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Abstract 

Background  Essential genes encode functions that play a vital role in the life activities of organisms, encompass-
ing growth, development, immune system functioning, and cell structure maintenance. Conventional experimental 
techniques for identifying essential genes are resource-intensive and time-consuming, and the accuracy of current 
machine learning models needs further enhancement. Therefore, it is crucial to develop a robust computational 
model to accurately predict essential genes.

Results  In this study, we introduce GCNN-SFM, a computational model for identifying essential genes in organisms, 
based on graph convolutional neural networks (GCNN). GCNN-SFM integrates a graph convolutional layer, a con-
volutional layer, and a fully connected layer to model and extract features from gene sequences of essential genes. 
Initially, the gene sequence is transformed into a feature map using coding techniques. Subsequently, a multi-layer 
GCN is employed to perform graph convolution operations, effectively capturing both local and global features 
of the gene sequence. Further feature extraction is performed, followed by integrating convolution and fully-con-
nected layers to generate prediction results for essential genes. The gradient descent algorithm is utilized to iteratively 
update the cross-entropy loss function, thereby enhancing the accuracy of the prediction results. Meanwhile, model 
parameters are tuned to determine the optimal parameter combination that yields the best prediction performance 
during training.

Conclusions  Experimental evaluation demonstrates that GCNN-SFM surpasses various advanced essential gene 
prediction models and achieves an average accuracy of 94.53%. This study presents a novel and effective approach 
for identifying essential genes, which has significant implications for biology and genomics research.

Keywords  Essential genes, Graphical convolutional neural networks, Machine learning, Gene sequences, 
Bioinformatics

Introduction
Essential genes, which are currently a hot topic in 
genomics and bioinformatics research, are indispensable 
for supporting cellular life [1]. Their coding functions are 
crucial for the survival of organisms. These genes con-
stitute a set that must be present in an organism and are 
vital for maintaining its life activities under specific envi-
ronmental conditions. They encode key proteins or RNA 
molecules that are essential for life, and their functions 
are considered fundamental for the organism’s survival 
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[2]. In humans and other organisms, the functions of 
essential genes are often associated with basic cellular 
metabolism, growth, development, the immune sys-
tem, and the maintenance of cellular structure. There-
fore, the study of essential genes is of great importance 
for our understanding of the fundamental physiological 
functions of organisms and the mechanisms of disease 
occurrence [3, 4].

With the completion of whole-genome sequencing 
and the development of genome-scale gene inactivation 
techniques, it has become possible to identify essential 
genes within the genome. Traditional experimental tech-
niques used to identify essential genes [5] in organisms 
include gene knockout [6, 7] and gene silencing [8]. Gene 
knockout is the process of inactivating a specific gene in 
an organism to observe its effects on the organism’s sur-
vival and function. This can be accomplished through 
various techniques, including CRISPR-Cas9 gene edit-
ing [9]. The aim of knockout is to determine whether a 
gene is an essential gene, that is, whether the absence of 
the gene would make the organism non-viable. On the 
other hand, gene silencing is used to study the function 
of a gene by interfering with or suppressing its expres-
sion, often accomplished through methods such as RNA 
interference [10] and antibodies [11]. However, these tra-
ditional experimental methods still have several potential 
drawbacks: they are expensive, time-consuming, and do 
not offer comprehensive genome coverage. In modern 
biological research, machine learning models have been 
developed to computationally identify essential genes 
[12]. These methods have been extensively employed 
to study essential genes and contribute to advancing 
our understanding of gene function and organismal 
complexity.

In machine learning methods for predicting essen-
tial genes, feature extraction is a key step that involves 
extracting useful feature information from genomic data 
for model learning. This feature information is combined 
with machine learning classification algorithms (SVM 
[13], NB [5, 13–15], RF [13, 16], etc.) to build models 
for essential gene prediction. High-throughput genome 
sequencing and homology localization [17] provide a 
variety of biological features for predicting essential 
genes, including network topology information [18, 19], 
homology information [20, 21], gene expression informa-
tion [22, 23], and functional domains [23]. For instance, 
Deng et al. developed an integrated classifier for essential 
genes by integrating information from diverse features 
extracted from different aspects of the essential genome 
sequence [24]. Chen and Xu also successfully combined 
high throughput data with machine learning methods 
to determine protein deficiencies in Saccharomyces 
cerevisiae [25]. Seringhaus et  al. used various intrinsic 

genomic features to train machine learning models to 
predict essential genes in brewer’s yeast [26], and Yuan 
et al. developed three machine learning methods to pre-
dict lethality in mouse knockouts based on informative 
genomic features, among others [27]. However, these 
data are often not available [28, 29], and some data fea-
tures do not have high predictive power or even add bio-
logical redundancy. Consequently, there are also models 
currently being constructed based on DNA sequence 
features of essential genes [30]. For instance, Ning et al. 
employed single nucleotide frequencies, dinucleotide fre-
quencies, and amino acid frequencies of gene sequences 
to predict essential genes in bacteria [31]. Guo et  al. 
emphasized the significance of local nucleotide compo-
sition and internal nucleotide association, proposing an 
approach known as λ-interval Z-curve to integrate both 
types of information [32]. Chen et al. combined Z-curve 
pseudo-k-tuple nucleotide composition with an SVM 
classifier to construct a model aimed at capturing DNA 
sequence patterns associated with essential genes [33]. 
In addition to these methods, Le et  al. utilized natu-
ral language processing methods to comprehend DNA 
sequence features associated with gene essentiality and 
integrated deep neural networks to predict these essen-
tial genes [34], Rout et  al. conducted feature counting, 
including parameters such as energy, entropy, uniformity, 
and contrast within nucleotides [35], while simultane-
ously employing supervised machine learning methods 
for identification, among other techniques.Overall, there 
is a growing body of research utilizing machine learn-
ing methods for essential gene prediction [36, 37], which 
has led to significant improvements in prediction perfor-
mance. However, Most machine learning methods for 
predicting essential genes rely on their protein sequence 
data. The fundamental principle is that the importance 
of such genes is determined by the absence of functional 
roles played by their protein products. Considering that 
nucleotide-based features have not been thoroughly 
explored, our work aims to utilize the inherent informa-
tion within nucleotides. We seek to explore new research 
methodologies and unearth the significant impact of gene 
sequences in predicting essential genes, thereby enhanc-
ing the recognition performance of the model.

While machine learning-based approaches successfully 
predict essential genes, they exhibit significant variations 
in terms of the methods used for sequence feature extrac-
tion and the employed model structures. The predictive 
performance of a method relies on its ability to explore 
gene feature information and integrate it into the model 
structure effectively. Thus, enhancing model perfor-
mance is critical in investigating novel methods. In this 
context, the primary contribution of this study lies in 
proposing and applying an innovative sequence feature 
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graph encoding method that effectively translates genetic 
sequence information into the graph structure represen-
tation required by deep learning models. Initially, gene 
sequences are transformed into a set of subsequences 
containing k nucleotides each. Through the statistical 
analysis of these subsequence frequency data and the 
relationships between adjacent subsequences, a graph 
structure representing the features of gene sequences 
is constructed. This encoding method not only over-
comes the complexity of the original sequences but also 
offers an effective means to capture essential genetic 
sequence information, thereby laying the foundation for 
subsequent applications of deep learning models. Fur-
thermore, this study introduces an innovative model 
framework based on Graph Convolutional Neural Net-
works (GCNN), namely GCNN-SFM. This model com-
bines graph convolutional layers, convolutional layers, 
and fully connected layers to effectively learn and utilize 
both local and global information within the sequence 
feature graph. GCNN-SFM not only captures the intri-
cate features of gene sequences but also enhances the 
accuracy and robustness of gene prediction tasks. 
Through the design of this model structure, we success-
fully applied Graph Convolutional Neural Networks to 
the essential gene prediction task in the field of bioinfor-
matics, offering new insights and methods for research 
in this domain. Beyond the innovative application of the 
model framework, this study fine-tuned model parame-
ters and utilized gradient descent algorithms to optimize 
the model’s loss function, significantly contributing to 
enhancing the model’s performance and predictive accu-
racy. Overall, this research presents a novel and effective 
deep learning method for essential gene analysis and pre-
diction tasks, offering critical insights for related studies 
in the field of bioinformatics.

Theory and computational section
Datasets
In bioinformatics research, generalized benchmark datasets 
are crucial for constructing high-performance predictive 
models. In this study, we utilized datasets from four species: 
Drosophila melanogaster (D.melanogaster), Methanococcus 

maripaludis (M.maripaludis), Caenorhabditis elegans(C.
elegans [38]), and Homo sapiens (H.sapiens). These data-
sets represent highly comprehensive resources in this spe-
cific field. Campos et  al. curated comprehensive genomic 
data and associated annotations for D.melanogaster from 
sources such as FlyBase (http://​ftp.​flyba​se.​net/​genom​
es/​Droso​phila_​melan​ogast​er/) [39], Ensembl databases 
(https://​ftp.​ensem​bl.​org/​pub/​curre​nt_​fasta/​droso​phila_​
melan​ogast​er/) [40], and peer-reviewed journal articles [41]. 
Similarly, data for C.elegans were collected from WormBase 
(https://​wormb​ase.​org/​speci​es/c_​elega​ns#​1402--​10) [42], 
Ensembl databases (https://​ftp.​ensem​bl.​org/​pub/​curre​nt_​
fasta/​caeno​rhabd​itis_​elega​ns/), and peer-reviewed journal 
articles [43]. Chen et al. [33] obtained the complete genome 
of M.maripaludis from the DEG (Database of Essential 
Genes: https://​tubic.​org/​deg/​public/​index.​php) [44], a com-
prehensive repository encompassing all available essential 
gene information. To reduce data redundancy and mitigate 
homology bias, sequences exhibiting over 80% structural 
similarity were excluded from the DEG. Furthermore, gene 
data for H. sapiens were extracted from the DEG database 
by Guo et al. [32]. Therefore, this paper selected the datasets 
defined by the aforementioned individuals, which encom-
pass both positive and negative datasets of essential genes. 
The benchmark dataset can be represented as:

Where S represents the entire dataset for a particular 
species, S+ denotes the positive subset of essential genes, 
and S− denotes the negative subset of essential genes. The 
union of these two subsets is defined as ∪.The provided 
dataset was divided into three sets: a training set, a valida-
tion set, and a test set, with a ratio of 8:1:1. The validation 
set assesses the model’s generalization ability and detects 
overfitting during training, while the test set evaluates the 
model’s performance after the completion of training. The 
details of the datasets are presented in Table 1.

Gapped k‑mer encoding feature extraction
The model predicts essential genes by encoding the 
gene sequence into the matrix format required for deep 
learning. Features are extracted from the gene sequence 

(1)S = S
+ ∪ S

−

Table 1  Number of gene sequences in the datasets

Dataset Train set Verification set Test set Reference

Positive Negative Positive Negative Positive Negative

D. melanogaster 1628 3797 249 580 313 731 [41]

H.sapiens 2873 6702 319 745 401 935 [32]

M. maripaludis 414 857 46 95 58 120 [33]

C.elegans 3688 8604 743 1733 1108 2586 [43]

http://ftp.flybase.net/genomes/Drosophila_melanogaster/)
http://ftp.flybase.net/genomes/Drosophila_melanogaster/)
https://ftp.ensembl.org/pub/current_fasta/drosophila_melanogaster/
https://ftp.ensembl.org/pub/current_fasta/drosophila_melanogaster/
https://wormbase.org/species/c_elegans#1402--10)
https://ftp.ensembl.org/pub/current_fasta/caenorhabditis_elegans/
https://ftp.ensembl.org/pub/current_fasta/caenorhabditis_elegans/
https://tubic.org/deg/public/index.php
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of an essential gene using Gapped k-mers  [45, 46] 
encoding, resulting in a graph structure. In the field of 
bioinformatics, k-mers refer to subsequences of length 
k that are found within gene sequences. To transform 
a sequence into numerical representations, it is neces-
sary to generate k-mers by sliding a fixed-size window 
of length k. During this process, the DNA sequence is 
fragmented into subsequences, referred to as k-mers, 
each representing a set of nucleotides. The size of a 
k-mer or subsequence depends on the window size used 
to generate them. For example, in Table  2, a sequence 
with a length of L can be divided into L-k + 1  k-mers, 
depending on the value of k.

To address the genetic variation that often occurs in 
biological sequences, in this study, we specifically exam-
ine bases that are separated by a distance of d unrelated 
positions within the sequences. Referring to Table 2, the 
subsequence GTA can be represented as GT ∗∗ A when 
k = 3 and d = 3, with ∗ representing the allowable dis-
tance within the gene sequence. After segmenting the 
sequence into multiple k-mers, we compute the occur-
rence frequency of each nucleotide group within these 

k-mers. These frequencies are then extracted to con-
struct a graphical vector, which serves as the input. Spe-
cifically, the gene sequence is initially partitioned into 
various nucleotide groups based on k-mers. Frequencies 
are computed for each k-mer group and the occurrence 
of adjacent k-mer groups. Subsequently, these k-mer 
groups, based on the sequence of bases in the gene, are 
connected to form a graph structure. Equation  (1) is 
employed to represent the structure of the graph.

Where n represents the set of nodes, while e represents 
the set of connected edges. The characteristic infor-
mation of each node is determined by the frequency of 
occurrence of its respective k-mer, whereas the charac-
teristic information of a connected edge is determined 
by the frequency of occurrence of two k-mers together. 
When k = 3, as illustrated in Fig.  1, the gene sequence 
of the essential gene can be transformed into a graph 
structure.The generated sequence feature graph rep-
resents the occurrence frequency of k-mers within the 
gene sequence, as well as the connectivity between these 
k-mers. This representation serves as input for subse-
quent deep learning models.

Models based on sequence feature maps and graph 
convolutional neural networks
In this study, we adopt a multi-layered Graph Convolu-
tional Neural Network (GCNN) structure, abbreviated 
as GCNN-SFM, aiming to conduct feature learning 
and prediction on the sequence feature graph. The pri-
mary objective is to address feature learning and pre-
diction tasks using this model structure. After applying 
the above encoding scheme, the gene sequences are 

(1)G = (n, e)

Table 2  k-mer for gene sequence

Gene sequence: GTA​CTA​

k k-mer

1 G,T,A,C,T,A

2 GT,TA,AC,CT,TA

3 GTA,TAC,ACT,CTA​

4 CTAC,TACT,ACTA​

5 GTACT,TACTA​

6 GAT​CTA​

Fig. 1  Graph structure of gene sequences
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transformed into graph structures. Graph Convolu-
tional Neural Network is a deep learning model capable 
of processing graph data to perform feature learning 
and prediction tasks. Unlike traditional convolutional 
neural networks (CNNs), graph convolutional neural 
networks can handle irregular graph data with arbitrary 
connectivity relationships. The core components of the 
GCNN-SFM model are as follows: Firstly, the Graph 
Convolutional Layers serve as the primary foundation 
of GCNN-SFM. Consisting of four graph convolutional 
layers, this segment aims to update and aggregate node 
feature information. Each graph convolutional layer 
comprises two critical steps: neighbor node feature 
aggregation and feature transformation. During the 
neighbor node feature aggregation phase, the model 
aggregates features of the nodes within each graph con-
volutional layer, considering the connections between 
nodes and their feature similarities, to compute weights 
for updating node representations. Subsequently, in the 
feature transformation step, the model conducts linear 
transformations and non-linear activation operations 
on the features post neighbor node feature aggregation, 
aiming to acquire higher-order and more expressive 

node representations. Lastly, the GCNN-SFM model 
employs three one-dimensional convolutional layers 
to further extract features and maps node representa-
tions to the label space of the prediction task using fully 
connected layers. This process aims to accomplish the 
prediction task on gene graph data, facilitating effec-
tive identification and prediction of essential genes. The 
design of the GCNN-SFM model structure aims to fully 
leverage the advantages of Graph Convolutional Neural 
Networks in handling graph-structured data. Through 
successive processing, aggregation, and transformation, 
it achieves deeper feature learning from sequence fea-
ture graphs and accurate execution of prediction tasks.
The structure of GCNN-SFM is depicted in Fig. 2.

In the graph convolutional layers of the GCNN-SFM 
model, the aggregation of neighboring node features 
stands as a crucial and pivotal step. This step aims to 
aggregate information from the neighbors of node vi 
by considering the connections between nodes and 
the similarity of their features, weighted by specific 
weights. This process computes a completely new rep-
resentation for each node. The formulation for the fea-
ture aggregation process is represented as Eq. (2):

Fig. 2  Model GCNN-SFM predicts the structural flow of essential genes
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Where Z(k)
i  represents the aggregated features of node 

vi at the k-th layer, N (i) is the set of neighboring nodes 
of node vi , di and dj are the degrees of nodes vi and vj 
respectively, h(k−1)

j  stands for the features of node vj at the 
(k-1)-th layer, and W (k−1) is the weight matrix utilized for 
conducting linear transformations on features.

In each graph convolutional layer, the features of neigh-
boring nodes are aggregated based on the connectivity and 
feature similarities between nodes. This process aims to 
effectively leverage the connection structure and feature 
information among nodes, integrating and fusing the fea-
tures of neighboring nodes via weighted aggregation. Such 
an approach aims to update and enhance the representa-
tion of each node comprehensively. This updating process 
provides the GCNN-SFM model with richer and more 
effective node representations, forming the foundation for 
feature learning and prediction tasks.

The feature transformation step is one of the crucial ele-
ments within the graph convolutional layers. Following the 
aggregation of neighboring node features, node represen-
tations are updated through a sequence involving linear 
transformations and nonlinear activation functions. This 
process aims to enhance node representations by subject-
ing the aggregated features to linear transformations and 
subsequent nonlinear activation, thereby achieving higher-
dimensional and more expressive node representations. 
Specifically, the feature transformation process can be 
described by Eq. (3):

Where H (k)
i  represents the representation matrix of 

node vi at layer k, and σ denotes the nonlinear activation 
function, specifically referring to ReLU in this context.By 
applying weighted aggregation and nonlinear transforma-
tion to the neighboring nodes, the new feature represen-
tation H (k)

i   of the current layer’s node can be obtained. 
The GCNN-SFM employs multi-layer graph convolu-
tion operations to progressively aggregate and propagate 
information from the node’s neighbors, enriching its 
feature representation. Subsequently, the node represen-
tations are passed into the convolutional layers for addi-
tional extraction and processing, reshaping them into a 
tensor ’x’ that aligns with the input shape. Finally, it is 
fed into a fully connected layer to be mapped to the label 
space of the prediction task, as demonstrated in Eq. (4).

(2)Z
(k)
i =

j∈N (i)

1

didj
· h(k−1)

j ·W (k−1)

(3)

{
H

(k)
i = σ

(
Z
(k)
i

)

ReLU = max(0, x)

(4)ŷ = softmax(ReLU(W1 · x + b1) ·W2 + b2)

Where  ŷ  represents the predicted gene label by the 
model,  W1 and b1 refer to the weight matrix and bias vec-
tor of the first fully connected layer. Similarly, W2 and b2 
represent the weight matrix and bias vector of the second 
fully connected layer, respectively.

To establish this mapping, it is necessary to define a 
loss function that measures the discrepancy between the 
predicted labels and the true labels. This loss function is 
iteratively updated using gradient descent to minimize 
the loss and enhance the accuracy of the predictions 
made by the GCNN-SFM. In this study, the selected loss 
function is the widely employed cross-entropy loss, com-
monly used in multi-classification problems.

Where  N   is  the  sample  size,  y(n) is  the  binary  vari-
able,  and  p(n)  is the probability that the neural network 
predicts the nth sample as an essential gene.

Model performance evaluation
To evaluate the classification performance of the model, we 
employ several commonly used metrics, consistent with the 
approach taken by Le et al. [34]. These metrics encompass 
sensitivity (SN), specificity (SP), accuracy (ACC), Matthew 
correlation coefficient (MCC), and area under the receiver 
operating characteristic curve (AUC).For ease of compari-
son, the F1-Score is also introduced here.The specific calcu-
lation procedures for each metric are outlined below.

Among them, TP, TN, FP and FN represent the num-
ber of samples whose prediction results are true positive, 
true negative, false positive and false negative, respec-
tively. The AUC (Area Under Curve) is defined as the area 
under the ROC curve, enclosed by the coordinate axes. 
The closer the AUC value is to 1.0, the better the model’s 
performance.

Results and discussion
Experimental results for different parameters of sequence 
coding
In most machine learning and deep learning tasks, the 
encoding method plays a crucial role in obtaining high-
quality models. The parameters k and d in the sequence 

(5)L == −
1

N

∑N

n=1

(
y(n)logp(n) + (1− y(n))log(1− p(n))

)

(6)






SN = TP
TP+FN × 100%

SP = TN
TN+FP × 100%

ACC = TP+TN
TP+FN+TN+FP × 100%

MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

AUC =
�

i∈pos ranki−
numpos(numpos+1)

2

numposnumneg

F1− Score = 2×PRE×SN
PRE+SN ,PRE = TP

TP+FP
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coding method determine the quality of the sequence 
feature map. To identify the optimal parameter combi-
nation, we conducted preliminary experiments on the 
data. We combined various values of k and d, and for 
each parameter combination, we applied tenfold cross-
validation on training and validation sets of four species 
to determine the best-performing model on the valida-
tion set. Subsequently, the model identified as the best 
performer in the cross-validation task (the model corre-
sponding to a specific parameter combination) was eval-
uated on the test set. This approach allows validation of 
the model’s generalizability to unseen data and confirms 
the superiority of the selected parameter. The relevant 
information of the used dataset is shown in Table 1 and 
the results obtained are presented in Fig. 3.

Firstly, to determine the optimal parameter settings 
for the graph coding method and achieve accurate pre-
diction of essential genes, we defined various parameter 
combinations (k = 2, d = 2; k = 2, d = 3; k = 3, d = 2; k = 3, 
d = 3) that were likely to yield optimal performance. Set-
ting the parameters k and d too high can result in overfit-
ting of the trained model. Figure 3(b) and (c) demonstrate 
that when both k and d are set to 3, the model predicts 
higher values of specificity (SP) and accuracy (ACC) 
compared to other parameter combinations for essen-
tial genes across the four species. The sensitivity (SN) 
value for M. maripaludis species in Fig.  3(a) is signifi-
cantly higher, reaching 90%, compared to the other three 
parameter combinations. These findings suggest that 
the graph coding method with parameters set to (k = 3, 

Fig. 3  Comparison of performance results of independent datasets testing graph coding methods with different parameters
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d = 3) enables more efficient learning of DNA sequence 
features for essential genes by the model. From Fig. 3(g) 
and (h), it is evident that the model integrated with the 
graph coding method using parameter (k = 3, d = 3) out-
performed other parameter combinations, achieving the 
highest performance across all datasets, with an average 
accuracy (ACC) of 94.53% and an area under the curve 
(AUC) of 82.99%. These findings indicate that utilizing 
the graph coding method with parameters set to (k = 3, 
d = 3) enables a more accurate representation of gene 
sequence characteristics, resulting in superior predictive 
performance of the model.

Ablation experiments
To explore the influence of the depth of graph convolu-
tional layers on the overall performance of the model, we 
conducted ablation experiments. Initially, we gradually 
increased the number of graph convolutional layers from 
1 to 5, aiming to elucidate the specific impact of varying 
graph convolutional layer depths on the performance of 
the GCNN-SFM model. This was done to determine the 
most suitable model structure for essential gene identi-
fication. The experiments were conducted using datasets 
from four species, and the obtained evaluation results are 
illustrated in Fig. 4.

Through ablation experiments, a better understand-
ing of the role of graph convolutional layers in the model 
and the impact of each layer depth on information extrac-
tion and feature learning can be achieved. As depicted 

in Fig. 4(d), with the increase in the depth of graph con-
volutional layers, the evaluation metric, ACC, gradually 
increases. This indicates an improved accuracy of essen-
tial gene identification with an increase in the depth of 
graph convolutional layers. The ACC value peaks at 4 
layers, reaching an average value of over 94%. Similarly, 
MCC and AUC values demonstrate analogous trends. 
This upward trend reflects the enhancement in the mod-
el’s classification performance and its improved ability to 
distinguish samples more accurately. Figure 4(c) illustrates 
the F1-Score of the model in identifying essential genes. 
The F1-Score, a harmonic mean of PRE and SN, compre-
hensively considers both SN and PRE, making it suitable 
for evaluating scenarios with significant differences in the 
quantity of samples between different classes. It is evident 
that the F1-Score reaches over 85% at the 4-layer depth 
of graph convolutional layers. The fluctuation in model 
performance might be attributed to overfitting issues in 
deep graph convolutional networks. An excessive increase 
in the depth of graph convolutional layers could overly 
complicate the model, leading to poorer performance.
The aforementioned experiments indicate that the model’s 
robustness is highest when employing four layers of graph 
convolutional layers, providing a reliable basis for further 
optimizing the model structure.

Experimental results for different datasets
To assess the performance of our proposed model 
GCNN-SFM, we conducted experiments using 

Fig. 4  The impact of graph convolutional layer depth on model performance metrics
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independent datasets from four species (D.melanogaster, 
M.maripaludis, H.sapiens, C.elegans) to assess its sta-
bility. Based on the results of previous experiments, the 
model outperformed other parameter combinations 
when the graph coding method was set to (k = 3, d = 3). 
Hence, we selected (k = 3, d = 3) as the optimal parame-
ter configuration for subsequent experiments. The mod-
els underwent training and validation through a tenfold 
cross-validation process using the training dataset. Prior 
to this, the DNA gene sequences were transformed into 
feature matrices using coding methods to facilitate the 
training and validation of the deep learning models. The 
trained models were then tested and evaluated on inde-
pendent test sets, and the predictive performance of each 
independent dataset is illustrated in Fig. 5.

The GCNN-SFM model exhibited excellent perfor-
mance for various species, as shown in the experimen-
tal results depicted in Fig. 5. Notably, Fig. 5(c) illustrates 
that the ACC values for predicting essential genes using 
the model surpassed 90% for all four species, with the 
D.melanogaster species achieving an exceptionally high 
ACC value of 98.47%. This finding affirms the validity of 
the essential gene prediction model. Conversely, in the 
case of the C. elegans species, as observed in Fig.  5(d) 
and (e), lower MCC and AUC values were noted com-
pared to those of other species, yet a maintained ACC 
value of 92.42% was observed. Upon analyzing the SN 
values, it is hypothesized that the marginally lower MCC 
and AUC values observed for the C.elegans species result 
from the limited availability of essential gene data specific 

Fig. 5  Performance results of different independent datasets testing the essential gene prediction model
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to C.elegans. Overall, the model demonstrated remark-
able performance across the four species, as illustrated in 
Fig.  5(f ) and Table  3, attaining an average ACC value of 
94.53%. These results underscore the stability and reliabil-
ity of our method, validating its effectiveness as a power-
ful tool for essential gene prediction.

Results of cross‑species validation experiments
To investigate whether the DNA sequences of essential 
genes exhibit specific characteristics or sequence simi-
larities across species, we conducted cross-species vali-
dation experiments. This is shown in Fig. 6.

Using independent datasets from four species 
(D.melanogaster, M.maripaludis, H.sapiens, and 
C.elegans), we trained the DNA gene sequences of 
one species and evaluated the DNA gene sequences of 
another species to predict whether they were essential 
genes. The obtained results are depicted in Fig. 7, where 
the horizontal axis represents the training set, and the 
vertical axis represents the test set.

Figure  7(d) demonstrates the high accuracy (ACC) 
observed in two species: D.melanogaster and C.elegans. 
Training the model with a dataset from the species 
C.elegans and testing it with D.melanogaster resulted in 
a model prediction accuracy of 91.83% (ACC). Similarly, 
training the model with a dataset from D.melanogaster 

and testing it with C.elegans yielded predictions with 
an ACC value of 85.1%, suggesting a comparable pat-
tern of nucleotide distribution between the two species. 
D.melanogaster, C.elegans, M.maripaludis, and H.sapiens 
exhibited low values for SN, ACC, and AUC, signifying 
substantial differences in nucleotide distribution among 
these species. These findings align with the genetic simi-
larity results reported by Campos et  al.  [47], indicating 
striking similarities in nucleotide patterns among essen-
tial genes in certain species.

Experimental results comparing performance with other 
existing methods
To evaluate the effectiveness of our proposed model 
GCNN-SFM in identifying essential genes, we conducted 
a comparison with published models that address the 
same problem. Table 4 displays the pertinent information 
for each of the compared models.

We conducted experiments separately on datasets from 
the same species used in each model. Due to variations 
in evaluation metrics among different models, the mod-
els using the same standard will be compared separately. 
The predictive evaluation results of all comparisons are 
illustrated in Fig. 8.

As shown in Fig.  8(a), GCNN-SFM outperforms 
eDNN-EG, iEsGene-ZCPseKNC, and Pheg mod-
els. Compared to these models, GCNN-SFM exhibits 
increased ACC values of 14.89%, 17.67%, and 17.09%, 
respectively. While the SN values of eDNN-EG, iEs-
Gene-ZCPseKNC, and Pheg are significantly lower than 
their corresponding SP values, GCNN-SFM achieves 
a higher SN value of 90.52%. The SP value of GCNN-
SFM does not differ significantly from that of the other 
models. The lower SN values of eDNN-EG, iEsGene-
ZCPseKNC, and Pheg can be attributed to the consider-
able imbalance between the numbers of essential gene 
samples and non-essential gene samples in each train-
ing cycle. To address this imbalance, our GCNN-SFM 

Table 3  Prediction of experimental results for different species 
and mean values

Dataset SN SP ACC​ MCC AUC​

D.melanogaster 0.8333 0.9939 0.9847 0.8545 0.8283

M.maripaludis
4mC_F.vesca

0.9052 0.9304 0.9221 0.8265 0.8422

H.sapiens 0.9048 0.9566 0.9501 0.7961 0.8655

C.elegans 0.8362 0.9368 0.9242 0.6983 0.7834

Average 0.8699 0.9544 0.9453 0.7939 0.8299

Fig. 6  Cross-training of datasets from different species
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model exclusively employs a sample class weighting 
strategy during the cross-validation process, prevent-
ing overfitting. Consequently, our model achieves an SN 
value that closely approximates the SP value during pre-
diction.In the comparison depicted in Fig. 8(b), GCNN-
SFM exhibited the highest ACC value, reaching 96.45%, 

surpassing the other three models. Additionally, it dem-
onstrated a higher PRE value. Regarding the evaluation 
of F1-Score, GCNN-SFM achieved 88.42%. These results 
demonstrate that the GCNN-SFM model enhances the 
accuracy of predicting essential genes and outperforms 
other existing prediction methods.

Fig. 7  Performance comparison of model validation across species

Table 4  Information on each comparison model

Model Description Dataset Reference

Pheg Combining Z-curve and nucleotide composition learning features for k-intervals using SVM 
as a classifier

M.maripaludis [32]

iEsGene-ZCPseKNC Combining Z-curve and pseudo-k-tuple nucleotide composition learning features using SVM 
as a classifier

M.maripaludis [33]

eDNN-EG Natural language processing model learning features, integrating supervised learning models M.maripaludis [34]

IDF-EG Compute features like energy, entropy, uniformity, contrast, etc., from nucleotides using supervised 
machine learning

D.melanogaster [35]

PEG-ML combines flux balance analysis (FBA) with machine learning D.melanogaster [48]

PEGI Using machine learning methods based on intrinsic gene sequence properties (statistical and phys-
icochemical data)

D.melanogaster [49]

GCNN-SFM Gapped k-mer encodes sequences into graph features, combined with graph convolutional neural 
networks

- -



Page 12 of 14Hu et al. BMC Genomics           (2024) 25:47 

Conclusions
This study proposes a graph convolutional neural net-
work (GCNN)-based approach for essential gene pre-
diction. The model GCNN-SFM effectively captures 
and learns local and global features in gene sequences 
through graph modeling and feature extraction, ena-
bling the accurate identification of essential genes. 
The experimental results demonstrate significant per-
formance advantages of our approach in tasks related 
to essential gene prediction. Our approach excels at 
extracting more discriminative feature representations 
in genes compared to traditional methods that rely on 
sequence feature engineering. Furthermore, this study 
unveils the potential of GCNN in predicting essential 
genes, thereby offering a new pathway for compre-
hending gene function and disease pathogenesis at a 
deeper level. There are some important considerations 
to address in future research. Firstly, the model may 
encounter computational challenges when dealing with 
large-scale genomic datasets, requiring further optimi-
zation and acceleration for practical applications. Sec-
ondly, the accuracy of the gene annotation information 
of the GCNN-SFM model is crucial and has a signifi-
cant impact on the prediction performance. Numer-
ous studies have employed machine learning methods 
for protein structure prediction or modeling [50–52]. 
Future research could further advance and broaden 
this field, such as integrating multimodal data sources, 
combining nucleotide data from essential genes with 

protein data, such as gene expression data and pro-
tein interaction networks [15, 53, 54], to enhance the 
prediction accuracy and robustness. In summary, this 
study offers robust support for further exploring gene 
regulatory networks and mechanisms of related dis-
eases by enhancing our understanding of gene function 
and the prediction of essential genes.
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