr Surg. 2023. 
https://​doi.​org/​10.​1097/​IOP.​00000​00000​002441. Epub ahead of print.

	41.	 Su Y, Ding J, Yang F, He C, Xu Y, Zhu X, Zhou H, Li H. The regulatory role of 
PDE4B in the progression of inflammatory function study. Front Pharma-
col. 2022;13: 982130.

	42.	 Zheng XY, Chen JC, Xie QM, Chen JQ, Tang HF. Anti-inflammatory effect 
of ciclamilast in an allergic model involving the expression of PDE4B. Mol 
Med Rep. 2019;19(3):1728–38.

	43.	 Liu H, Chen L, Lei X, Ren H, Li G, Deng Z. Identification of hub genes 
associated with nonspecific orbital inflammation by weighted gene 
coexpression network analysis. Dis Markers. 2022;2022:7588084.

	44.	 Hu J, Zhou S, Guo W. Construction of the coexpression network involved 
in the pathogenesis of thyroid eye disease via bioinformatics analysis. 
Hum Genomics. 2022;16(1):38.

	45.	 Huang J, Zhou Q. Gene biomarkers related to Th17 cells in macular 
edema of diabetic retinopathy: cutting-edge comprehensive bioinfor-
matics analysis and in vivo validation. Front Immunol. 2022;13: 858972.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1097/IOP.0000000000002441

	Glutamine metabolism-related genes and immunotherapy in nonspecific orbital inflammation were validated using bioinformatics and machine learning
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Raw data
	Analysis of Differentially Expressed Genes (DEGs)
	GO and KEGG Analysis
	Model construction and analysis of immune cell infiltration
	GSEA and GSVA
	Drug-gene interactions
	Identification of common miRNAs and lncRNAs
	Construction of a network of common mRNA-miRNA-lncRNA Genes

	Results
	Elucidation of differentially expressed genes and dimensionality reduction via principal component analysis
	Functional enrichment and pathway analysis of glutamine metabolism genes
	Model construction synthesis of a predictive gene signature model
	Delineation of key genes via gene set enrichment analysis
	Immune cell landscape analysis in NSOI
	Gene Set Variation Analysis (GSVA)
	Pharmacogenomic interactions between candidate drugs and hub genes
	Elucidation of non-coding RNA networks and integration with miRNA-lncRNA-gene interactions
	Empirical verification of central genes

	Discussions
	Conclusions
	Acknowledgements
	References


