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Abstract 

Background The human pancreas is composed of specialized cell types producing hormones and enzymes critical 
to human health. These specialized functions are the result of cell type-specific transcriptional programs which mani-
fest in cell-specific gene expression. Understanding these programs is essential to developing therapies for pancreatic 
disorders. Transcription in the human pancreas has been widely studied by single-cell RNA technologies, however 
the diversity of protocols and analysis methods hinders their interpretability in the aggregate.

Results In this work, we perform a meta-analysis of pancreatic single-cell RNA sequencing data. We present a data-
base for reference transcriptome abundances and cell-type specificity metrics. This database facilitates the identifica-
tion and definition of marker genes within the pancreas. Additionally, we introduce a versatile tool which is freely 
available as an R package, and should permit integration into existing workflows. Our tool accepts count data files 
generated by widely-used single-cell gene expression platforms in their original format, eliminating an additional pre-
formatting step. Although we designed it to calculate expression specificity of pancreas cell types, our tool is agnostic 
to the biological source of count data, extending its applicability to other biological systems.

Conclusions Our findings enhance the current understanding of expression specificity within the pancreas, surpass-
ing previous work in terms of scope and detail. Furthermore, our database and tool enable researchers to perform 
similar calculations in diverse biological systems, expanding the applicability of marker gene identification and facili-
tating comparative analyses.
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Background
The human body exhibits a remarkable diversity of cel-
lular phenotypes, achieved through the selective deploy-
ment of the gene regulatory programs that result in 
specialized transcriptomes [1]. Within complex organs, 
these phenotypes enable individual cells to perform 

specialized functions crucial for organ homeostasis and 
function. Cell-type specific expression is achieved via 
multiple mechanisms and is evident in marker gene tran-
scripts that differ in steady-state abundance between 
cell types. Identifying these targets is essential for 
understanding how expression is regulated. For exam-
ple, imaging-based functional studies rely on marker 
genes to accurately identify cellular contexts based on 
this specialized transcriptional output. Reliable marker 
genes are critical for multiple research methods includ-
ing fluorescence-activated cell sorting (FACS) [2], imag-
ing via single-molecule FISH [3], and mass cytometry 
[4]. In pathology, marker genes serve as valuable tools for 
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diagnostic purposes, allowing the identification and clas-
sification of different cell populations or disease subtypes 
based on their gene expression profiles. Furthermore, 
marker genes are essential for studying disease hetero-
geneity and understanding the cellular diversity within 
complex tissues [5]. For these reasons, multiple studies 
have sought to catalog cell-type specific expression in 
multiple organs, including the pancreas [6–8]. However, 
quantitative assessment of expression specificity within 
the major cell types of the pancreas, encompassing both 
endocrine and exocrine components, remains limited.

The pancreas holds significant clinical importance 
and carries a substantial disease burden globally [9, 10]. 
Understanding differential expression within pancreatic 
cell types would facilitate therapeutic discoveries, includ-
ing generating insulin producing cells from stem cells for 
replacement therapies [5]. Indeed, identification of spe-
cific gene expression patterns in adult β-cells lead to the 
discovery of maturation factors now guiding stem cell 
approaches [11–14]. Additionally, diverse and reliable 
markers of cell identity are important for diagnostic pur-
poses, particularly in diseased tissue where cell identities 
may be obscured [15].

Numerous transcriptomic studies have generated an 
abundance of data, including single-cell RNA sequencing 
(scRNA-Seq). However, scRNA-Seq technology has many 
variants, with multiple diverging protocols available over 
the past decade [16]. Each of these protocols has unique 
error profiles and systematic biases that may confound 
biologically relevant results when they are combined [16]. 
To maximize the utility of this disparate public catalog of 
data, they should be processed so that they are compara-
ble and so that observed differences are biological rather 
than technical.

Despite the maturity of scRNA-Seq protocols, appro-
priate statistical methods remain under debate, with 
significant concern about false positive differential 
expression detection [17, 18]. In complex organs with 
multiple cell types, comparisons via multifactorial 
designs or multiple inter-se pairwise tests provide unclear 
pictures of differences. For these reasons, intuitive met-
rics expressing differences are a desirable complement to 
statistical testing.

In this work, we present a curated dataset of pancreatic 
scRNA-Seq data as well as a metric for relating the cell-
type specificity of transcript abundances. We demon-
strate that this approach accurately delineates previously 
characterized markers and identifies possible novel mark-
ers that can be applied to benefit in vivo studies of pan-
creatic disease. We describe our results as a reproducible 
method that can be applied to other biological contexts, 
to generally benefit any disease related experiments that 
utilize marker genes. To ensure generalizability, we offer 

software that calculates specificity metrics with custom-
izable parameters. Taken together, we present a valuable 
resource for investigating cell type expression specificity 
in general and within the pancreas.

Results
Meta‑analysis of pancreatic RNA‑Seq data
The human pancreas is a compound organ consisting of 
two functional groups of cells: endocrine cells involved 
in hormone production regulating blood glucose levels 
(pancreatic islets) and exocrine cells involved in digestive 
enzyme secretion (Fig. 1A). Given the clinical importance 
of the pancreas, several studies using RNA sequencing 
have investigated differential expression between cell 
types. Many of these studies obscure cell-type specific 
expression within the pancreas by studying pooled bulk 
or bulk islets [19]. However, although several single-cell 
studies have been performed (Table S1), combining these 
data to arrive at a synthesis of cell-type specific transcrip-
tional programs remains a challenge.

To leverage this large catalog of expression profiles 
and maximize their utility for understanding the biol-
ogy of the pancreas, we sought to attain reference met-
rics of cell-type specific expression within pancreatic cell 
types. To calculate these metrics effectively, both depth 
and breadth of sequencing are critical – accurate pictures 
of the full complement of transcripts in an RNA sam-
ple as well as their relative abundances in each cell type 
are required. With this in mind, we evaluated data from 
the different types of protocols available, and found two 
major variations with respect to cell-type resolution and 
transcript coverage.

The biggest variation in protocol is with sample collec-
tion – specifically, the construction of libraries of whole 
islets or pancreas, bulk purified pancreas cells using flow 
cytometry (FACS) and individual cells using single-cell 
assays (Fig. 1A, B). Bulk collection with standard library 
preparation has an advantage over single-cell protocols in 
terms of total sequencing depth, but FACS by cell type is 
biased towards the availability of antibodies and cell sur-
face antigens, and it is not trivial to remove signal from 
contaminating cell types post-hoc.

The other major protocol variation relates to resolu-
tion of the mRNA molecule that is assayed. While one 
group of protocols (CEL-Seq, Drop-Seq, 10X) cap-
tures 3’ ends of transcripts, the other (SMART-Seq) 
sequences the full transcript length (Fig.  1B) [20–22]. 
Full length detection affords several advantages for the 
identification of marker genes, such as better resolution 
of differential expression [23].

While 3’- biased protocols can also capture RNA 
abundances with single cell specificity, they suffer from 
reduced depth compared to SMART-Seq datasets. For 
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example, representative CEL-Seq2 and SMART-Seq2 
datasets show a ~ 15 × difference in median read depth 
per cell (Fig. 1C). Even when we restricted the read cov-
erage to 3’ ends, we still find that CEL-Seq2 detects fewer 
transcripts, and cumulatively never reaches the same 
level of detection, either for a single-read or a robust level 
of read detection (1,000 reads) (Fig.  1D). This indicates 
significantly better breadth of gene detection for SMART-
Seq. For these reasons, we compiled data from full-length 
SMART-Seq protocols, which gave us superior represen-
tation of the major pancreatic cell types when combined 
(Table S1, Fig.  1E). This dataset, comprising 4,695 cells 
derived from six studies [24–29], represents at least 150 
cells of each major cell type. We recognize that there is 
substantial imbalance in representation of cell types, 
attributable to both the collection methodologies and the 
intrinsic cellular composition of the pancreas (Fig.  1E). 
However, a prior study demonstrated that correlations 
between single-cell data and bulk tissue measurements 
begin to plateau with the inclusion of only tens of single 
cells, indicating that even a relatively small number of 
cells can be sufficient to capture the expression profile of 
the tissue adequately [27].

To compare gene abundances across datasets, we 
implemented a simple consistent pipeline for read pro-
cessing that implements two major routes of generat-
ing counts from RNA-Seq reads, alignment followed by 
annotation overlap, and k-mer based pseudoalignment 
via Kallisto [30] (Fig. S1A). After comparing counts from 
each path, we found gene level detection to be highly 
concordant (r >  = 0.92). For processing thousands of sam-
ples, the speed advantage of Kallisto made it the most 
practical choice for processing the entirety of the data-
set. Following depth normalization into units of counts 
per million (CPM), results were visualized by dimen-
sionality reduction via Uniform Manifold Approxima-
tion and Projection (UMAP). Highlighting clusters by 
study did not show extensive study-specific clustering, 
indicating the absence of strong batch effect (Fig. 1F). As 
expected, highlighting by cell type showed clear separa-
tion by cell-type specific transcriptional profiles, along 

with endocrine cells closer to each other than to exocrine 
cells (Fig. 1F). These results confirmed that with minimal 
normalization, meta-analyses of combined pancreatic 
scRNA-Seq results can effectively mitigate batch effects 
to identify biological differences. This also highlights that 
visual inspection of UMAP results is a useful check of 
batch effects when performing similar analysis in other 
contexts. Additionally, we recommend having sufficient 
representation of relevant cell types (ideally > 100 cells) to 
allow the resolution of potential batch effect problems.

Expression specificity
The delineation of marker genes, representing the restric-
tion of expression within a multicellular context, is com-
monly cited from early molecular studies or manually 
compiled from heterogenous sources [31]. Additionally, 
marker gene definitions are commonly categorical rather 
than quantitative. To express the concept of specificity in 
a formalized and bounded-scale manner, there have been 
multiple metrics proposed (reviewed in [32]). These met-
rics have similar motivations but have context-dependent 
performance differences. Many of the widely used met-
rics, such as Tau and the Gini coefficient, perform well 
at producing a single value for data across multiple tis-
sues, but are not constructed to produce multiple values 
for each specific tissue or cell type [33]. For our goal of 
producing a specificity value for each expressed gene in 
each pancreatic cell type, we employed a metric which 
we call the Expression Specificity Score (ESS), to assess 
the degree to which transcription is restricted to cer-
tain cells, which was defined in a previous study of gene 
expression in the pancreas, although on bulk, FACS 
purified cells [34]. In this work, we adapt this metric to 
accommodate the integration of multiple single-cell tran-
scriptomic data.

We used our compiled meta-analysis of scRNA-Seq 
data to quantify ESS by cell type within the normal 
human pancreas. Briefly, the ESS calculation takes a sum-
mary measure of gene level abundance in each cell type, 
and divides by the sum of these measures across cell 
types (Fig. S1B, see Methods). This produces an intuitive 

Fig. 1 scRNA-Seq enables high-resolution interrogation of pancreatic cell-type specific expression. A Schematic of human pancreas and pancreatic 
cell types, contrasting bulk islet sequencing and single cell RNA sequencing. B Browser view RNA-Seq coverage of a representive acinar cell marker 
(REG1A). Tracks are depth normalized coverage tracks in units of counts per million (CPM). 3’-biased protocols (Drop-Seq/CEL-Seq) and full length 
(SMART-Seq) protocols are contrasted, as well as libraries from bulk, sorted cells and single cells. C Sequencing depth per cell in CEL-Seq (grey) 
and SMART-Seq (red) protocols. D Cumulative read count per gene in 2,000 CEL-Seq (grey) and SMARTseq2 (red) libraries. Numbers inset are 
the number of genes detected at a cumulative threshold of 1 read or 1,000 reads. E Number of cells in each study analyzed broken down by cell 
type (left) and the total number of cells by type. F Uniform Manifold Approximation and Projection (UMAP) of transcript abundances. At left: cells 
color coded by the study of origin, showing that data do not cluster by study. At right: cells color coded by cell type, showing that data cluster 
by cell type

(See figure on next page.)
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metric bounded by 0 and 1 that reflects the restriction 
of expression to each single cell type (Fig.  2A). Tak-
ing the maximum ESS across cell types represents the 

general specificity within the pancreatic context. High 
cell-type specific expression, such as α-cell specific gluca-
gon gene, produce values close to 1 within α-cells, while 

Fig. 1 (See legend on previous page.)
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constitutive housekeeping expression produces val-
ues around 1/N in each cell type, where N is the num-
ber of cell-types (or 0.20 in our case with five cell types) 
(Fig.  2A). Through this unsupervised approach, the ESS 
reflects expected values in known cell-type markers 

in each cell type, as well as within housekeeping genes 
(Fig. 2B).

Although high ESS genes are generally highly expressed 
in their relevant cell type, this metric also captures the 
specificity of low and moderately expressed genes, given 
adequate sampling depth. Additionally, in scRNA-Seq 

Fig. 2 Expression Specificity Score (ESS) quantifies cell-type specific expression. A Schematic of the ESS scale and its interpretation in the context 
of pancreatic expression levels. Cartoons of cells represent distinct pancreatic cell-types, grey shading indicates expression levels of glucagon (GCG )  
or actin (ACTB) in these cell-types. UMAP plots of α-cell specific expression of glucagon gene (GCG ) and the housekeeping gene actin (ACTB) are 
shown. The latter UMAP shows moderate expression of this gene in all cell types. B Heatmap of ESS values for representative known markers 
for each cell type, along with housekeeping genes, to demonstrate the concordance of ESS with expected values in known targets. C Density 
plot of ESS values for all genes in each cell type. D Bar chart of specificity scores for known markers using the ESS and Gini metrics. E Scatter plot 
comparing ESS in scRNA-Seq to ESS in bulk sorted beta cells, calculated using α-, β-, acinar, and duct cell data. Results for the top expressed 500 
genes in beta cells are shown
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data it allows for detection of specificity for target genes 
that are not uniformly detected in single cell libraries. For 
example, the gene PTF1A is an important acinar cell fate 
regulator that is not highly expressed yet has an ESS of 
0.98 in acinar cells (Fig. S1C).

The ESS calculation is similar to the tissue specificity 
index (TSI) [32], with a variation that allows the calcula-
tion of a score in each cell or tissue type. As constructed, 
the ESS has flexibility in how it summarizes available 
data, so that it can be varied according to the applied 
dataset. The two major decisions in calculating ESS are 
the method of gene-level summarization (e.g. median or 
mean), and the method of aggregation (by cell type or 
study) (Fig. S1B). In this study, performing library size 
normalization (via DESeq2) after summing by cell type 
within each study, followed by taking medians within 
each cell type, provided the highest sensitivity for gene 
detection while mitigating cell count imbalances between 
studies (Fig. 2B, Table S2). ESS is calculated so that each 
gene has a reported value in each cell type. A general 
value for the tissue or organ of interest consists of the 
maximum value among the composite cell types. Choos-
ing this method, we visualized the distribution of ESS in 
density plots for each cell type as a useful way to com-
pare distributions between cell types [32]. From this we 
see that high cell-type specificity is the exception and not 
the rule, with the majority of genes expressed across cell 
types (Fig. 2C).

To compare our ESS with other metrics, we built into 
our tool functions to calculate them, including Gini [33, 
35] and Tau [32]. When comparing results between these 
metrics, both ESS and Tau provide comparable high val-
ues close to one for specificity. The Gini coefficient how-
ever, since it is constructed to calculate within larger 
populations, fails to provide a value close to one when 
calculating within the set of pancreatic cells we analyzed 
(Fig. 2D). To compare our results in scRNA-Seq to bulk 
sorted cells, we calculated each consistently in a four-cell 
type fashion (since bulk sorted delta cell data is not avail-
able). This showed that ESS is robust to this technical 
difference – scores were largely concordant with average 
Pearson correlation coefficients of 0.866 in acinar, 0.7238 
in duct, 0.8529 in α-, and 0.8979 in β-cells (Fig. 2E). The 
lowest correlation was in duct cells, which has the lowest 
representation of cells in our dataset. This illustrates that 
higher sample number improves ESS consistency.

One technical challenge of scRNA-Seq experiments, 
particularly for the pancreas due to containing cell types 
that produce large amounts of secreted peptides, is con-
tamination from exogenous RNA. For instance, insulin 
mRNA produced by β-cells can contaminate the library 
of another cell type on the same plate via fluidic carryo-
ver. This kind of contamination was recently observed in 

GTEx samples in libraries of other tissues processed on 
the same day as pancreatic samples [36]. We also observe 
a small amount of outlier insulin transcript detected in 
non-β-cell types, including high CPM values in α- and 
δ-cells (Fig. S1D). Our ESS approach helps to mitigate 
this pernicious problem. By using medians (or other met-
rics of summarization), contaminating signal is effectively 
diluted or nullified, such that the calculated ESS value 
reflects the true specificity of expression. In this example, 
the calculated ESS is close to 1 in β-cells (0.996) and close 
to 0 in other cells (< 0.0016) (Table S2).

Online resource and ESS query interface
Examining the genes with high specificity reveals an 
expanded set of putative pancreatic cell markers: 939 
genes with high ESS of 0.8 or higher (Table S2), provid-
ing a resource of additional options for study design that 
involves marker genes. We also compiled previously pub-
lished marker gene definitions, to indicate where these 
definitions may be in different contexts (eg, within islet 
cells only, see Table S3). We identified novel marker 
genes, including 513 protein coding genes and 133 non-
coding transcripts (Table S3).

To facilitate the use of this work as a reference tran-
script abundance and specificity resource, we designed 
an online tool (Fig. 3). This resource takes gene symbols 
as input, and returns the relevant expression levels and 
ESS. The user may also select options including the gene 
expression aggregation method, transcript abundance 
metric, and cell-type context. Tabulated data along with 
several visualizations are produced, include boxplots and 
a UMAP representation of expression levels. The latter is 
useful as a concrete example of the specificity as well as a 
visualization of the heterogeneity of expression.

In addition to the catalog of ESS data, we generated 
reproducible code to calculate ESS along with other asso-
ciated statistical metrics, like the Gini coefficient [37] or 
Tau [38]. With this code, ESS metrics can continually 
be recalculated when additional data are generated, or 
applied to data from other organ systems. This code is 
available at https:// github. com/ dsturg/ Pancr ESS

Discussion
In this work, we performed a meta-analysis of pancreatic 
single-cell RNA-seq to quantify cell-type specific gene 
expression. We observed a substantial sensitivity advan-
tage of data from SMART-Seq2 libraries over 3’ biased 
protocols, consistent with other studies [20, 21], which 
was critical to the generation of complete transcriptional 
profiles. Although our analysis obtained adequate tran-
script coverage, we note that protocol improvements are 
available which may perform better for the generation of 

https://github.com/dsturg/PancrESS
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new data. For example, SMART-Seq3 [39] and G&T-seq 
[40] have recently been shown to perform best for tran-
script detection sensitivity [41].

We described and implemented an expression met-
ric, the Expression Specificity Score (ESS), which allows 
the quantification of gene expression specificity in each 
pancreatic cell type. The ESS stands out for its intuitive 
and bounded metric system, allowing researchers to gain 
insight into the extent of restriction of gene expression 
within a single cell type. A significant technical challenge 
we navigated is the potential contamination from ambi-
ent RNA, particularly relevant for the pancreas, where 
cell types often produce large quantities of secreted pep-
tides. A few groups developed computational approaches 
to remove or correct the contaminating transcripts from 
scRNA-Seq datasets [42–44]. While these studies address 
an important issue in single cell analysis, they can some-
times limit the detection of cell-to-cell variability or 
marker genes. Our ESS metric offers a complementary 

approach– we demonstrated that by employing medians 
or other summarization metrics, we effectively dilute or 
eliminate the contaminating signal, thus revealing the 
genuine specificity of expression. Furthermore, ESS can 
capture the specificity of genes across the expression 
spectrum, from low to high, improving on the identifica-
tion of target genes which may be undetected in single 
cell libraries.

We would like to acknowledge that due to insufficient 
data, we were not able to include minor cell types of the 
pancreas, like pancreatic polypeptide cells (PP cells), 
epsilon cells, or pancreatic stellate cells. These cell types 
were included in some studies [26, 27], but with sam-
ple sizes too low to enable equal consideration. We note 
that in a previous meta-analysis, PP cells were included 
from these studies, but this analysis was restricted 
to islet cells [8]. Despite this challenge, our approach 
maintains flexibility and is adaptable to additional cell 
types. As more data become available, our methodology 

Fig. 3 The pancrESS database interface. A Screen capture of the search interface for pancrESS. Users can select a gene symbol (left) and obtain 
a UMAP representation of combined data with the gene of interest highlighted, along with detailed ESS and transcript abundance levels
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allows for an easy integration of these minor cell types, 
further enhancing the comprehensiveness and useful-
ness of the ESS.

Our database and analytical tool can be extended to 
other biological systems, which significantly broadens 
their applicability. These tools are expected to be a valu-
able resource for the scientific community and facilitate 
comparative analyses across different cell types or bio-
logical systems.

Conclusions
In summary, we have described a catalog of expres-
sion profiles of pancreatic endocrine and exocrine cell 
types, and a resource for specificity metrics within the 
pancreatic system. The latter will serve as a valuable 
tool for marker gene identification, which are critical 
for increasingly complex in  vivo experiments. Beyond 
the pancreatic system, ESS provides a flexible frame-
work for application to different datasets that may be 
different in terms of breadth and depth. When com-
bined with other disparate omics experiments to make 
connections between different regulatory mechanisms 
at play, our approach provides a discrete score to facili-
tate integration [45, 46].

Methods
scRNA‑Seq protocol comparison
For the RNA-Seq protocol comparison presented in 
Fig.  1, representative acinar samples were aligned to 
the GRCh38 assembly using STAR [47] and visualized 
with the IGV browser (Broad Institute, [48]). Samples 
shown are: Drop-Seq (SRR5818089, GSM2700339 [49]), 
CEL-Seq (SRR4003812, GSM2262817 [19]), bulk RNA-
Seq (SRR1299333, GSM1398975, [11], and SMART-Seq2 
(ERR1630022, [27]). Samples were selected as representa-
tive of the depth obtained per sample in their respective 
experiments. We note that this selection broadly illus-
trates protocol differences, but is not meant to reflect a 
canonical acinar cell result, which in fact may be highly 
heterogeneous [50].

To explore detection ability differences by protocol, we 
analyzed pre-processed pancreas scRNA-Seq data from 
Satija et al., packaged as part of Seurat v.3 [51]. This dataset 
is also described in the instruction page at: https:// satij alab. 
org/ seurat/ archi ve/ v3.0/ integ ration. html

This dataset is an independently compiled and well 
described standardized dataset, that aims to integrate 
data from multiple platforms. Thus, it serves to help 
isolate the effect of depth from other analysis param-
eters. This analysis views the effects of depth distinctly, 
independently of our downstream analysis pipeline. Pro-
tocols were compared visually in a genome browser, to 

assess coverage over marker gene transcripts. Addition-
ally, depth per cell and gene detection was assessed, using 
precomputed counts from the source described above. 
For the former, we generated boxplots of read counts 
per cell and compared distributions. For the latter, we 
used an R script to calculate cumulative sums of genes 
detected at different total read counts, and indicated 
results at thresholds of 1 or 1,000 reads.

RNA‑Seq processing
Data acquisition
Pancreatic single-cell RNA-Seq studies were identi-
fied from the literature and data repositories (PRISMA 
flow diagram, Fig. S2). Briefly, following our evaluation 
of scRNA-Seq data by protocol, we proceeded to com-
pile single-cell pancreatic RNA-Seq data that used the 
SMART-Seq protocol, via literature searches in Pubmed 
and keyword searches in the Gene Expression Omnibus 
(GEO). Within identified studies, we selected those that 
included at least 100 samples, from normal adult (rather 
than pediatric or disease samples). RNA-Seq data were 
then obtained from public repositories, via accessions 
listed in Table S1. Data for bulk sorted cells for compari-
son were processed in equivalent fashion and acquired 
from accession GSE79469 [11]. Where necessary, reads 
were trimmed of low quality base calls and adapter con-
tamination using cutadapt [52].

All analysis used the GRCh38 assembly, with tran-
script abundances quantified against RefSeq annota-
tion (NCBI Homo sapiens Updated Annotation Release 
109.20191205).

Quality control
Exploratory alignments to measure contamination and 
sequencing artifacts were performed with the Bowtie2 
aligner (v.2.4.1) [53], specifying “–sensitive-local" align-
ment parameters, to relevant contaminant reference 
sequences. Quantification of rRNA was performed by 
alignment with to the 43  kb Human ribosomal DNA 
complete repeating unit (U13369.1) downloaded from 
GenBank. Alignment fractions to rRNA in tested sam-
ples were low. To test the impact of in-silico rRNA read 
removal on downstream results, we extracted the rRNA 
unaligned reads from a sample, and compared Kallisto 
transcript abundances with and without this separa-
tion. These results demonstrated no impact of in-silico 
rRNA removal, so we did not perform this process-
ing step on all samples for downstream analysis. To 
spot check for other contaminants in each dataset, the 
Sponge database was used [54] From these results, no 
significant contaminant that would affect biological 
integrity of samples (e.g.; mycoplasma) was detected.

https://satijalab.org/seurat/archive/v3.0/integration.html
https://satijalab.org/seurat/archive/v3.0/integration.html
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Processing pipeline
Transcript counts for published RNA-Seq data were 
obtained from two standardized methods, to enable 
comparison between experiments. These pipelines were 
chosen to represent the major approaches used in the lit-
erature (Fig. S1A). The first pipeline is representative of 
the alignment based approach, where raw reads are first 
aligned to a genomic reference, and read overlap with 
coordinates of gene features is quantified. This pipeline 
uses the STAR aligner v.2.7.3a [47] and featureCounts 
(Subread v.2.0.1) [55]. The second pipeline is represent-
ative of the alignment independent approach, where 
transcripts are quantified using the sequence content of 
reads, using a pre-built index of k-mer content of tran-
scripts. This pipeline uses Kallisto v.0.46.1 [30]. Tran-
script abundances were compiled and summarized at the 
gene level using Tximport [56].

To confirm the strandedness of the library preparation 
protocol, we used the infer_experiment.py script within 
the Rseqc tool [57]. From this result, we set downstream 
abundance calculation parameters accordingly.

Parameter specification
From the normalized Seurat object described in the 
meta-analysis below, we used the FindVariableFeatures 
Seurat function with the “vst” selection method and 2000 
features. We then scaled the data using the ScaleData 
function. Principle component analysis (PCA) was run 
using RunPCA and the defined variable features. Clus-
tering was performed using FindNeighbors and dims 
1:10, followed by FindClusters, specifying 0.5 for resolu-
tion. The UMAP was generated using Seurat’s runUMAP 
function. These parameters generally followed default 
Seurat vignettes, with number of samples and features 
selected based on compute time performance.

Cross‑experiment meta‑analysis
Filtering criteria
Prior to normalization and meta-analysis, filtering is 
performed to remove low-quality (single cell) libraries. 
The filtering criteria were a minimum count numbers in 
the housekeeping gene ACTB (minimum 100 reads) as 
well as a minimum total count (minimum 250,000 total 
reads). These thresholds were selected from the distribu-
tions of counts across cells, and represented the lowest 
5% and 10% of values, respectively. Enforcing the dual 
cutoff preserved 89% of cells.

Normalization strategies
To combine gene abundance estimates across experi-
ments, we normalized values in each cell to make them 
comparable in the combined data via one or more 
strategies. In the simple counts per million (CPM) 

normalization, counts for each gene in each cell are 
divided by the sum of counts across genes in that cell (in 
millions). The analogous normalization is performed on 
the pseudobulk pooled variation. The advantage of this 
normalization method for exploratory analysis of gene 
level abundance is that it is conceptually simple, allowing 
for comparison between cells and experiments normal-
ized for depth, without potential ambiguity from normal-
ization by transcript length. Expression results in units of 
transcripts per million (TPM), which do account for tran-
script length, are provided in Table S2. For the ESS results 
presented in Table S2, raw counts in individual cells of 
the same type are summed by experiment, followed by 
size-factor normalization with DESeq2 [58]. The ration-
ale for this approach is to better balance different sized 
experiments, and reduce zero-inflation of low expressed 
genes. ESS values calculated with these normalized val-
ues demonstrated high specificity scores of known mark-
ers as well as the absence of skewed distributions in each 
cell type. In UMAP representations where input data 
were raw counts, normalization was performed using the 
Seurat normalizeData function (v.4.0) [51].

Clustering and UMAPs
To assess distance between cellular transcriptome pro-
files, we performed dimensionality reduction using Uni-
versal Manifold Approximation and Projection (UMAP). 
This was implemented in the Seurat package (v. 4.3.0.1) 
[59], with graphical improvements from the dittoSeq 
package (v.1.12.2) [60].

Compilation of previously published marker gene 
definitions
We compiled lists of previously defined marker genes 
from the literature (Table S3), via curation of original 
sources and compilation databases [8, 19, 31, 61]. These 
sources were identified via literature search, by reviewing 
literature cited in the primary studies we used for RNA-
Seq data, with additional searches using “pancreas” and 
“marker” keywords. For each source identified, we com-
piled marker definitions where at least three islet cells 
were represented with at least ten genes. No additional 
restrictions were applied, and gene lists were manually 
re-typed when tabular format was not available.

Expression specificity score
To examine the cell-type specificity of gene expression, we 
generated the  expression specificity score (ESS). Several 
variants of this calculation were compared for evaluation, 
using formulae compiled from Kryuchkova-Mostacci et al. 
[32]. Additional information on the calculation is presented 
in the results section, with schematics in Fig. 2A and Fig. 
S1B. Criteria for evaluation included visual inspection of 
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CDF distributions as in Kryuchkova-Mostacci et  al., high 
ESS values for a subset of known markers, and low ESS val-
ues for housekeeping genes (Fig.  2C). The edgeR Biocon-
ductor package was used to calculate Gini values [35].

Functional annotation enrichment analysis (Fig. S3) 
was performed by entering gene lists of high ESS genes 
into the EnrichR server (https:// maaya nlab. cloud/ Enric 
hr/) (Chen et al., 2013). Pathway annotation enrichment 
analyses were performed within the server.

Browser views and visualization
To produce depth-normalized coverage tracks from 
RNA-Seq data, the deepTools package [62] was used, 
selecting a bin size of 25  bp and the Coverage Per Mil-
lion (CPM) metric. We chose this tool because it is open 
source with a peer reviewed publication, and includes 
flexible parameters for binning and normalization. For 
these parameters, we chose a bin size of 25 bp to balance 
file size and resolution, and CPM normalization to equili-
brate depth, Genome browser views for visualizing read 
density were generated using the Integrated Genomic 
Viewer (IGV) browser (Broad Institute, [48]), which has 
memory-efficient performance with multiple tracks, and 
allows export in an editable format.

Web server and code availability
The online resource we developed for ESS scores and 
dynamically generated plots is linked from the project 
page at https:// github. com/ dsturg/ Pancr ESS. This site was 
built using Shiny, which facilitates lightweight web imple-
mentations of R programs [63]. Reproducible code that 
takes gene level measurements as input, and generates 
our ESS or other specified specificity metrics, is also avail-
able at https:// github. com/ dsturg/ Pancr ESS. We invite the 
community to provide feedback, fork, and contribute to 
the development of this resource via this repository.
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The online version contains supplementary material available at https:// doi. 
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Additional file 1: Figure S1. RNA-Seq processing and ESS details. (A) 
Schematic of scRNA-Seq primary quantitation pipeline. (B) Schematic 
of ESS calculation steps with variations. (C) UMAP plot showing acinar 
specific detection in a low-expressed gene. (D) Insulin transcript detection 
in each cell type. Outlier spots show detection of exogenous RNA. Figure 
S2. PRISMA flow diagram for study selection. Figure S3. Functional anno-
tation enrichment of high ESS genes. Functional enrichment results from 
the EnrichR tool (Chen et al., BMC Bioinformatics 2013), from the Ma’ayan 
Lab (https://maayanlab.cloud/Enrichr).
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