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Abstract 

Background Brain diseases pose a significant threat to human health, and various network-based methods have 
been proposed for identifying gene biomarkers associated with these diseases. However, the brain is a complex 
system, and extracting topological semantics from different brain networks is necessary yet challenging to identify 
pathogenic genes for brain diseases.

Results In this study, we present a multi-network representation learning framework called M-GBBD 
for the identification of gene biomarker in brain diseases. Specifically, we collected multi-omics data to construct 
eleven networks from different perspectives. M-GBBD extracts the spatial distributions of features from these 
networks and iteratively optimizes them using Kullback–Leibler divergence to fuse the networks into a common 
semantic space that represents the gene network for the brain. Subsequently, a graph consisting of both gene 
and large-scale disease proximity networks learns representations through graph convolution techniques 
and predicts whether a gene is associated which brain diseases while providing associated scores. Experimental 
results demonstrate that M-GBBD outperforms several baseline methods. Furthermore, our analysis supported 
by bioinformatics revealed CAMP as a significantly associated gene with Alzheimer’s disease identified by M-GBBD.

Conclusion Collectively, M-GBBD provides valuable insights into identifying gene biomarkers for brain diseases 
and serves as a promising framework for brain networks representation learning.
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Background
According to the Global Burden of Disease study, brain 
diseases have emerged as the leading cause of disability 
and the second leading cause of death since 2016 [1], 
imposing a substantial burden on individuals and soci-
ety [2, 3]. As the intricate central nervous system organ, 
the brain orchestrates every bodily process. Sustaining 
a healthy brain is imperative for attaining longevity and 
overall well-being [4]. However, diagnosing and treating 
brain diseases pose complex challenges [5–8]. Numer-
ous human brain diseases exhibit significant genetic 
components [9–11]. Identifying gene biomarkers associ-
ated with these conditions is crucial for elucidating their 
pathogenesis and facilitating drug development. Con-
sequently, this can enable early clinical diagnosis and 
treatment.

Identification of gene biomarkers for diseases is typi-
cally achieved through linkage analysis [12, 13], large 
clinical cohorts [14, 15], and genome-wide association 
studies (GWAS) [16, 17]. However, these approaches are 
time-consuming and costly, particularly in the context 
of brain diseases. It should be noted that genes require 
complex regulation to perform biological functions 
and diseases rarely result from a single gene abnormal-
ity [18–20]. Several network-based strategies have been 
proposed for disease gene prediction and have success-
fully been applied to the study of brain diseases [21–27]. 
For instance, the MAGI method utilizes random walk 
techniques to integrate protein–protein interactions 
and co-expression networks during brain develop-
ment to identify genes associated with autism and intel-
lectual disability [22]. Another example is eMAGMA 
which incorporates genetic and expression networks 
into tissue-specific analyses to identify genes related to 
depression risk [28]. In addition to the molecular-based 
network studies mentioned above, several investigations 
have focused on brain functional connectivity (BFC) net-
works constructed using functional magnetic resonance 
imaging (fMRI). Nevertheless, it is important to note that 
these methods primarily focus on a single network with-
out providing a comprehensive overview of information 
across multiple types of networks.

Integrating multiple types of networks allows for the 
combination of multi-dimensional information, com-
pensating for the limitations of a single network [29, 30]. 
However, effectively leveraging diverse biological net-
works to identify disease-related genes remains challeng-
ing due to their spatial inconsistencies and high structural 
heterogeneity. Given the complexity of the brain and its 
requirement for precise gene biomarker prediction, a 
comprehensive fusion of multiple networks is neces-
sary [31]. The BFC network reflects functional correla-
tions between genes in the brain [32]. A framework called 

brainMI has been developed to enable consistent repre-
sentation of BFC and molecular networks, facilitating pre-
dictions on gene-brain disease associations using machine 
learning approaches [7]. However, the gene network used 
by brainMI is solely an inference network derived from 
matrix multiplication. Consequently, this approach over-
looks gene regulatory relationships and lacks comprehen-
siveness in terms of fusion. Therefore, it is crucial to fully 
consider transcription factor regulation when construct-
ing a biologically meaningful gene network.

Regulatory interactions between transcription fac-
tors (TFs) and their targets constitute a gene regulatory 
network (GRN), which is pivotal for understanding the 
mechanisms underlying various biological processes 
[33–35]. With advancements in sequencing technolo-
gies, numerous large-scale projects have implemented 
bulk or single-cell RNA sequencing, resulting in an 
extensive collection of gene regulation data [34–36]. 
Hence, integrating TFs to enhance the accuracy of gene 
networks has become both feasible and increasingly 
urgent, particularly for complex brain diseases. Fur-
thermore, from the perspective of constructing rugged 
networks, introducing intermediate/bridge nodes can 
effectively mitigate noise associated with network con-
nections and minimize the presence of pseudo-edges 
within the network to some extent [37, 38]. Addition-
ally, different diseases exhibit shared similarities that 
enable construction of a disease proximity network. 
Previous studies have demonstrated that genes asso-
ciated with similar diseases are more likely to possess 
physical interactions among their protein products as 
well as display similar expression patterns [39, 40]. In 
conclusion, modeling the brain network as an associa-
tion network comprising genes and diseases can effec-
tively and directly reflect the correlation between brain 
diseases and genes implicated in causing these disor-
ders. This approach can be regarded as a link predic-
tion issue within complex networks. Identification of 
gene-level biomarkers for brain diseases will provide 
novel insights into causative genes identification, drug 
repositioning and disease taxonomy.

In recent years, deep learning methods, especially 
Graph Neural Networks (GNN) based methods, have 
been widely used in brain network studies [41–44]. It is 
advantageous to use GNNs due to their power to combine 
node features and graph structures through end-to-
end feature combinations and model the adjacency 
relationship between nodes via message passing [45]. 
Among GNNs, Graph Convolutional Network (GCN) 
[46] stands out as a typical method that leverages 
structure information and performs convolution 
operations on graphs to aggregate neighboring node 
features. Given the diverse, informative, and complex 
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nature of brain networks, it is reasonable and efficient 
to perform link prediction tasks by fusing multiple 
heterogeneous networks. Consequently, several methods 
have been proposed to employ GCN for learning latent 
patterns in brain networks for purposes such as brain 
disease classification or identification of related genes 
[47–50]. However, existing methods are limited by their 
usage of restricted diseases and networks within large 
and complex brain networks, thus hindering the potential 
for predicting related pathogenic genes.

In this study, we propose M-GBBD, a Multi-network 
representation learning framework for the identification 
of Gene Biomarkers in Brain Disease. We employ eleven 
brain networks and extract topological semantics using a 
joint optimizer with dual feature extraction channels to 
comprehensively capture brain features. By incorporating 
a disease proximity subgraph and gene-disease bipartite 
graph into a heterogeneous graph obtained by M-GBBD, 
we obtain a brain gene network with biological signifi-
cance. The GCN is then utilized to learn representations 
of gene and neurodegenerative diseases from the het-
erogeneous graph, enabling the prediction of association 
scores between genes and brain diseases. Comprehensive 
experimental results demonstrate that M-GBBD achieves 
highly competitive performance compared to several 
baselines in terms of both dataset and model architec-
ture. Importantly, the generalizability and accuracy of 
M-GBBD are confirmed by large-scale cohort GWAS 
studies, where we identify CAMP as a potential candidate 
gene associated with Alzheimer’s disease.

Materials and methods
Overview of networks used in M‑GBBD
This study employe four types of omics data, including 
genomics, transcriptomics, radiomics, and connectomics 
to construct distinct brain networks for training and 
testing our model. The genomic data include human 
genome sequence and gene annotation information as 
well as disease pathogenic variants, obtained from the 
Human Genome Resources at NCBI (version GRCh38) 
and DisGeNET database [51]. The transcriptomic 
data consist of two types of gene expression datasets 
downloaded from Allen Human Brain Atlas (AHBA) 
[52] and Genotype-Tissue Expression (GTEx) [53], 
along with gene regulatory data downloaded from Gene 
Regulatory Networks Database (GRNdb) [34]. Radiomic 
data comprise brain r-fMRI signals obtained from 
Human Connectome Project (HCP) [54]. Regarding 
connectomic data, we obtained the brain functional 
connectivity network framework developed by the Cole 
Neurocognition Lab [55] (Fig. 1).

A total of eleven brain networks are constructed in this 
study (Table 1 and Supplemental Notes): Gene regulatory 

network (G-T), TF-TF similarity network (T-T), TF and 
brain region matching network (T-R), Gene network based 
on regulatory relationships (G-G), Gene-region expression 
network (G-R), Brain region-region functional connectivity 
network (R-R), Brain parcel and region matching network 
(P-R), Brain parcel-parcel functional connectivity network 
(P-P), Gene-parcel expression network (G-P), Disease-dis-
ease similarity network (D-D) and Gene-disease associa-
tion network (G-D).

Overview of M‑GBBD
We model the identification of causative genes in brain 
diseases as a link prediction issue. M-GBBD is an end-
to-end framework with three main components (Fig.  2): 
(i) constructing two types of brain heterogeneous graphs 
to comprehensively represent the brain functional 
connectivity and gene regulatory relationships, (ii) 
leveraging deep neural network (DNN) with the Kullback–
Leibler (KL) divergence loss to learn topological semantics 
from the heterogeneous graphs, thereby generating an 
enhanced brain functional connectivity (eBFC)-based 
gene network with biological significance, and finally, (iii) 
integrating the eBFC-based gene network with the G-D 
and D-D networks to perform feature representation using 
graph convolution network(GCN).

To capture and integrate a richer set of structural infor-
mation and features of the brain, we constructed two het-
erogeneous graphs. The first heterogeneous graph, denoted 
as HGPR ∈ R

(NG+NP+NR)×(NG+NP+NR) , encompasses 
brain parcel-parcel functional connectivity, brain region-
region functional connectivity and a gene network based 
on regulatory relationships. The second heterogeneous 
graph, referred to as AGTR ∈ R

(NG+NT+NR)×(NG+NT+NR) , 
incorporates functional connectivity among brain regions, 
brain gene regulatory networks, and gene networks based 
on gene regulatory relationships. Mathematically, the two 
heterogeneous graphs can be represented by the following 
adjacency matrix:

where MGP
T , MGR

T , MPR
T , MGT

T and MTR
T indicates the 

transpose of MGP , MGR , MPR , MGT and MTR , respectively.

Graph topological semantics extraction
We employ a deep neural network (DNN) with the 
KL-divergence loss to extract topological semantics 

(1)AGPR =

MGG MGP MGR

MGP
T MPP MPR

MGR
T MPR

T MRR

(2)AGTR =




MGG MGT MGR

MGT
T MTT MTR

MGR
T MTR

T MRR
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from two heterogeneous graphs. Specifically, we treat 
the feature maps of the two heterogeneous graphs AGPR 
and AGTR as two-dimensional representations and 
construct a joint optimizer with dual feature extraction 
channels. The input consists of these feature maps, which 
are then fed into a multi-layer DNN for dimensionality 
reduction and extraction of gene primary features 
along with their corresponding spatial distributions. 
Subsequently, we calculate the KL-divergence between 
the distributions of gene primary features to learn a 
common subspace that captures multiple heterogeneous 
information. During optimization, the DNN is iteratively 
trained using gradient backpropagation to enhance the 
representability of gene nodes, resulting in two final 
representation maps obtained through collaborative 
optimization of subspace and dual channels. These 
representation maps are utilized to derive an enhanced 
brain functional connectivity-based gene network (eBFC-
based gene network), incorporating both brain functional 

Fig. 1 Overview of the datasets used in M-GBBD. A The data sources for each project. B The types of raw data collected for each project. C Various 
brain networks constructed using the collected data. D Mathematical representations in the form of unique matrices are used to represent each 
brain network as inputs for M-GBBD

Table 1 Summary of brain networks used in this study

Brain networks Mathematical 
representations

Nodes Edges

G-T MG-T 14,923 123,045

T-T MT-T 728 15,714

T-R MT-R 4,430 2,687,652

G-G MG-G 14,195 105,824,555

G-R MG-R 17,897 52,549,890

R-R MR-R 3,702 13,704,804

P-R MP-R 4,420 2,933

P-P MP-P 718 515,524

G-P MG-P 14,913 5,706,390

D-D MD-D 10,392 992,230

G-D MG-D 24,587 588,178
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connectivity and gene regulatory information. Following 
normalization based on previous studies [7], this eBFC-
based gene network is further integrated into large-
scale disease-disease networks to construct a bipartite 
graph named GeBFC−DD . This step can be represented as 
follows:

where w1 , w2 and w3 represent the corresponding weight 
matrix, and b1 , b2 and b3 represent the bias vector for the 
three corresponding layers. α(·) represents the activation 
function ReLU. The KL-divergence loss is defined as

where PGPR and PGTR represent the distribution of differ-
ent representations and

(3)z(i,j) = w3α
(
w2α

(
w1x

(i,j)
+ b1

)
+ b2

)
+ b3

(4)DKL(PGPR||PGTR) =
n∑
i=1

PGPR(xi)log
(
PGPR(xi)
PGTR(xi)

)

(5)ZG−PR = f
(
ZG · ZPR

T
)

where ZG denotes the representations of genes and ZPR 
denotes the representations of TFs and brain regions 
from ZG−PR . ZTR denotes the representations of TFs and 
brain regions from ZG−TR . f(·) denotes the dimension 
reduction operation.

Graph convolutional network
In general, graph-based deep learning approaches can be 
categorized into two types: spatial-based and spectral-
based. Spatial-based methods learn node representation 
by iteratively aggregating information from neighboring 
nodes, which may result in over-smoothing of the node 
representation [56]. On the other hand, spectral-based 
methods rely on the spectrum of the graph Laplacian 

(6)ZG−TR = f
(
ZG · ZTR

T
)

(7)ZG = ZG−PR · ZG−TR
T

Fig. 2 Overview of the M-GBBD framework. The framework takes two brain heterogeneous graphs, namely AGPR and AGTR (top left) as input. To 
reduce dimensionality and extract gene primary features along with spatial distributions, a multi-layer DNN is employed. The Kullback–Leibler 
divergence is utilized to calculate and learn the distributions of common subspace. After iterative optimization, an eBFC-based gene network 
is obtained. By combining the eBFC-based gene network with the D-D network and G-D network, GCN is applied to learn representations of genes 
and diseases. Finally, these representations are fed into MLP for predicting gene-disease associations
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of the design matrix [46]. Compared with spatial-based 
methods [57–61], spectral-based methods generally 
exhibit better performance in graph learning [62, 63]. 
A representative example of a spectral-based method 
is modified Chebyshev polynomials, which simplifies 
parameters and avoids large computational burdens. 
Given the complexity and scale of our networks, employ-
ing a multilayer GCN that is spectral-based to learn 
gene and disease representations from brain networks is 
feasible.

Specifically, the input to a GCN is the graph 
GeBFC−DD = (⊑, E) , where ⊑ = (NG,ND) represents NG 
gene nodes and ND disease nodes, and E is a set of edges 
between nodes. The objective is to predict potential 
edges between gene-disease pairs that have not been 
previously identified in GeBFC−DD . Denoting GeBFC−DD 
as an adjacency matrix AeBFC−DD ∈ R

(NG+ND)×(NG+ND) , 
the features of both types of nodes are required. It 
should be noted that there are two types of nodes: gene 
nodes and disease nodes, which correspond to different 
types of features. For gene nodes, the features consist 
of gene expression levels at different brain sites based 
on RNA-seq results from 2,642 brain sites. Patho-
genic variant genotypes are used as features for disease 
nodes, with a value of 1 indicating association with a 
variation and 0 otherwise. The raw data for both node 
types is encoded using stacked autoencoders (SAE) to 
ensure consistent feature dimensions. Denoting the 
dimensionality of SAE output as CSAE ∈ R , the final 
node feature matrix XeBFC−DD ∈ R

(NG+ND)×CSAE can be 
obtained by concatenating SAE outputs for gene and 
disease nodes.

The graph convolution is defined on a graph as 
the product of the input signal and the filter g

θ
 in 

the Fourier domain. Here, denoting the symmet-
ric normalized Laplacian matrix of AeBFC−DD as 
LeBFC−DD = UeBFC−DD�eBFC−DDUeBFC−DD

t , where 
UeBFC−DD represents the eigenvector matrix and 
�eBFC−DD = diag(�1, �2, �3, . . . , �NG+ND) denotes the 
diagonal matrix of eigenvalues. The Fourier transform of 
XeBFC−DD can be represented as UeBFC−DD

tXeBFC−DD . 
However, computing the eigenvector matrix and eigen-
value diagonal matrix becomes computationally expensive 
with an increasing scale of the graph. To reduce compu-
tational complexity, a modified GCN based on Chebyshev 
polynomials TK(x) = 2xTK−1(x)− TK−2(x) was used 
here for brain network feature representation. Conse-
quently, we define and represent the filter g

θ
 as

(8)g
θ
(�eBFC−DD) =

∑K
K=0 θKTK

(
�̃eBFC−DD

)

 where θ ∈ R
K denotes the vector of Cheby-

shev coefficients, �̃eBFC−DD =
2�eBFC−DD

�max
− IN , 

L̃eBFC−DD =
2LeBFC−DD

�max
− IN , IN denotes the identity 

matrix and K denotes the  Kth-order neighborhood.
Given that Chebyshev polynomials are recursive [64], 

the formulation is simplified by restricting K = 1 [46] 
and introducing activation functions in each layer (l > 0) 
to enhance the power of the model. Finally, the graph 
convolution method used in this study can be repre-
sented as

where DeBFC−DD denotes the diagonal matrix with diago-
nal entry [DeBFC−DD]i,j =

∑
j [AeBFC−DD]i,j , HG denotes 

the embedding of genes and HD represents the embed-
ding of diseases. ⨁ denotes a concatenation operator and 
HGD denotes the embedding of gene-disease pair.

The prediction of the gene-disease association scores 
is formulated as an end-to-end binary classifier in this 
study. After applying the GCN to obtain embedding vec-
tors, they are concatenated and used as the input for a 
multi-layer perception (MLP). The association scores are 
computed using the sigmoid function applied to the out-
put of the last hidden layer:

where S denotes the scores of gene-disease associations, 
Wout and bout denote the weight matrix and the bias 
vector.

The cross-entropy loss L is adopted to optimize 
model parameters as

where yij represents the true label of the edges, which will 
be 1 or 0, Y and Y− denote the sets of nodes contained in 
the positive edges set and negative edges set, respectively. 
Then, the whole model via back propagation algorithm in 
an end-to-end manner can be trained.

(9)g
θ
∗ XeBFC−DD =

∑K
K=0 θKTK

(
L̃eBFC−DD

)
XeBFC−DD

(10)

g
θ
∗ XeBFC−DD = θ

(
D
− 1

2

eBFC−DD(IN + AeBFC−DD)D
− 1

2

eBFC−DD

)

(11)
g
θ
∗ XeBFC−DD = ReLU

(
θ

(
D
− 1

2

eBFC−DD(IN + AeBFC−DD)D
− 1

2

eBFC−DD

))

(12)
[
HG
HD

]
= g

θ
∗ XeBFC−DD

(13)HGD = HG ⊕HD

(14)S = Sigmoid(Wout ·HGD + bout)

(15)
L =

∑
i,j∈Y∪Y−

(
yijlogŷij +

(
1− yij

)
log

(
1− ŷij

))
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Experimental setting
The prediction model is tuned using five-fold cross-val-
idation (5-CV). To evaluate the accuracy of M-GBBD, 
the receiver operating characteristic (ROC) curve is 
employed. The area under the ROC curve (AUC) served 
as the primary evaluation metric. Additionally, consid-
ering AUC’s bias towards imbalanced datasets, we also 
utilize the precision-recall (PR) curve. The area under 
the PR curve (AUPR) is selected as another primary 
evaluation metric. Besides, other evaluation metrics such 
as accuracy (ACC), recall (REC), precision (PRE) and 
F1-score (F1) are also calculated.

Several hyperparameters are consisted in the 
model, including the learning rate of optimizer 
L ∈ {0.0002, 0.0004, 0.0006, 0.0008} , the hidden dimen-
sionality of embeddings H ∈ {16, 32, 64, 128} , the 
dropout rate D ∈ {0.01, 0.05, 0.1, 0.3} , the Chebyshev 
filter size K ∈ {2, 3, 4, 5} , and the total training epochs 
E ∈ {200, 600, 1000, 2000} . The best obtained parameters 
are L = 0.0004, H = 64, D = 0.05, K = 4 and E = 1000.

After intersecting all datasets used in this study, a total 
of 14,195 genes were retained. As we have collected com-
prehensive human genome-wide gene information that 
includes consistent characterization and network struc-
ture information here, 20 known gene-disease associa-
tions related to two specific brain diseases (Alzheimer’s 
disease and Parkinson’s disease) have been pre-isolated 
by random selection for further demonstration. These 
pre-isolated associations are not involved in any train-
ing process to prevent data leakage, and thus ensuring 
objectivity. Finally, a total of 14,175 genes and 10,392 dis-
eases formed a dataset consisting of 557,893 associations 
which participated in the subsequent training process.

Results
Overall performance
The eBFC-based gene network, which covers most 
genes in the human genome, has been derived through 
topological semantics extraction from AGPR and AGTR . It 
is essential to note that gene expression may be regulated 
through various mechanisms, resulting in one gene 
being associated with multiple diseases due to distinct 
regulatory pathways [65–67]. In other words, several 
common pathogenic genes can be identified across 
different diseases, with differential regulation of these 
genes being particularly prevalent among brain diseases 
[18, 20]. Therefore, it is more reasonable to use a link 
prediction paradigm for identifying pathogenic genes 
related to brain diseases. In our study, we constructed 
a disease-disease (D-D) network comprising 10,392 
diseases in M-GBBD, enabling the prediction of 
associations between any given gene and disease within 
this network. Evaluation of M-GBBD performance shows 

that across all diseases considered, the mean values for 
AUC, AUPR, ACC, PRE, REC, and F1 of M-GBBD are 
found to be 0.891, 0.893, 0.729, 0.939, 0.489 and 0.643, 
respectively (Fig.  3A). Furthermore, the consistency 
observed in each cross-validation further supports the 
robustness of our finding (Fig. 3B and C). Among these 
10,392 diseases, there are 2,102 kinds of diseases that are 
specifically associated with brain-related diseases. The 
AUC and AUPR values for each disease exhibit relatively 
similar trends (Fig.  3D). Notably, diseases linked to the 
brain demonstrate higher values for both AUC and AUPR 
compared to other non-brain related ailments (Fig.  3E), 
indicating that M-GBBD is sensitive to such diseases.

Furthermore, we have chosen four representative brain 
diseases (Alzheimer’s disease, Parkinson’s disease, Major 
depression, and Autism) for comprehensive investigation 
and discussion. These diseases are well-known for their 
high prevalence and significant impact on individuals, thus 
extensively studied by various models [5, 7, 8, 44, 68]. The 
performance evaluation metrics including AUC/AUPR/
ACC/PRE/REC/F1 for the aforementioned diseases are as 
follows: 0.893/0.867/0.829/0.768/0.820/0.793 (Alzheimer’s 
disease), 0.866/0.881/0.767/0.666/0.832/0.740 (Parkin-
son’s disease), 0.883/0.864/0.797/0.699/0.813/0.752 (Major 
depressive disorder) and 0.887/0.844/0.746/0.632/0.846
/0.723 (Autism), respectively (Fig.  3F). Notably, all these 
evaluation metrics surpass those of the previous method 
[7], demonstrating the excellent performance of M-GBBD.

Improved performance of multiscale disease network 
and eBFC‑based gene network
To evaluate the performance across different 
combinations of multiscale disease network and eBFC-
based gene networks, we conducted three comparative 
experiments. The first experiment aims to evaluate the 
predictive performance improvement of eBFC-based 
gene network compared to BFC-based gene network. 
To be specific, we use BFC-based and eBFC-based gene 
networks to train and predict associations between 
genes and four representative brain diseases using 
brainMI. The results demonstrate a significantly higher 
performance of brainMI when utilizing eBFC-based 
gene network compared to BFC-based gene network 
(Fig.  4A). On average, the AUC and AUPR values for 
disease prediction by brainMI using eBFC-based gene 
network increase by 0.038 and 0.041, respectively, in 
comparison with those obtained from BFC-based gene 
network (Fig.  4A). This indicates that eBFC-based 
gene network may encompass more comprehensive 
information than the BFC-based counterpart, thereby 
improving predictive performance.

The other two experiments are conducted to evaluate 
the performance improvement achieved by multiscale 
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disease networks. Due to that brainMI employs a node 
classification strategy whereas M-GBBD utilizes a link 
prediction strategy, the D-D network cannot be directly 
utilized in brainMI experiments. Therefore, we con-
structed a small-scale disease proximity network (sDD) 
that includes only four diseases mentioned in brainMI 
using the same methodology as for the D-D network 
and performed experiments using M-GBBD. For clar-
ity, we refer to the D-D network used in M-GBBD as the 
large-scale D-D network (lDD). By combining both sDD 
and lDD with two gene networks (BFC-based and eBFC-
based), we aim to demonstrate whether lDD can indeed 
improve predictive performance significantly. Compared 

to sDD, when combined with BFC-based gene network, 
lDD exhibited an average increase of 0.034 in AUC and 
0.032 in AUPR, respectively (Fig.  4B). When combined 
with the eBFC-based gene network, there is an average 
improvement of 0.048 in AUC and 0.049 in AUPR using 
lDD (Fig.  4C). These results consistently indicate that 
regardless of which gene network is employed, lDD con-
sistently outperforms sDD. In summary, utilizing the bio-
logically significant eBFC-based gene network along with 
a large-scale proximity network can achieve superior per-
formance for predicting gene-disease associations within 
the brain compared to traditional single BFC-based gene 
network.

Fig. 3 Overall performance of M-GBBD. A Mean values of each evaluation metrics under 5-CV. B ROC curves of M-GBBD under 5-CV. C PR curves 
of M-GBBD under 5-CV. D Distribution of AUC and AUPR values for all diseases. E Distribution of AUC and AUPR values for disease related to brain. F 
Performance of M-GBBD on four representative diseases that related to brain
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Comparison with the state‑of‑the‑art frameworks
Given the tedious and multilayered nature of brain 
disease diagnosis, graph-based methods offer an effi-
cient approach to learn representations for identify-
ing associations from vast amounts of data [69, 70]. 
To evaluate the performance improvement of the 
M-GBBD algorithm, three gene-disease prediction 
frameworks, including BiRW [71], PMFMDA [72] and 
MeSHHeading2vec [73], are compared with M-GBBD. 
These frameworks are all designed to predict associa-
tions between genes and diseases. BiRW utilizes a bi-
random walk algorithm, while PMFMDA is based on 
matrix factorization, and MeSHHeading2vec employs 
graph embedding algorithms for relationship predic-
tion tasks. Each framework was executed using default 
parameters and 5-CV. The evaluation metrics including 
AUC, AUPR, ACC, REC, PRE, and F1 were calculated 
for each framework in order to facilitate comparison.

The results show that M-GBBD outperforms all other 
frameworks in terms of evaluation metrics, except for 
REC (Fig. 5A). Although PMFMDA achieves the highest 
REC value, its PRE values are the lowest. Compared to 
other methods, M-GBBD shows an average improvement 
of 0.194 and 0.341 in AUC and AUPR respectively 
(Fig. 5B). This superior performance can be attributed to 
the GCN’s ability to more effectively aggregate network 
information. Overall, with the benefit of the GCN and 
its end-to-end computational structure, our M-GBBD 
is a more suitable method for predicting associations 
between genes and disease in the brain.

Ablation analysis demonstrates the importance of multiple 
semantics extraction
To further investigate the contribution of critical 
components and evaluate the robustness of M-GBBD, 
we compared it with two variant methods, namely 

Fig. 4 Performance of M-GBBD and brainMI with different datasets on four representative brain related diseases. A Mean AUC and AUPR values 
of brainMI with only BFC- and eBFC-based gene networks under 5-CV. B Mean AUC and AUPR values of M-GBBD with BFC-based gene network 
and sDD/lDD under 5-CV. C Mean AUC and AUPR values of M-GBBD with eBFC-based gene network and sDD/lDD under 5-CV. Statistical significant 
was estimated using two-tailed Student’s t-test. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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M-GBBD-noGPR and M-GBBD-noGTR. The M-GBBD-
noGPR method exclude the heterogeneous network 
comprising brain parcel-parcel functional connectivity, 
while the M-GBBD-noGTR method removed the 
heterogeneous network involving gene regulatory 
interactions. Following a 5-CV for each method, we 
obtain AUC values 0.891, 0.613 and 0.522 for M-GBBD, 
M-GBBD-noGPR and M-GBBD-noGTR respectively. 
Correspondingly, the AUPR values were found to 
be 0.893, 0.578 and 0.510 (Fig.  6). In addition, ACC, 
PRE, REC and F1 of M-GDAB are also superior to 
corresponding metrics of other methods (Fig.  6). Our 
ablation experiments results demonstrate that combining 

brain parcel-parcel functional connectivity with gene 
regulatory features forms a crucial foundation for 
performance improvement.

Case studies
To demonstrate the applicability of M-GBBD in 
predicting potential gene-disease associations in 
practical scenarios, we apply M-GBBD to predict 
genes associated with two brain diseases: Alzheimer’s 
disease and Parkinson’s disease. For each disease, five 
associated genes are randomly selected while their 
known twenty gene-disease associations for the two 
diseases are concealed to ensure these associations are 

Fig. 5 Comparison on the performance of different gene-disease prediction frameworks. A Results of the six evaluation metrics for the four 
frameworks. B The difference in performance of M-GBBD relative to the other three frameworks. Colors of dots are same as in (A) and improvement/
decline are indicated by red/blue bold numbers
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pre-isolated. These associations are not considered 
during the semantics extracting and model training 
steps, which make the case study objective and reliable. 
Subsequently, M-GBBD was used to predict the gene-
disease associations for these associated genes and report 
their association scores. The results are validated using 
the DisGeNET database, based on biological experiment 
reports, or further bioinformatics analysis of biological 
data.

In the DisGeNET database, LRP6, F11, CXCL10, TCF4 
and IGF2 are identified as the top five genes associated 
with Alzheimer’s disease, with association scores of 0.989, 
0.981, 0.953, 0.938 and 0.914, respectively (Fig.  7A). 
Notably, all scores exceed the threshold of 0.9. Besides, 
HAVCR2, CAMP, MRPS11, LPIN2 and TMEM30B are 
five genes without labeled associations in DisGeNET but 
exhibit association scores of 0.898, 0.809, 0.307, 0.233 
and 0.102, respectively (Fig. 5A). Interestingly, HAVCR2 
and CAMP demonstrate higher scores compared to 
other genes, suggesting that M-GBBD has potential 
for predicting potential Alzheimer’s disease-associated 
genes not yet annotated by DisGeNET. Further analysis 
is conducted to investigate the rationale behind the high 
scores of the two genes predicted by M-GBBD. According 
to a recent large-scale genome-wide association analysis 
for Alzheimer’s disease based on more than one million 
individuals, significant associations between HAVCR2 
and Alzheimer’s disease were found [68]. The variant site 
of locus 8 (rs6891966) in an intron of HAVCR2 results 
in a significant differential expression level in brain 
tissue samples from patients compared to controls. This 
is consistent with the results obtained from M-GBBD, 
indicating an association between HAVCR2 and 
Alzheimer’s disease. The protein product of CAMP is a 
sequence with 170 amino acids and the high confidence 
structure model was predicted by AlphaFold (Fig.  7B 

and C) [74]. It exhibits antibacterial activity and binds 
to bacterial lipopolysaccharides (LPS) [75, 76]. Although 
direct experimental evidence supporting the association 
between CAMP and Alzheimer’s disease is currently 
lacking, microarray analysis (GSE85426), which included 
90 patients with Alzheimer’s disease and 90 controls, 
revealed significant changes in CAMP expression levels 
(Fig.  7D and E). Furthermore, an epigenome-wide 
association study also found a CpG island located in a 
significant differentially methylated region of CAMP 
[77]. Therefore, it is reasonable for M-GBBD to identify 
CAMP as highly associated with Alzheimer’s disease. 
Additionally, the microarray analysis also demonstrated 
significant differences in HAVCR2 expression (P < 0.001) 
(Fig.  7E), consistent with the original report [68]. 
Conversely, no significant differences were observed in 
the expression levels of MRPS11, LPIN2 and TMEM30B 
and the three genes all received low scores (Fig. 7E). Both 
GWAS and microarray analysis results corroborate the 
accuracy and applicability of M-GBBD for predicting 
candidate gene biomarkers related to Alzheimer’s disease.

In the case of Parkinson’s disease, another severe 
neurodegenerative disorder, M-GBBD also demonstrated 
satisfactory performance. The DisGeNET database 
labels NLRP1, MSC, PTK2B, TAC1 and FOSL2 as genes 
associated with Parkinson’s disease, with association 
scores of 0.964, 0.944, 0.907, 0.889 and 0.888, respectively 
(Fig. 8A). Except for MUC19 which scored at 0.782,

all other unlabeled genes have association scores 
below 0.4 in M-GBBD. To further investigate the 
potential association between MUC19 and Parkinson’s 
disease, a GWAS summary based on data from 482,730 
individuals and analyzing a total of 17,510,617 SNPs was 
collected [78]. The GWAS result revealed that there were 
significant associations between Parkinson’s disease and 
eleven SNPs located within the gene body of MUC19 

Fig. 6 Comparison on the performance of variant methods of M-GBBD. Five evaluation metrics for the three methods including the raw M-GBBD 
were calculated and compared. All metrics in the table are lower than M-GBBD, which is highlighted with blue arrows
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(Fig. 8B), providing evidence for the relationship between 
MUC19 and Parkinson’s disease. According to detailed 
information of MUC19 from the human genome, 5,125 
potential variant sites are located in or neighbored by 
gene coding region. These variants were detected by 
genome sequencing (27.2%), exome sequencing (52.4%) 
or both (20.4%) in a previous study (Fig. 8C), and 40.9% 
of them will cause loss of function (nonsynonymous, 
splicing and frameshift) (Fig.  8D) that MUC19 was 

assessed to have high association with Parkinson’s disease 
by M-GBBD is sensible, as supported by GWAS results.

Discussion
The brain system is a complex network of regulatory 
molecules, in which their interactions contribute to 
the normal or disordered biological characteristics of 
the brain system. As attention towards brain diseases 
increases, various graph deep learning-based studies 

Fig. 7 Case study of Alzheimer’s disease. A Gene-Alzheimer’s disease associations predicted by M-GBBD, with corresponding scores. The pink box 
indicates that DisGeNET has recorded that this gene is associated to Alzheimer’s disease, and the green box indicates that DisGeNET has no record 
that this gene is associated to Alzheimer’s disease. The white boxes following the pink/green boxes is the evidence. B Three-dimensional structure 
of CAMP from AlphaFold. C Heatmap of the three-dimensional structure predicted aligned error. It means the AlphaFold’s expected position 
error reside x, which the predicted and true structures are aligned on residue y. D The results of differential expression analysis from microarray 
(GSE85426). E The normalized expression values of each sample in microarray (GSE85426) for five genes that not recorded in DisGeNET. Statistically 
significant was estimated using two-tailed Student’s t-test
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have been proposed for brain gene biomarker identifi-
cation. However, these studies have several shortcom-
ings including limited diversity in biological network 
types, lack of an effective and biologically meaning-
ful network fusion strategy, inadequate extraction of 
graph structure and node feature information, as well 
as unsatisfactory model performance and generaliz-
ability [7, 79–81]. Although we have partially addressed 
these limitations by developing a pioneering topologi-
cal semantics extraction approach called M-GBBD to 
construct a biological meaningful brain gene network, 
this approach only extracts semantics from networks 
constructed using genomics, transcriptomics, radi-
omics, and connectomics data. Networks constructed 
using other omics data such as epigenomics, metabo-
lomics and proteomics have not yet been used or dis-
cussed in this study. With advancements in molecular 
biology and biotechnology innovation, more com-
prehensive data will be easily obtained in the future. 
Admittedly, incorporating different types of brain net-
works into M-GBBD may further improve its predictive 
performance for associations between genes and brain 
diseases; however effective and accurate strategies for 
topological semantics extraction from brain networks 
that aim to obtain a gene network with rich semantics 

reflecting multiple biological meanings continue to 
pose challenges.

In addition, M-GBBD is a GCN model that follows 
the Transductive Learning paradigm [82], which takes 
a broad and global perspective on gene biomarker 
identification.

At the beginning of model training, the training set 
(nodes with edges and labels) and the node informa-
tion of the test set (without edges) are available while 
the corresponding edge information remains unseen as 
these edges will be predicted in the subsequent model 
test phase. Although the true edges of the test set are 
unknown during training, additional information can 
be obtained from their node feature distribution, such 
as distribution aggregation, which resembles drug repo-
sitioning. While transductive learning can extract some 
additional information from all nodes and edge informa-
tion in the training set to enhance model effectiveness, it 
also necessitates retraining and increased computation 
whenever new samples are received. In future work, we 
will further explore how to leverage inductive learning 
to improve identification accuracy of brain disease gene 
markers by considering brain network specificity.

Fig. 8 Case study of Parkinson’s disease. A Gene-Parkinson’s disease associations predicted by M-GBBD, with corresponding scores. The pink box 
indicates that DisGeNET has recorded that this gene is associated to Parkinson’s disease, and the green box indicates that DisGeNET has no record 
that this gene is associated to Parkinson’s disease. The white boxes following the pink/green boxes is the evidence. B Manhattan plot of MUC19, 
the grey area indicates the range of the MUC19. Red dots are significant variants within MUC19. C The potential variant sites located or near coding 
region obtain from gnomAD browser. D The functional annotations of potential variants
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Conclusions
In this study, we constructed and conducted topological 
semantics extraction of eleven brain networks to charac-
terize the brain features from different perspectives. In 
contrast to existing methods that only focus on a single 
disease, we introduced a biologically meaningful dis-
ease network by incorporating common disease-causing 
variants. Our M-GBBD model captures both functional 
connectivity and gene regulation information through 
joint optimization and multi-channel feature extraction 
strategies, enabling us to obtain an informative brain 
gene network with superior performance compared to 
other methods. The extraction of different network topo-
logical semantics highlights the crucial role of utilizing 
multi-networks for studying brain diseases comprehen-
sively. Extensive experiments demonstrated the accuracy 
of M-GBBD, while case studies showcased its excellent 
generalizability in accurately assessing the association 
between genes and brain diseases. The M-GBBD gave 
accurate and reasonable scores for all genes used in the 
case analysis. Notably, our analysis suggests a potential 
association between CAMP and Alzheimer’s disease, 
which is further supported by in-depth bioinformatics 
analysis.
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