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Abstract
Background The polygenic risk score (PRS) is used to predict the risk of developing common complex diseases 
or cancers using genetic markers. Although PRS is used in clinical practice to predict breast cancer risk, it is more 
accurate for Europeans than for non-Europeans because of the sample size of training genome-wide association 
studies (GWAS). To address this disparity, we constructed a PRS model for predicting the risk of renal cell carcinoma 
(RCC) in the Korean population.

Results Using GWAS analysis, we identified 43 Korean-specific variants and calculated the PRS. Subsequent to 
plotting receiver operating characteristic (ROC) curves, we selected the 31 best-performing variants to construct an 
optimal PRS model. The resultant PRS model with 31 variants demonstrated a prediction rate of 77.4%. The pathway 
analysis indicated that the identified non-coding variants are involved in regulating the expression of genes related to 
cancer initiation and progression. Notably, favorable lifestyle habits, such as avoiding tobacco and alcohol, mitigated 
the risk of RCC across PRS strata expressing genetic risk.

Conclusion A Korean-specific PRS model was established to predict the risk of RCC in the underrepresented Korean 
population. Our findings suggest that lifestyle-associated factors influencing RCC risk are associated with acquired risk 
factors indirectly through epigenetic modification, even among individuals in the higher PRS category.

Keywords Polygenic risk score, Genome-wide association study, Renal cell carcinoma, Korean population, Non-
coding variant, Epigenetics, Lifestyle-associated factor
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Background
Renal cell carcinoma (RCC) accounts for 90% of kidney 
cancers and ranks as the seventh most common cancer in 
the western world; it constitutes approximately 3% of all 
cancer diagnoses worldwide [1, 2]. In Asia, the incidence 
of RCC has increased due to the adoption of western 
lifestyles [3]. Well-known risk factors for RCC include 
smoking, excessive weight, and hypertension [4, 5]. Addi-
tionally, heritability plays a role in certain rare syndromes 
with predisposed germline mutations in genes such as 
VHL, FH, and MET [6, 7].

RCC is usually detected incidentally and asymptom-
atically when diagnosed at an early stage. Early detection 
through screening is crucial for reducing the morbidity 
and mortality associated with RCC [8, 9]. Several predic-
tion models based on clinical, biochemical, historical, 
and lifestyle markers have been developed and validated 
to predict the diagnosis, grade, stage, and progression 
of several cancers, including RCC [10]. Similarly, poly-
genic risk score (PRS) models that use genetic markers to 
predict the risk of cancers have demonstrated sufficient 
predictive power, thereby enabling individualized risk 
management [11, 12].

Genomic architecture and predisposed allele fre-
quencies vary among different ancestries [13]. PRS 
models utilizing genetic factors predict individual risk 
more accurately in Europeans compared to non-Euro-
peans, primarily because the majority of genetic dis-
coveries are made within European populations [14]. 
Europeans represent the largest ethnicity in training 
genome-wide association studies (GWAS) globally, 
accounting for 91% of the data, followed by East Asians 
at 4.9% [15]. Consequently, the accuracy of the Asian-
specific PRS is affected by the relatively smaller sample 
size of genetic studies conducted in Asian popula-
tions, thereby lowering precision when estimating the 
relative risk for each individual [16]. To address this 
issue, we conducted a GWAS for RCC using genomic 
data from 992 cases and 3,431 controls in the Korean 
population.

Favorable lifestyle factors, such as avoiding tobacco 
and alcohol, following a healthy diet, and engag-
ing in moderate physical activity, serve as an optimal 
approach to prevent and manage cancers or complex 
diseases [17]. Numerous studies have revealed that 
favorable lifestyle factors can mitigate the risk of cancer 
among individuals with high genetic risk [18–20]. The 
aim of this study is to identify RCC-susceptible germ-
line variants specific to Koreans, construct a Korean 
PRS model to assess the risk of developing RCC based 
on these variants, and evaluate the performance of the 
PRS model. Furthermore, this study examined whether 
lifestyle-associated factors interact with the genetic risk 
expressed as PRS.

Methods
Study participants
This study involved 4,991 Korean individuals. We 
included the cases of 1,120 patients with RCC who were 
registered in the Seoul National University Prospectively 
Enrolled Registry for RCC-Nephrectomy (SUPER-RCC-
Nx) and had their blood stored in the human biobank 
[21]. The control group consisted of 3,871 participants 
from the Ansan/Ansung study of the Korean Genome 
and Epidemiology Study (KoGES), a population-based 
prospective cohort study [22]. The baseline survey for the 
KoGES was conducted in 2001–2002, and a follow-up 
survey was carried out biennially for 14 years. The par-
ticipants were selected based on specific criteria, exclud-
ing participants diagnosed with any cancer during the 
baseline survey and those diagnosed with kidney diseases 
during the follow-up survey. Genotyping was performed 
using the Korean Chip array, and the same array was 
used by the Korean National Institute of Health to geno-
type KoGES samples.

Korea biobank array (KoreanChip)
KoreanChip comprises more than 833,000 markers, 
among which 208,000 are functional markers that have 
been directly genotyped. These data were collected from 
an extensive dataset of 22  million variants identified in 
2,576 sequenced Korean samples. The dataset encom-
passes 397 whole-genome sequences from the Korean 
Reference Genome, along with 2,179 whole-exome 
sequences sourced from various places, such as the T2D-
GENES consortium, the Ansung and Ansan study, a car-
diovascular disease sequencing study, and the Korean 
Children and Adolescents Obesity Cohort study [23].

Quality control (QC)
QC was performed to analyze the samples and variants. 
Individuals with sexual inconsistencies were excluded 
from the study based on the principle that the genotype 
data on the sex of an individual was inconclusive when 
the homozygosity rate is greater than 0.2 but less than 
0.8. Samples with a call rate < 95%, excessive heterogene-
ity, and genetic relatedness were removed. Single nucleo-
tide polymorphisms (SNPs) with a call rate < 95%, minor 
allele frequency (MAF) < 5%, and Hardy–Weinberg Equi-
librium (HWE) p-value < 1.0 × e− 6 were also excluded. 
Batch effect corrections were conducted for cases [24]. 
The subsequent step involved correcting the batch effects 
that arose between cases and controls. Importantly, 
regulations state that results obtained with KoreanChip 
must be normalized with 5,000 samples registered in the 
Korean consortium. Consequently, even though cases 
and controls underwent separate genotyping in differ-
ent laboratories, they were effectively normalized to 
each other according to this regulation, which eliminated 
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batch effects. To assess the effect of population substruc-
ture, principal component analysis (PCA) was performed 
before and after merging the datasets of the cases and 
controls. QC was completed using a combination of R 
v4.2, Plink v1.9, and bcftools git version 1.17-10 [25].

Imputation for missing values
Variants that were not directly genotyped or excluded 
during QC were imputed using Minimac4. Phasing was 
performed using Eagle v2.4. The ancestry was limited to 
East Asians with 1000 Genome project phase 3 for the 
reference genome panel. We filtered the imputed variants 
with a genotype quality R2 > 0.8 [26]. Post-imputation QC 
was conducted by applying the exclusion criteria of an 
MAF < 5% and an HWE p-value < 1.0 × e− 6. The percent-
age of imputed data after the post-QC step was 92.72%.

Statistical analysis for SNP selection
The samples were divided into two: discovery and vali-
dation datasets. The validation dataset, including 492 
samples (approximately 10% of the total samples), was 
randomly extracted, whereas the remaining 4,915 sam-
ples were retained for the discovery set after undergoing 
QC. Association testing with RCC was conducted for the 
discovery dataset. Logistic regression was performed for 
the GWAS with covariates, including age, sex, body mass 
index (BMI), hypertension, and smoking. The associated 
SNPs were filtered using a threshold of 1.0 × e− 5 and a false 
discovery rate (FDR) of 0.05. LD pruning and fine mapping 
methods were used to identify causal SNPs for predicting 
RCC risk [27]. Hail 0.2 was used for statistical analysis.

PRS calculation and optimal performance
The PRS model was constructed using causal SNPs 
selected from the GWAS results with the validation 
dataset.

 
PRSj =

N∑

i=1

βi × dosageij

  j: individual

  i: variant of individual j

  N: number of SNPs in the score of individual j

where PRSj is the risk score for individual j, dosageij is the 
number of risk alleles for the i-th variant, β i is the nat-
ural logarithm of the odds ratio [ln(OR)] (or effect size, 
beta) of the i-th variant, and N is the number of SNPs in 
the score [28].

To compare the performance of the PRS models, sys-
tematically removing one SNP at a time and starting 

from the SNP with the highest p-value, a receiver operat-
ing characteristic (ROC) curve was plotted, and the area 
under the curve (AUC) was calculated for different num-
bers of SNPs. The optimal PRS cut-off value was selected 
at the point of the maximal Youden’s index (sensitiv-
ity and specificity) performed using Plink v1.9 and the 
pROC package in R.

Association of PRS and lifestyle-associated factors with 
RCC risk
We selected BMI, smoking status, alcohol intake, and his-
tory of hypertension as lifestyle-associated factors related 
to RCC risk. Although a favorable lifestyle score is com-
monly calculated by considering obesity, tobacco use, 
alcohol intake, diet, and physical activity as lifestyle-asso-
ciated factors, we replaced diet and physical activity with 
history of hypertension considering our present data and 
previous studies related to RCC risk [29, 30]. A favorable 
lifestyle was indicated by BMI < 30  kg/m2, no smoking, 
moderate alcohol intake, and no history of hypertension 
(see Additional File 1: Table S1). We assigned one point to 
each favorable lifestyle-associated factor. We categorized 
combined lifestyle scores into Ideal (favorable lifestyle 
score of 3 or 4), Intermediate (favorable lifestyle score of 
2), and Poor (favorable lifestyle score of 0 or 1). PRS distri-
butions were categorized into Low (0–40%), Intermediate 
(40–90%), and High (> 90%). We explored the association 
of favorable lifestyle-associated factors and PRS with RCC 
risk and further investigated the relationship between 
lifestyle-associated factors and RCC risk across the strata 
of PRS using a Cox proportional hazard model.

Results
Discovery phase findings
This study included 4,915 Koreans who were divided into 
two groups to identify risk variants and construct the 
PRS model. The discovery dataset comprised 992 cases 
and 3,431 controls, whereas the validation dataset com-
prised 112 cases and 380 controls. Although RCC can 
occur at any age, this study focused only on participants 
aged ≥ 40 years to examine the common effects of these 
factors on RCC risk (Table 1).

Batch effect correction was performed to address the 
technical variations or non-biological differences between 
measurements in different sample groups. Substantial 
correction of the case dataset was performed. Addition-
ally, to assess the effect of the population substructure, 
PCAs were performed before and after merging the cases 
and controls. No specific population substructure was 
observed (see Additional File 1: Figure S1).

For the GWAS, logistic regression was used and 424 
variants of 4,423 participants were selected [p < 1.0 × 
e− 5 and FDR 0.05] (Fig. 1). In the quantile–quantile plot 
(QQ-plot), the lambda value (λ) was 1.04, indicating no 
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Table 1 Study demographics
All (N = 4,915) Discovery set (n = 4,423) Validation set (n = 492)

Characteristic Case (n = 1,104) Control (n = 3,811) Case (n = 992) Control (n = 3,431) Case (n = 112) Control (n = 380)
Age, years 62.4 (± 10.7) 54.1 (± 8.2) 62.5 (± 10.6) 54.0 (± 8.2) 62.4 (± 11.2) 54.3 (± 8.2)

Sex

 Female 331 (30) 1,783 (47) 298 (30) 1,610 (47) 33 (29) 173 (46)

 Male 773 (70) 2,028 (53) 694 (70) 1,821 (53) 79 (71) 207 (54)

BMI, kg/m2 25.2 (± 3.4) 24.7 (± 3.0) 25.2 (± 3.4) 24.7 (± 3.0) 25.4 (± 4.0) 24.5 (± 3.0)

Smoking

 No 586 (53) 2,192 (58) 525 (53) 1,982 (58) 61 (54) 210 (55)

 Ex 391 (35) 840 (22) 355 (36) 749 (22) 36 (32) 91 (24)

 Current 127 (12) 779 (20) 112 (11) 700 (20) 15 (13) 79 (21)

Hypertension

 No 489 (44) 3,169 (83) 444 (45) 2,864 (83) 45 (40) 305 (80)

 Hypertension 615 (56) 642 (17) 548 (55) 567 (17) 67 (60) 75 (20)
Mean (± SD): Age, BMI; number (%): Sex, Smoking, Hypertension

Fig. 1 Workflow of the study. This study included patients with RCC from the SNUH and controls from the KoGES. RCC, renal cell carcinoma; SNUH, Seoul 
National University Hospital; KoGES, Korean Genome and Epidemiology Study; QC, quality control; GWAS, genome-wide association study; SNP, single 
nucleotide polymorphism; PRS, polygenic risk score; *, multiplication
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evidence of inflation or acceptable results for the GWAS 
(see Additional File 1: Figure S2). To identify highly asso-
ciated causal variants, fine mapping was performed, and 
43 out of 424 variants were selected as susceptible loci 
associated with RCC (see Additional File 1: Table S2).

Korean PRS construction for RCC risk and biological 
process of 31 variants
The Korean-specific PRS model was constructed using 
43 SNPs on 492 Korean participants. The maximal AUC 
value for the PRS model was 77.4% when 31 variants out 
of 43 were selected (Fig. 2). Although the effect size was 
not significantly high, the aggregate of the weighted effect 
size of the 31 SNPs showed a high prediction rate. Of 
the 31 variants in the PRS model, 15 variants were in the 
intronic region, 15 in the intergenic region, and 1 down-
stream (Table  2; see Additional File 1: Figure S3). We 
annotated these variants with the genes they regulated to 
investigate whether they were associated with RCC risk. 
Functions and pathways of the genes regulated by the 15 
variants in the intronic region are listed in Table 3.

Relevance of lifestyle-associated factors to RCC risk across 
PRS strata
We categorized the combined lifestyle score as Ideal, 
Intermediate, and Poor and the PRS as Low, Interme-
diate, and High for 492 individuals. In the Cox propor-
tional hazard model with combined lifestyle scores and 
RCC risk, the Poor lifestyle category (HR = 3.81, 95% CI: 
2.33–6.22) involved a risk that was three times higher 
than that of the Ideal lifestyle category. A high genetic 
risk (PRS) was significantly associated with the RCC risk 
(HR = 10.22, 95% CI: 5.11–20.45). When lifestyle factors 

associated with the risk of RCC were stratified by PRS 
in the Cox proportional hazard model, the probability of 
RCC risk was higher in the poor lifestyle score category 
across PRS strata (Fig. 3).

Discussion
PRS model for predicting RCC risk in the Korean population
The recent advancements in sequencing techniques 
and development of novel data analysis methods have 
enabled the identification of disease-associated variants 
with increased accuracy and abundance, resulting in a 
more accurate PRS model. However, applying the same 
set of variants to the PRS model across different ethnic 
populations has resulted in several inaccuracies. In this 
prospective study, we identified 43 Korean-specific vari-
ants of RCC risk in a Korean population and constructed 
an optimal PRS model with 31 of the 43 variants, show-
ing an AUC of 0.774. Although we used the Korean 
population dataset to avoid the inclusion of the different 
allele frequencies among various ancestries in our study, 
population substructure could affect the construction 
of a precise PRS model. Therefore, we performed PCA 
to explore whether population substructure affected the 
construction of our model; the results confirmed that our 
datasets were composed of the specific Korean popula-
tion without any substructures.

Although RCC is a common tumor worldwide, only 
a few studies have been conducted on its prediction 
models. Scelo et al. identified seven new RCC risk loci 
and validated six known RCC risk loci by conducting 
a meta-analysis and performed PRS analysis on indi-
viduals of European ancestry. The authors focused on 
identifying rare variants for Europeans, which did not 

Fig. 2 PRS distribution of 31 Korean-specific SNPs and evaluation of PRS performance. The PRS was constructed based on 31 specific SNPs in the Korean 
population. (a) Density plot showing the different distribution of the PRS in cases and controls. (b) ROC curve for evaluating PRS performance. SNP, single 
nucleotide polymorphism; PRS, polygenic risk score; RCC, renal cell carcinoma; ROC, receiver operating characteristic

 



Page 6 of 11Hong et al. BMC Genomics           (2024) 25:46 

Ta
bl

e 
2 

SN
Ps

 a
ss

oc
ia

te
d 

w
ith

 R
CC

 in
 th

e 
Ko

re
an

 p
op

ul
at

io
n 

at
 o

pt
im

al
 P

RS
 p

er
fo

rm
an

ce
 (n

 =
 3

1)
rs

ID
CH

R
PO

S
RE

F
A

LT
A

F
P

O
R

IM
PU

TE
D

IC
G

C
G

W
A

S
CO

SM
IC

Fu
nc

tio
n

G
en

e 
sy

m
bo

l
cy

to
Ba

nd
rs

67
75

69
35

3
33

,2
11

,9
52

C
T

0.
09

58
2.

66
E-

11
4.

36
E-

01
TY

PE
D

in
tr

on
ic

SU
SD

5
3p

22
.3

rs
61

10
51

8
20

15
,0

85
,2

05
G

T
0.

08
76

1
1.

92
E-

08
5.

04
E-

01
IM

PU
TE

D
IC

G
C

in
tr

on
ic

M
A

C
RO

D
2

20
p1

2.
1

rs
90

82
37

17
78

,9
14

,7
51

G
A

0.
10

84
7

3.
01

E-
08

5.
42

E-
01

IM
PU

TE
D

in
tr

on
ic

RP
TO

R
17

q2
5.

3

rs
65

97
34

1
6

91
4,

84
1

C
T

0.
09

01
3

5.
83

E-
08

5.
34

E-
01

IM
PU

TE
D

in
te

rg
en

ic
LO

C
10

19
27

69
1;

LI
N

C
01

62
2

6p
25

.3

rs
20

03
34

09
1

13
10

8,
89

0,
24

7
C

T
0.

08
91

1.
79

E-
07

5.
54

E-
01

IM
PU

TE
D

in
te

rg
en

ic
A

BH
D

13
;T

N
FS

F1
3B

13
q3

3.
3

rs
76

22
18

75
4

86
,7

02
,5

92
G

A
0.

09
58

7
1.

81
E-

07
5.

53
E-

01
IM

PU
TE

D
IC

G
C

in
tr

on
ic

A
RH

G
A

P2
4

4q
21

.2
3

rs
73

14
93

50
7

80
,8

28
,2

88
G

A
0.

07
21

2.
19

E-
07

5.
01

E-
01

IM
PU

TE
D

in
te

rg
en

ic
SE

M
A

3C
;L

O
C

10
53

69
14

6
7q

21
.1

1

rs
11

86
89

75
17

2,
66

4,
62

6
A

G
0.

09
58

7
2.

85
E-

07
5.

49
E-

01
IM

PU
TE

D
in

te
rg

en
ic

CC
D

C
92

B;
RA

P1
G

A
P2

17
p1

3.
3

rs
46

35
96

9
5

1,
30

8,
55

2
G

A
0.

09
29

4
2.

98
E-

07
5.

52
E-

01
TY

PE
D

G
W

A
S

do
w

ns
tr

ea
m

M
IR

44
57

5p
15

.3
3

rs
72

66
19

05
13

11
3,

56
8,

98
6

C
T

0.
07

80
5

3.
46

E-
07

5.
28

E-
01

TY
PE

D
IC

G
C

in
te

rg
en

ic
AT

P1
1A

;M
C

F2
L-

A
S1

13
q3

4

rs
11

73
52

28
5

11
42

,4
10

,9
62

C
T

0.
08

52
2

3.
94

E-
07

5.
34

E-
01

IM
PU

TE
D

in
te

rg
en

ic
LI

N
C

02
74

0;
H

N
RN

PK
P3

11
p1

2

rs
11

04
14

84
11

7,
64

1,
52

0
G

A
0.

08
50

8
4.

12
E-

07
5.

45
E-

01
TY

PE
D

G
W

A
S

in
tr

on
ic

PP
FI

BP
2

11
p1

5.
4

rs
75

48
84

11
19

41
,0

12
,0

97
C

T
0.

09
04

8
4.

17
E-

07
5.

46
E-

01
TY

PE
D

IC
G

C
CO

SM
IC

in
tr

on
ic

SP
TB

N
4

19
q1

3.
2

rs
11

82
97

86
12

57
,3

32
,2

32
C

T
0.

07
76

2
4.

43
E-

07
5.

28
E-

01
IM

PU
TE

D
G

W
A

S
in

te
rg

en
ic

SD
R9

C
7;

RD
H

16
12

q1
3.

3

rs
57

84
51

30
9

17
,8

54
,7

83
G

T
0.

07
59

7
5.

99
E-

07
5.

23
E-

01
TY

PE
D

in
te

rg
en

ic
SH

3G
L2

;A
D

A
M

TS
L1

9p
22

.2

rs
35

00
58

11
3

14
,3

76
,6

64
T

G
0.

24
07

2
6.

14
E-

07
1.

41
E 

+
 0

0
IM

PU
TE

D
IC

G
C

in
te

rg
en

ic
LS

M
3;

LI
N

C
01

26
7

3p
25

.1

rs
78

54
44

57
5

12
1,

65
9,

08
5

G
T

0.
10

05
7

7.
96

E-
07

5.
84

E-
01

TY
PE

D
in

tr
on

ic
SN

C
A

IP
5q

23
.2

rs
73

58
43

29
9

12
7,

04
7,

01
6

C
T

0.
09

44
9

8.
12

E-
07

5.
68

E-
01

TY
PE

D
IC

G
C

in
tr

on
ic

N
EK

6
9q

33
.3

rs
56

35
47

98
2

6,
59

4,
12

6
T

A
0.

08
09

9
8.

53
E-

07
5.

49
E-

01
IM

PU
TE

D
in

te
rg

en
ic

LI
N

C
01

24
7;

LI
N

C
01

24
6

2p
25

.2

rs
11

69
07

25
4

14
21

,3
13

,2
68

C
T

0.
09

97
7

8.
88

E-
07

5.
77

E-
01

TY
PE

D
IC

G
C

in
te

rg
en

ic
RN

A
SE

1;
RN

A
SE

3
14

q1
1.

2

rs
12

05
01

32
14

73
,2

76
,2

50
A

T
0.

50
74

2
9.

27
E-

07
1.

34
E 

+
 0

0
IM

PU
TE

D
IC

G
C

G
W

A
S

in
tr

on
ic

D
PF

3
14

q2
4.

2

rs
75

99
52

17
7

88
,8

49
,8

80
C

G
0.

07
55

9
9.

60
E-

07
5.

41
E-

01
IM

PU
TE

D
in

tr
on

ic
ZN

F8
04

B
7q

21
.1

3

rs
79

19
23

63
5

18
0,

45
8,

80
2

G
A

0.
07

74
1

9.
88

E-
07

5.
29

E-
01

IM
PU

TE
D

IC
G

C
in

te
rg

en
ic

BT
N

L3
;B

TN
L9

5q
35

.3

rs
12

81
33

02
12

10
3,

85
6,

90
8

G
A

0.
09

09
9

1.
28

E-
06

5.
64

E-
01

TY
PE

D
in

tr
on

ic
C

12
or

f4
2

12
q2

3.
3

rs
13

38
18

96
18

25
,3

56
,1

90
T

G
0.

90
66

2
1.

97
E-

06
6.

31
E-

01
TY

PE
D

in
te

rg
en

ic
LO

C
10

53
72

03
8;

C
D

H
2

18
q1

2.
1

rs
74

58
80

14
9

13
8,

72
6,

58
0

C
A

0.
09

38
2.

64
E-

06
5.

85
E-

01
TY

PE
D

in
tr

on
ic

C
A

M
SA

P1
9q

34
.3

rs
43

49
19

21
43

,3
33

,0
05

G
T

0.
07

18
1

3.
14

E-
06

5.
33

E-
01

IM
PU

TE
D

IC
G

C
G

W
A

S
in

tr
on

ic
C

2C
D

2
21

q2
2.

3

rs
79

73
37

6
12

66
,9

18
,7

96
T

G
0.

28
68

3
3.

50
E-

06
7.

32
E-

01
IM

PU
TE

D
IC

G
C

in
tr

on
ic

G
RI

P1
12

q1
4.

3

rs
48

97
33

1
6

12
9,

86
6,

54
7

C
T

0.
08

75
2

3.
71

E-
06

5.
80

E-
01

TY
PE

D
IC

G
C

in
te

rg
en

ic
LA

M
A

2;
A

RH
G

A
P1

8
6q

22
.3

3

rs
22

42
40

2
17

77
,9

18
,2

61
G

A
0.

09
12

1
4.

25
E-

06
5.

93
E-

01
TY

PE
D

in
tr

on
ic

TB
C

1D
16

17
q2

5.
3

rs
17

71
91

36
5

14
7,

57
8,

17
7

G
C

0.
08

74
4

4.
39

E-
06

5.
88

E-
01

TY
PE

D
in

te
rg

en
ic

SP
IN

K1
4;

SP
IN

K6
5q

32
SN

P,
 s

in
gl

e 
nu

cl
eo

tid
e 

po
ly

m
or

ph
is

m
; P

RS
, p

ol
yg

en
ic

 r
is

k 
sc

or
e;

 R
CC

, r
en

al
 c

el
l c

ar
ci

no
m

a;
 A

U
C

, a
re

a 
un

de
r t

he
 c

ur
ve

; R
O

C
, r

ec
ei

ve
r o

pe
ra

tin
g 

ch
ar

ac
te

ris
tic

; C
H

R,
 c

hr
om

os
om

e;
 P

O
S,

 p
os

iti
on

; R
EF

, r
ef

er
en

ce
 a

lle
le

; A
LT

, 
al

te
rn

at
iv

e 
al

le
le

; A
F,

 a
lle

le
 fr

eq
ue

nc
y;

 P
, p

-v
al

ue
; O

R,
 o

dd
s 

ra
tio

; I
CG

C
, I

nt
er

na
tio

na
l C

an
ce

r G
en

om
e 

Co
ns

or
tiu

m
; G

W
A

S,
 g

en
om

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y;
 C

O
SM

IC
, C

at
al

og
 o

f S
om

at
ic

s 
in

 C
an

ce
r



Page 7 of 11Hong et al. BMC Genomics           (2024) 25:46 

overlap with our Korean-specific variants [6]. To the best 
of our knowledge, this study is the first to construct a 
PRS model to predict the risk of RCC in the underrepre-
sented Korean population.

Non-coding DNA variants and biological mechanisms
Fifteen of the 31 Korean-specific variants identified in 
this study indirectly contribute to cancer initiation and 
progression. These intronic variants regulate genes such 
as enhancers, repressors, or promoters, and are involved 
in biological functions and pathways associated with 
the development of cancers by exerting oncogenic or 
tumor-suppressive effects in multiple organs [31]. Well-
annotated pathways were related to the genes affected by 
the variants implicated in RCC. For example, the RPTOR 
gene, located in the 17q25.3 region, codes for a subunit 
of the mTORC1 complex, which is crucial for regulating 
various cellular processes, such as assembly, localiza-
tion, and substrate binding of mTORC1. The PI3K/AKT/
mTOR signaling pathway is an intracellular pathway 
that plays a vital role in cell cycle regulation, including 
the G0 phase and cell proliferation. PI3K, a lipid kinase, 
produces phosphatidylinositol-3,4,5-trisphosphate, a 
key second messenger that facilitates AKT transloca-
tion to the plasma membrane. AKT activation is central 

to fundamental cellular functions, such as cell prolifera-
tion and survival, as it phosphorylates various substrates. 
Dysregulation of this pathway is frequently observed in 
human cancers, particularly in RCC, and has been linked 
to aggressive tumor development and reduced survival 
rates [32–34]. The SUSD5 protein encoded by the SUSD5 
gene in the 3p22.3 region is expected to have hyaluronic 
acid-binding activity and play a role in the Notch sig-
naling pathway. Notch signaling is crucial in regulating 
cell fate, proliferation, and death during development. It 
operates mainly between adjacent cells as its ligands are 
transmembrane proteins. Despite its simplicity in intra-
cellular signaling with no secondary messengers, the 
Notch pathway is part of various developmental pro-
cesses, and its dysfunction is implicated in many cancers, 
including RCC [35, 36].

Relationship between lifestyle-associated factors and 
genetic risk expressed as PRS
Both lifestyle-associated factors and PRS were signifi-
cantly associated with RCC risk, and lifestyle-associated 
factors affected RCC risk across PRS strata. However, 
Cox proportional hazard analysis showed no evidence 
that lifestyle-associated factors and PRS directly inter-
acted with each other. Numerous studies have recently 

Table 3 Intronic variants and biological processes (n = 14)
Gene cytoBand biological process
SUSD5 3p22.3 This gene involves the Notch signaling pathway. Notch is the receptor in a highly conserved signaling pathway 

that is crucial in development and implicated in malignant transformation [42].

MACROD2 20p12.1 MACROD2 acts as a haploinsufficient caretaker of the tumor suppressor gene. Loss of function mutations of this 
gene promote chromosome instability, resulting in cancer evolution [43].

RPTOR 17q25.3 The class I phosphoinositide 3-kinase (PI3K)– mechanistic target of rapamycin complex 1(mTORC1) signaling 
network directs cellular metabolism and growth, which is implicated in diverse pathologies, including cancer, 
when dysregulated [44].

ARHGAP24 4q21.23 As key regulators of cytoskeletal dynamics, Rho GTPases activated by ARHGAP24 coordinate a wide range of 
cellular processes, including cell cycle progression and cell migration, which enables cancer cells to invade the 
stroma surrounding the primary tumor [45].

PPFIBP2 11p15.4 PPFIBP2 is considered to promote tumor suppressor properties. Germline loss-of-function mutations 
of PPFIBP2 have been associated with shorter survival in prostate cancer [46].

SPTBN4 19q13.2 This gene involves MARK1/MARK3 signaling. This kinase pathway is a central signaling module that participates in 
physiological and pathological processes like cancer [47].

SNCAIP 5q23.2 RNA expression of SNCA and SNCAIP was observed to have a close relationship with medulloblastoma, a brain 
tumor which has been reported to be related with various tumors [48].

NEK6 9q33.3 NEK6 interacts with STAT3, which is an oncogenic transcription factor. It phosphorylates STAT3 on Ser727, which is 
important for transcriptional activation [49].

DPF3 14q24.2 This gene is a component of the BAF chromatin remodeling complex (ATP remodeling complex). BAF complex 
subunits are frequently altered in cancer with up to 20% of human cancers [50].

ZNF804B 7q21.13 Differential expression levels of ZNF proteins in different cancer types are regulated by cancer-related miRNA [51].

CAMSAP1 9q34.3 CAMSAP1 mutation can activate anti-tumor immunity, mediate tumor cell apoptosis, and improve platinum drug 
sensitivity [52].

C2CD2 21q22.3 C2CD2 mutations were associated with a higher incidence of colorectal adenomas. C2CD2 up-regulation lead to 
cytosolic Ca2+ increase involved in the regulation of apoptosis [53].

GRIP1 12q14.3 The PKA-stimulated degradation of GRIP1 leads to changes in the expression of a subset of genes regulated by 
estrogen receptor-α in MCF-7 breast cancer cells [54].

TBC1D16 17q25.3 The TBC domain family is implicated in various cellular events contributing to initiation and development of dif-
ferent cancers [55].
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reported the relationship between epigenetic markers and 
lifestyle-associated factors, such as stress, smoking, alco-
hol use, and diet [37]. Various environmental factors epi-
genetically remodel the genome without altering its DNA 
sequence. Epigenetic markers influence the modulation of 
gene expression and thus play a critical role in health sta-
tus and prevention of cancers and complex diseases [38].

The last 15 of the 31 Korean-specific variants identified 
in this study were intergenic variants. Many intergenic 
variants can affect gene regulation through epigenetic 
modifications, such as chromatin remodeling or histone 
modifications, including methylation or acetylation. 
Modulated expression of oncogenes and tumor suppres-
sor genes affects cancer development [39]. In the present 

Fig. 3 Risk of RCC according to genetic and lifestyle-associated factors. The risk of RCC was affected by genetic and lifestyle-associated factors. (a) As-
sociation of genetic factor with RCC risk. (b) Association of lifestyle-associated factors with RCC risk. (c) Association of lifestyle-associated factors with the 
risk of RCC across strata of PRS. HR, hazard ratio; CI, confidence interval; N, number; RCC, renal cell carcinoma; PRS, polygenic risk score; p, p-value
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study, among the 15 intergenic variants, rs73149350 
is situated in an open chromatin region of the genome. 
The open chromatin region is accessible and has a less 
condensed chromatin structure, facilitating the binding 
of transcription factors and other regulatory proteins 
to the DNA. The SEMA3C gene, in closest proximity 
to rs73149350, contributes to the promotion of cancer 
cell growth [40]. Therefore, rs73149350 may potentially 
regulate SEMA3C expression through processes such as 
chromatin remodeling or histone modification. This reg-
ulatory effect could have implications for the risk asso-
ciated with RCC. However, it is important to note that 
further studies are needed to fully understand the bio-
logical mechanisms underlying the regulation of genes 
by these intergenic variants. The finding suggest that 
lifestyle-associated factors may indirectly affect acquired 
risk factors through epigenetic modulation [41].

Limitations and future directions
This study has certain limitations. First, we did not per-
form additional pathway or biological mechanism analy-
sis of the intergenic variants. Without these analyses, the 
biological relevance of these variants in the context of 
RCC risk may remain unclear. Second, epigenetic associ-
ation studies should be conducted to draw more accurate 
inferences. We must investigate the specific epigenetic 
mechanisms through which lifestyle-associated factors, 
such as stress, smoking, alcohol use, and diet, influence 
gene expression and how these modifications are related 
to RCC risk. This investigation could involve detailed 
epigenome-wide association studies to identify specific 
epigenetic changes associated with lifestyle factors. Fur-
ther in-depth studies are required to explore the relation-
ship between lifestyle-associated factors and genetic risk. 
These studies should consider incorporating such analy-
ses to gain a deeper understanding of the underlying biol-
ogy and potentially develop clinical applications.

Conclusion
The aim of the present study was to construct a Korean-
specific PRS model that predicts the risk of RCC 
development and to explore the association of lifestyle-
associated factors with the genetic factor influencing 
RCC risk. To mitigate the impact of ethnicity, GWAS 
analysis was exclusively performed on the underrepre-
sented Korean population, leading to the identification 
of Korean-specific variants associated with RCC risk. 
The Korean-specific PRS model was constructed with 31 
identified variants and demonstrated a robust prediction 
rate of 77.4%. Among the 31 variants, 15 intronic variants 
indirectly contributed to cancer initiation and progres-
sion through their involvement in key biological func-
tions and pathways such as PI3K/AKT/mTOR or Notch 
signaling pathway. The remaining 15 intergenic variants 

potentially impact gene regulation through epigenetic 
modifications such as methylation or histone modifica-
tion. Epigenetic modification is known to be influenced 
by environmental factors including lifestyle-associated 
factors. Furthermore, we investigated the association 
between lifestyle-associated factors, such as physical 
activity, alcohol use, smoking habit, and diet, and the risk 
of RCC development. Our results suggest that lifestyle-
associated factors may indirectly influence acquired risk 
factors through epigenetic modification. However, fur-
ther studies that delve deeper into these complex interac-
tions and facilitate a comprehensive understanding of the 
interplay between genetic factors and lifestyle-associated 
factors in relation to RCC risk are warranted.
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