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Abstract
Background Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency 
in converting feed in high-quality protein for human consumption plays a major role in the environmental impact 
of the beef industry and in the beef producers’ profitability. In this context, breeding animals for improved feed 
efficiency through genomic selection has been considered as a strategic practice in modern breeding programs 
around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to 
phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) 
in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and 
weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter 
intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); 
and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated.

Results A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs 
covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated 
with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of 
the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the 
phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment 
processes associated with FF.

Conclusions A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. 
Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key 
biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.
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Background
Brazil is one of the largest beef exporters in the world, 
with a cattle population composed of about 80% of Nel-
lore (Bos taurus indicus) or Nellore composite breed 
animals [1]. With a rapid increase in the world popu-
lation and reduction in poverty, beef consumption is 
expected to increase from 60 to 130 million tons by 2050, 
and ~ 70% of this growth is projected to be provided by 
beef production systems from tropical and subtropical 
regions, including Brazil [2]. To meet the world’s grow-
ing beef demand and reduce the environmental impact of 
the industry, especially in developing countries, there is 
an urgent need to develop more efficient breeding strat-
egies for genetically improving tropically-adapted cattle 
raised in pasture-based production systems. Since feed 
represents the largest costs in beef production and is a 
major determinant of beef cattle producers’ profitability 
[3], improving cattle feed efficiency has been considered 
as a strategic and major breeding goal in worldwide beef 
cattle breeding programs [4–7]. Additionally, feeding 
behavior traits are associated with feed efficiency and 
growth traits [8, 9], and could be used as auxiliary traits 
for further improving beef cattle feed efficiency.

The sequencing of the cattle genome has led to the dis-
covery of thousands of single nucleotide polymorphism 
(SNP) markers [10], which are common variants of indi-
vidual nucleotide sequences that are frequently observed 
in the population (> 1%). Following the sequence of the 
cattle genome, various SNP panels containing thousands 
of markers with great genome coverage were developed 
[10]. In addition to providing information on individual 
SNPs, SNP panel data can also be used for identifying 
a form of genomic structural variation known as copy 
number variation (CNV; [11]).

The CNVs are a less-studied source of genetic varia-
tion that can influence phenotypic variability in complex 
traits. They can be defined as structural variations in an 
individual’s genome in the form of losses or gains of DNA 
fragments ranging from 1  kb to several mega-bases in 
comparison to the reference genome of the species [12–
14]. Additionally, CNVs are polymorphic genetic mark-
ers that can be inherited across generations [15]. CNVs 
can be detected using various platforms and sequencing 
tools, including array comparative genome hybridization 
(aCGH), single nucleotide polymorphism (SNP) panels, 
and next-generation sequencing (NGS) tools [16–18]. 
One of the most used data sources has been SNP panels 
as they are already generated for genomic selection pur-
poses in commercial breeding programs [19].

Compared to individual SNPs, CNVs cover wider chro-
mosomal regions [20], which contribute to changes in 
genome structure, alteration in regulation or gene dos-
age, exposure of recessive alleles, and alterations in gene 
expression, and consequently, phenotypic variability 

in complex traits [21–23]. CNVs can also have unique 
functional consequences not producible by SNPs. For 
instance, duplications can increase gene dosage while 
deletions can eliminate regulatory elements [24]. In addi-
tion, the lack of linkage disequilibrium between SNPs 
and 25% of the detected CNVs indicate that CNVs con-
tain information not captured solely based on SNP infor-
mation [25, 26]. Therefore, CNV is an additional source 
of information to explain the genetic variance of complex 
traits not accounted for by SNPs alone [26].

Many studies investigating CNVs have been carried 
out over the past few years. These studies have shown 
that these structural variations are major contributors to 
genetic diversity and phenotypic variability in many spe-
cies, including humans [27–31], birds [32], pigs [23, 33], 
sheep [34–36], and cattle [25, 37–39]. However, there 
is limited information on how CNVs contribute to the 
phenotypic variation in traits related to feed efficiency, 
feeding behavior, and growth in cattle, especially in Zebu 
cattle (Bos taurus indicus) such as in the Nellore breed– 
the major Zebu breed in Brazil. Therefore, the main 
objectives of this study were to: (1) identify CNV and 
CNV regions (CNVR) in the genome of a Nellore cattle 
population; (2) assess potential associations between the 
identified CNVR and weaning weight adjusted to 210 
days (W210), body weight measured at the time of selec-
tion (WSel), average daily gain (ADG), dry matter intake 
(DMI), residual feed intake (RFI), time spent at the feed 
bunk (TF), and frequency of visits to the feed bunk (FF) 
traits; and, (3) perform functional genomic annotation of 
the associated CNV regions (CNVRs).

Results
The descriptive statistics for the phenotype and the 
adjusted phenotypes used for the analyses are presented 
in Additional File 1.

Copy number variation and CNVR detection
Initially, 8,170 individual CNVs were detected in 1,222 
samples. After the quality control, 3,161 CNVs located 
in the autosomal chromosomes from 620 samples 
remained for further analyses, with a mean number 
of CNVs per animal equal to five (range from 1 to 35). 
Out of the CNVs identified, 1,401 were deletions and 
1,760 were duplications. The length of the CNVs ranged 
from 4,974 bp to 2,191,266 bp with an average length of 
176,335 ± 181,997  bp. No CNVs were detected on Bos 
taurus autosomes (BTA) BTA27 and BTA28. However, 
BTA6 exhibited the highest number of CNVs, with a 
maximum of 296 CNVs. On the other hand, BTA24 had 
the lowest number (n = 3) of CNVs.

The 3,161 CNVs remaining after quality control were 
used to infer CNVR by merging CNV with at least 1 bp 
overlap. Thus, 561 CNVRs were identified, in which 
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the average CNVRs length was 176,866 ± 263,706  bp 
and they ranged from 4,973 bp to 3,215,394 bp. Among 
these CNVRs, 256 correspond to genome deletions, 245 
to duplications, and 60 to mixed pattern (i.e., the same 
chromosomal segment was a deletion or duplication in 
different animals). The deletion-to-duplication ratio was 
1.04. Thirty-nine CNVRs were identified in at least 1% 
of the studied population. The number and proportion 
of chromosomes covered by CNVRs varied considerably 
and no CNVRs were identified on BTA27 and BTA28 
(Fig. 1; Table 1). BTA1 had the largest number of CNVRs 
(n = 49), which covered 4.08% of the chromosome, and 
BTA12 presented the highest coverage of a chromosome 

sequence (10.2%) with 41 CNVRs. The CNVRs inferred 
in our study covered 99,221,894  bp of the autosomal 
genome sequence, which corresponds to 3.99% of the 
cattle genome size.

Gene annotation, enrichment analyses, and QTL 
identification
Association analyses between the traits and the dis-
covered CNVs of 620 animals led to the identification 
of 17 CNVRs significantly associated with at least 1 of 
the evaluated traits (P < 0.0005). The 17 regions repre-
sent 2 deletions, 9 duplications, and 6 mixed, distrib-
uted across 14 chromosomes with an average length of 

Fig. 1 Distribution of copy number variation regions (deletions, duplications, and mixed type) by chromosome
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273,250 ± 209,907 bp (Table 2). Out of the 17 CNVRs, 16 
were associated with FF and 1 CNVR was associated with 
DMI and 12 were found in gap of the reference assembly 
ARS-UCD1.2 (Additional file 2). No CNVRs were signifi-
cantly associated with the other traits.

Functional enrichment analyses were performed to 
obtain broad functional insights into the set of genes sig-
nificantly associated with the CNVRs for each trait. Gene 
Ontology enrichment analyses revealed 19 processes 
for FF, which are categorized as 10 biological processes, 
three cellular components, four molecular functions, and 
two metabolic pathways (p < 0.05, as shown in Additional 
file 3). No GO enrichment processes were identified for 
WSel, W210, ADG, DMI, RFI, TF.

In total, 73 previously-reported quantitative trait loci 
(QTL) overlapped with the genomic regions associ-
ated with DMI and FF (Additional file 4). The number 

of overlapping QTLs were 2 for DMI and 71 for FF. The 
QTL identified span a wide range of trait types, includ-
ing meat and carcass, milk, reproduction, and produc-
tion. These QTL are also associated with many important 
traits, including marbling score, fat cover carcass, body 
height, body weight, carcass weight, dry matter intake, 
and average daily gain.

Discussion
All the growth, feed efficiency, and feeding behavior 
traits included in this study are heritable with heritabil-
ity estimates ranging from 0.17 ± 0.03 (RFI) to 0.51 ± 0.06 
(TF) [9]. Considering that CNVs are genomic alterations 
that can affect gene expression and, consequently, influ-
ence an individual’s phenotype [22, 23] and that heritabil-
ity indicates the proportion of phenotypic variation in a 
population attributable to genetic factors, a portion of the 
heritability of a given trait may be explained by genomic 
structural variations, such as CNVs. For instance, high 
heritability for specific traits implies that a substantial 
portion of the trait’s phenotypic variability is attribut-
able to genetic factors, which may include CNVs. This 
highlights the importance of considering these genomic 
alterations in the context of inheritance and phenotypic 
variability within populations.

Identification of CNV and CNVR
After applying quality control measures, approximately 
60% of the initially detected CNVs were excluded from 
further analyses and many factors might be associated 

Table 1 Chromosome distribution of all 561 copy number 
variation regions (CNVRs) detected in the Nellore genome
Chra Chr length 

(bp)
Num-
ber of 
CNVRs

CNVR 
length (bp)

%b

BTA1 158,534,110 49 6,469,894 4.08

BTA2 136,231,102 35 5,392,406 3.96

BTA3 121,005,158 40 5,802,111 4.79

BTA4 120,000,601 33 4,625,409 3.85

BTA5 120,089,316 30 8,863,760 7.38

BTA6 117,806,340 43 9,353,904 7.94

BTA7 110,682,743 39 4,660,233 4.21

BTA8 113,319,770 21 3,178,109 2.80

BTA9 105,454,467 39 5,500,040 5.21

BTA10 103,308,737 23 5,660,780 5.48

BTA11 106,982,474 26 4,572,944 4.27

BTA12 87,216,183 41 8,878,934 10.2

BTA13 83,472,345 22 2,443,887 2.93

BTA14 82,403,003 26 4,704,971 5.71

BTA15 85,007,780 29 4,596,564 5.41

BTA16 81,013,979 20 2,809,390 3.47

BTA17 73,167,244 3 2,360,049 3.22

BTA18 65,820,629 4 579,684 0.88

BTA19 63,449,741 6 914,327 1.44

BTA20 71,974,595 4 1,039,708 1.44

BTA21 69,862,954 6 2,422,071 3.47

BTA22 60,773,035 8 1,785,240 2.94

BTA23 52,498,615 5 899,028 1.71

BTA24 62,317,253 2 127,751 0.20

BTA25 42,350,435 2 803,807 1.89

BTA26 51,992,305 2 454,688 0.87

BTA27 45,612,108 0 0 0

BTA28 45,940,150 0 0 0

BTA29 51,098,607 3 322,205 0.63

Total 2,489,385,779 561 99,221,894 3.99
aChromosome
bThe percentage of the chromosome covered by the copy number variation 
regions

Table 2 Copy number variation regions associated with growth, 
feed efficiency, and feeding behavior in Nellore cattle
CNVRa Chrb Start (bp) End (bp) Type Traitc

CNVR1 BTA2 135,110,420 135,653,313 Mixed FF

CNVR2 BTA5 117,080,458 117,820,070 Deletion FF

CNVR3 BTA6 116,755,758 117,164,372 Duplication FF

CNVR4 BTA7 10,092,268 10,174,209 Duplication FF

CNVR5 BTA7 42,951,015 43,292,715 Mixed FF

CNVR6 BTA7 43,359,066 43,823,809 Mixed FF

CNVR7 BTA8 15,562,312 15,781,720 Duplication FF

CNVR8 BTA8 38,356,510 38,610,355 Duplication FF

CNVR9 BTA8 85,996,187 86,508,867 Deletion DMI

CNVR10 BTA9 2,637,837 2,700,411 Mixed FF

CNVR11 BTA9 16,366,613 16,894,948 Duplication FF

CNVR12 BTA9 15,312,685 15,469,154 Duplication FF

CNVR13 BTA12 73,233,249 73,770,215 Mixed FF

CNVR14 BTA12 74,302,958 74,578,587 Mixed FF

CNVR15 BTA12 64,618,237 64,736,496 Duplication FF

CNVR16 BTA13 12,552,408 12,829,168 Duplication FF

CNVR17 BTA26 51,032,219 51,267,717 Duplication FF
aCopy number variation region (CNVR) significantly (P < 0.005) associated with 
the traits
bChromosome
cDMI: dry matter intake; FF: feed frequency



Page 5 of 11Benfica et al. BMC Genomics           (2024) 25:54 

with this substantial reduction in the number of CNVs. 
For instance, the use of a rigorous quality control aim-
ing to minimize false-positive CNV calls could result in 
the exclusion of true CNVs. Additionally, the design of 
the SNP panel itself could have played a key role in the 
reduction in the number of CNVs identified. The distri-
bution of markers across the genome may not have fully 
captured certain CNVs, particularly those located in 
regions less represented by the SNP panel. Furthermore, 
the gap between markers could have also influenced the 
detection, as it might ignore smaller CNVs located within 
these gaps, or even the exclusion of larger CNVs when 
the gap between markers is too large.

After the quality control, 3,161 CNVs (1,401 dele-
tions and 1,760 duplications) with an average length 
of 176,335 ± 181,997  bp remained for further analyses. 
Despite the number of CNVs corroborating with values 
reported in the literature, there are often significant vari-
ability in the results of CNV analyses from different stud-
ies even within the same species. For instance, Butty et al. 
[39], while studying a population of 10,682 Holstein ani-
mals using SNP panels of different densities (Bovine HD 
Beadchip HD, Genome Profiler Bovine 150  K, Genome 
Profiler Bovine HD, BovineSNP50, and Genome Profiler 
Bovine 50 K), identified an average of four CNVs per ani-
mal and a total of 23,256 CNVs with an average length of 
168,520 bp. Peripolli et al. [40], studying whole-genome 
re-sequencing from 36 animals of different breeds, 
reported 7,285 CNVs in the population, with an aver-
age of 607.08 CNVs per animal, and an average length 
of 28,300  bp. Lemos et al. [38], studying 3,794 Nellore 
breed animals genotyped with a high density (HD) SNP 
panel and without adopting any quality control, identi-
fied 399,361 CNVs with an average length of 54,744 bp. 
Hou et al. [41], working with a population of 427 Angus 
reported 2,724 CNVs with an average of six CNVs per 
animal. These differences observed can be explained by 
differences in the data and methodologies used, includ-
ing (1) the use of different platforms and methods (based 
on Comparative Genomic Hybridization, SNP-array, and 
Next Generation Sequencing); (2) the software utilized 
for the analyses; (3) quality control metrics and thresh-
olds; (4) density of the genotyping SNP panels; and, (5) 
sample size [21, 42–44]. Despite the fact that all four 
studies mentioned above, and the current study focused 
on cattle, they all utilized different genotyping platforms, 
represented different populations, and differed on the 
sample sizes. These differences could justify the results 
obtained and make direct comparisons among studies 
unfair. It is important to acknowledge the impact of these 
differences when interpreting the findings. However, 
despite these discrepancies among studies, we observed 
some trends indicating that higher density panels tend 

to be associated with a greater number of CNVs and a 
shorter CNVs on average.

Deletion and duplication are genetic events that 
involve the number of copies of a particular DNA 
sequence. Deletion refers to the loss of a DNA segment 
from a chromosome and can impact phenotypic expres-
sion by interrupting genes and causing loss of biological 
functions [45]. Duplication refers to the process in which 
a segment of DNA is duplicated, resulting in additional 
copy of that sequence. Duplications are usually reported 
associated with digestion processes, lactation, reproduc-
tion, and immune system such as antigen processing and 
major histocompatibility genes in the cattle genome [46]. 
More duplications than deletions were identified in the 
present study, which is in agreement with Ladeira et al. 
[35] who reported 322 deletions and 835 duplications in 
sheep, and Liu et al. [47] who observed more duplication 
type (n = 11) CNVs as compared to deletion (n = 9) CNVs 
in Angus cattle. These findings deviate from the prevail-
ing pattern observed in the literature regarding CNV 
surveys in animals, where deletions tend to be more fre-
quent than duplications [23, 39, 40, 48].

The average length of the CNVs identified in the pres-
ent study is in line with the distance between markers on 
the GGP 75 K panel (107,700 bp; at least three SNPs were 
required to be considered as a CNV). The distribution of 
CNVs was not uniform across the cattle autosomes. This 
observation may be related with the different mecha-
nisms of CNV formation, such as nonallelic homolo-
gous recombination (NAHR), fork stalling and template 
switching (Fostes, a mechanism based on DNA replica-
tion error), and nonhomologous end-joining (NHEJ), 
once each mechanism would take place more often in 
certain genomic regions than others [20].

The proportion of the genome covered by CNVRs 
(3.99%) was consistent with values reported in the litera-
ture, which range from 0.68 to 9.43% [20, 37, 39, 47]. The 
variation in genome coverage observed across studies can 
be attributed to the specific SNP panels used, which, sim-
ilarly to CNV detection, can potentially affect the sensi-
tivity of CNV detection. When a low or medium-density 
SNP panel is used, there is a lower number of potential 
breakpoints compared to higher density SNP panels. As a 
result, the CNVs identified tend to be longer and cover a 
larger portion of the genome [39].

Association between CNVR and growth, feed efficiency, 
and feeding behavior traits
Copy number variation has the potential to modify gene 
expression, as deletions or duplications of gene segments, 
either partial or complete, can disrupt gene function and 
lead to phenotypic changes [49]. Consequently, identi-
fying CNVRs that overlap with genes becomes a crucial 
step in assessing their functional impact. In this study, we 
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further investigated the CNVRs identified based on the 
ARS-UCD1.2 cattle genome assembly. Remarkably, many 
CNVRs were associated with growth and feeding behav-
ior, indicating that these CNVRs may play a role in influ-
encing the phenotypic expression of these traits.

In this study, approximately 71% of the CNVRs signifi-
cantly associated with the studied traits overlapped with 
Ensembl genes. This observation indicates that CNVRs 
often occur in gene-rich regions and suggests that these 
CNVRs could potentially have functional implications. 
This is because they might influence the expression or 
regulation of nearby genes and possibly contribute to the 
phenotypic variations associated with important traits. 
In total, 95 genes overlapped with these genomic regions 
and 83 of them were classified as protein-coding genes. 
A similar trend was observed in previous studies in pigs 
[50] and beef cattle [46], where CNVRs were also found 
to be concentrated in protein-coding genes. Protein-
coding genes are segments of DNA that serve as tem-
plate for transcription of the DNA into RNA sequences 
and the complementary chain [51, 52]. The importance 
of this type of genes lies in their ability to direct the syn-
thesis of specific proteins. They are also essential to the 
task of translating the information in the sequence of the 
genome into biologically relevant knowledge and can 
affect dosage-sensitive genes [51]. Therefore, the pres-
ence of CNVRs in protein-coding genes may be relevant 
to explain the associations with the studied traits.

The lack of significantly identified CNVRs associated 
with WSel, W210, ADG, RFI, and TF traits may be linked 
to the limited number of genotyped animals with these 
phenotypes. Increasing the sample size for future stud-
ies could enhance the precision in identifying genetic 
variants associated with the phenotypes of interest and 
increase the accuracy and reliability of genetic variations 
associated with the traits under investigation. FF was the 
trait with the highest number of significant CNVRs and 
overlapped with important genes and QTLs. FF was also 
associated with some QTL related to dry matter intake, 
body weight and bovine respiratory disease (BRD) sus-
ceptibility in cattle. These are important traits, since BRD 
is one of the most common and costly disease of feedlot 
cattle, and has a negative impact on ADG, where calves 
diagnosed with BRD tend to have lower ADG compared 
with healthy animals [53, 54]. Therefore, the genetic asso-
ciations between FF with BRD susceptibility, dry matter 
intake, and body weight QTLs highlight the interaction 
between genetic factors, feeding behavior, and overall cat-
tle performance, with significant implications for the cat-
tle industry. Additionally, significant biological processes 
associated with FF were identified, particularly related to 
the activation of GTPase activity (GO:0090630), GMP 
catabolic process (GO:0046038), and cellular response to 
mechanical stimulus (GO:0071260).

The CNVR12 was significantly associated with FF and 
overlapped with MYO9A gene. This is a gene member of 
the myosin superfamily that is related to ATPase activity. 
ATPase activity is essential for many cellular processes, 
plays a crucial role in cellular energy metabolism, and is 
involved in a wide range of physiological processes. The 
CNVR17, located in the chromosome 26 overlapped 
with five genes, including INPP5A and MRPL13. INPP5A 
is gene that code a protein responsible for mobilizing 
intracellular calcium and acts as a second messenger 
mediating cell responses to several stimulations [55]. 
The MRPL13 gene is a component of the mitochondrial 
ribosomal protein (MRP) family. The MRP are synthe-
sized in the cytoplasm before being transported into the 
mitochondria for the purpose of mitochondrial ribo-
some assembly. MRP is vital for mitochondrial oxidative 
phosphorylation and plays a significant role in the regu-
lation of apoptosis-inducing factors, and an alteration in 
the MRP expression could result in a range of disorders, 
including mitochondrial metabolic disorders and cellular 
dysfunction [56]. Although no studies have reported a 
direct relationship between the MRPL13 gene and feed-
ing behavior, it is important to highlight that the mito-
chondria are cellular organelles responsible for energy 
conversion and adenosine triphosphate (ATP) produc-
tion in eukaryotic cells [57]. In addition to their func-
tion in energy metabolism, they play an important role 
in diverse cellular processes, such as apoptosis [58] and 
aging [59]. Therefore, it is plausible that the MRPL13 
gene, being involved in mitochondrial function and cel-
lular metabolism, may have indirect implications for 
the organism’s response to feeding behavior, and conse-
quently, feed efficiency and growth.

Feeding behavior is a complex process that encom-
passes a multitude of psychological factors, neuronal 
mechanisms, and metabolic processes. Thus, while none 
of the identified genes have been directly associated with 
feeding behavior traits yet, the fact that many of them are 
linked to metabolic activities might suggest a relation-
ship between these genes and the FF. These novel find-
ings highlight the importance of developing a reference 
genome for Nellore cattle and performing detailed func-
tional annotation of the Nellore cattle genome.

Despite the findings obtained, there are also inherent 
limitations in this study. These limitations provide a solid 
foundation for identifying research areas that require 
further investigation and pave the way for more compre-
hensive and in-depth studies in the future. One limita-
tion of this study is that the current study lacks detailed 
information regarding the storage and processing proce-
dures of all utilized DNA samples. This stands as a cru-
cial aspect as it can significantly impact the detection of 
CNVs. Variations in the DNA source have the potential 
to influence the genetic material’s integrity, while the 
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processing methods such as DNA extraction, storage, 
or amplification might affect the quality of the genomic 
data acquired [60], potentially impacting the accuracy of 
genetic variations identification. Furthermore, low quan-
tity and/or quality DNA samples can lead to a higher 
number of genotyping errors [61].

Another important point is the relatively small num-
ber of animals, which, although larger than many previ-
ous studies, may still have impacted the results reported 
here. Additionally, the use of the reference genome 
ARS-UCD1.2 could also be a limitation that affected 
the results, as it is based on the genome of a Bos taurus 
taurus (Taurine) animal of the Hereford breed, while 
the animals in the present study are Bos taurus indicus 
(Zebu) of the Nellore breed. Therefore, future studies 
could take these potential factors into consideration for a 
more comprehensive understanding of the CNVs in Zebu 
cattle. Furthermore, validation of CNVs and CNVRs 
were not performed in this study. Validation studies are 
important to ensure the accuracy and reliability of the 
CNVs detected. One alternative is to use Whole Genome 
Sequencing (WGS) data that can provide a more compre-
hensive overview of the entire genome and tends to be 
more sensitivity for the detection of structural and com-
plex variants in the genome [62]. Therefore, WGS could 
be a powerful tool for CNV validation in future studies.

The results of the present study have significant impli-
cations and can have several practical applications. Based 
on the findings, one possible application is the creation 
of SNP panels with a higher number of markers in the 
regions with large incidence of CNVRs. This would allow 
more comprehensive and refined genomic analyses, 
providing a more detailed understanding of the genetic 
variations in those regions. Additionally, an alternative 
approach to consider in genomic prediction is the dif-
ferential weighting of SNPs located within CNVRs. A 
potential method for this is the use of the Weighted Sin-
gle-step Genomic BLUP procedure, as proposed by Wang 
et al. [63], that is an iterative process involving updates 
of SNP solutions with appropriate weights. Incorporat-
ing differential weighting of SNPs within genomic models 
could enable a more realistic representation of the actual 
distribution of SNP effects, with a particular emphasis on 
CNVRs with larger effects, and could potentially improve 
the accuracy of genomic prediction of breeding values 
[26].

Conclusion
This study aimed to investigate CNVs and CNVRs in the 
genome of a Nellore cattle population and explore their 
associations with growth, feed efficiency, and feeding 
behavior traits. A total of 3,161 CNVs and 561 CNVRs 
were identified and characterized within the Nellore cat-
tle genome. The results revealed that some CNVRs are 

significantly associated with the traits analyzed, showing 
the potential influence of structural genome variations 
on economically relevant traits in Nellore cattle. The 
functional annotation of the associated CNVR revealed 
some important genes that may be related to the expres-
sion of the traits studied. Various QTLs overlapping with 
the CNVRs identified are related with growth, feed effi-
ciency, and feeding behavior traits in Nellore cattle.

Materials and methods
No Animal Care Committee approval was necessary for 
the purposes of this study, as all information required 
was obtained from pre-existing databases.

Animals and phenotypic datasets
Performance records were obtained from 1,338 animals 
born from 1983 to 2020, which belong to the Nellore cat-
tle herd of the Institute of Animal Science (IZ), Sertãoz-
inho, SP, Brazil. The analyzed traits were weaning weight 
adjusted for 210 days of age (W210), body weight mea-
sured at the time of selection (WSel), average daily gain 
(ADG), dry matter intake (DMI), residual feed intake 
(RFI), time spent at the feed bunk (TF), and frequency of 
visits to the feed bunk (FF).

Weaning weight adjusted for 210 days of age was calcu-
lated based on the weight gain between birth and wean-
ing, using the following equation:

 
W210 =

(
WW - BW

AAW

)
∗210 + BW

where W210 is the weaning weight adjusted for 210 
days of age; WW is the weaning weight; BW is the birth 
weight; and AAW is the age of the animal at weaning. 
WSel is the postweaning weight adjusted to 378 days of 
age for males in feedlot performance tests and postwean-
ing weight adjusted to 550 days of age for females on 
pasture.

Dry matter intake (DMI) and average daily gain (ADG) 
were obtained for males and females, which participated 
in 21 performance tests after weaning with a minimum 
of 21 days of adaptation to the diet and facilities and 
86 ± 13 test days. The animals started the test at the age 
of 293 ± 42 days and remained in individual or collec-
tive pens equipped with the Vytelle LLC® (Vytelle LLC, 
Calgary, AB, Canada) or Intergado® (Contagem, Minas 
Gerais, Brazil) electronic monitoring system. The ani-
mals had ad libitum access to diet and water. The diet 
was formulated for an ADG of 1.1 kg. Body weights were 
recorded at a maximum interval of 28 days.

The DMI was obtained as the average of all valid days 
of intake multiplied by the dry matter content of the diet 
offered each week. ADG was calculated as the linear 
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regression coefficient of weights as a function of days on 
test:

 yi = α + β × DOTi + ei,

where yi is the animal’s weight in the ith observation; α 
is the intercept corresponding to the initial weight; β is 
the linear regression coefficient corresponding to ADG; 
DOT is days of test; and ei is the random error. RFI was 
estimated as the residual of the linear regression equation 
of DMI on ADG and BW0.75 (Koch et al., 1963). Feeding 
behavior data was only available for males kept in col-
lective pens equipped with Vytelle LLC® (Vytelle LLC, 
Calgary, AB, Canada) in 12 feeding tests. The electronic 
trough systems were configured to scan the electronic 
identification tags of animals entering the trough every 
1.0 to 6.3 s. The start of a meal event is defined when the 
tag of an animal was identified by the system. The meal 
event ends when the time between the last two read-
ings of the same tag was longer than 300  s, and can be 
made up of a single or several feeding events from differ-
ent bunks, or when a new tag was detected in the same 
trough (Vytelle LLC, Calgary, AB, Canada). Meal events 
with a feed intake lower than 1 kg and time at bunk lower 
than 3 s were discarded. The following feeding behavior 
traits were analyzed: time spent at the feed bunk (TF, 
average daily time the animal spent at the feed bunk dur-
ing the test period, min per day) and frequency of visits 
to the feed bunk (FF, average sum of feeding events of the 
animal per day, number of feeding events per day).

The phenotypic records were adjusted for the fixed 
effects listed in Table 3 using the lm() function in R. The 
adjusted phenotypes were then used for the association 
analyses.

Genomic datasets
A total of 1,338 animals were genotyped with the Gen-
eSeek Genomic Profiler HDi 75  K (GeneSeek Inc., Lin-
coln, NE, USA) panel containing 74,677 SNPs distributed 
along the genome, with a mean distance between mark-
ers equal to 32.3 ± 10 kilobases (Kb). The SNP positions 
were based on ARS-UCD1.2 genome [64]. The geno-
typed animals included 817 males, 519 females, and 2 
founders (unknown sex). Non-autosomal SNPs, SNPs 
with unknow genome position, and SNPs with a Gen-
Call score below 0.15 were removed during the genomic 
quality control. After the quality control, 69,680 SNPs 
remained for further analyses.

Copy number variation identification
The CNV identification was performed using the 
PennCNV.1.0.5 software [65], which integrates Log R 
Ratio (LRR) and B Allele Frequency (BAF) on a per sam-
ple basis into a hidden Markov model to determine the 
number of copies and genotypes of each CNV. LRR mea-
sures the total signal intensity while BAF measures the 
proportion of the B allele in each sample. The population 
frequency of the B allele information was calculated using 
the BAF value of each SNP in all samples. To reduce false-
positive results, the genomic waves were adjusted using 
the -gcmodel option in the PennCNV program. Genomic 
waves refer to a signal noise related to the GC content in 
the genome, which interferes with accurate CNV detec-
tion. The cattle gcmodel file was generated by calculating 
the guanine-cytosine (GC) content of each marker. The 
LRR values of each SNP were adjusted for the genomic 
waves along the genomic regions, taking into account the 
expected GC content in the bovine genome in a region 
of 500 Kb around each SNP and based on a regression 
model [66].

After CNV calling, a sample-based quality control 
was performed, which removed CNVs with a BAF drift 
lower than 0.01, standard deviation of LRR greater than 
0.30, minimum length of 1,000  bp, maximum length of 
5,000,000 bp, and GC wave factor lower than 0.05 (after 
genomic waves were corrected by guanine-cytosine con-
tent) to generate raw CNV calls. In addition, CNVs with 
less than three consecutive SNPs were discarded. Finally, 
after the control quality, 620 individuals and 3,161 CNV 
remained for further analyses.

Copy number variation regions identification
The CNVR were determined by grouping the 3,161 CNVs 
that overlapped by at least 1  bp within each algorithm, 
using the mergeBed option of the BEDtools suite tool 
[67]. CNVRs were classified in deletions when the animal 
showed a region with loss of a chromosomal segment, 
duplication for repeated chromosomal regions, and 

Table 3 Effects included for phenotype adjustment for growth, 
feed efficiency, and feeding behavior traits
Traita Categor-

ical fixed 
effectsb

Covariatesc

W210 (kg) CGw CA, CA2 AW

WSel (kg) CGw CA, CA2, 
ASW

ADG (kg.day− 1) CGr, BM AST

DMI (kg.day− 1) CGr, BM AST

RFI (kg.day− 1) CGr, BM AST

TF (hour.day− 1) CGr, BM AST

FF (n.day− 1) CGr, BM AST
aW210: weight at 210 days; WSel: body weight measured at the time of selection; 
ADG: average daily gain; DMI: dry matter intake; RFI: residual feed intake; TF: 
time spent at the feed bunk; FF: frequency of visits to the feed bunk
bCGw: contemporary group for weight (birth year, birth month, line, and sex); 
CGr: contemporary group for RFI (test start year, test start month, installation, 
and sex); BM: birth of month
cCA and CA2: cow age (linear and quadratic effects); AW: age at weaning; ASW: 
age at selection weight; AST: age at the start of the feeding test



Page 9 of 11Benfica et al. BMC Genomics           (2024) 25:54 

mixed, when it was identified deletions and duplications 
in the same genomic region.

Association analyses
The association analyses were performed consider-
ing only the CNVR identified in the autosomal chro-
mosomes. The CNVRs were coded as -1 (deletion), 0 
(neutral), and 1 (duplication). To test the potential asso-
ciations between CNVRs with the pre-adjusted pheno-
types, the model fitted is:

 y = Xb + Zu + e,

where y is the vector of pre-adjusted phenotypes for each 
trait; b is the fixed effect of the CNVR tested for potential 
association with the phenotype, X is a vector containing 
the genotype score for the tested CNVR; u is the random 
vector of polygenic effect with u ~ N(0, Aσu

2), where A is 
the pedigree-based additive genetic relationship matrix, 
σu

2 is the additive genetic variance for each trait; Z is 
the incidence matrix for u; and e is a random vector of 
residual effects with e ~ N(0, Iσe

2), where I is an identity 
matrix and σe

2 is the residual variance. The variance com-
ponents were previously calculated by fitting the above-
described model excluding the CNVR as a fixed effect in 
the model. The estimation of variance components and 
the CNVR effect size estimation were performed using 
the BLUPF90 + program [68].

The model adjusted provided the effect size (β) and 
standard error (SE) for each CNVR, which were used to 
compute the t statistic (t = β ⁄ SE). Subsequently, p-values 
were computed by assuming that a t-distribution with 
“n– 2” degrees of freedom, where n is the sample size (i.e., 
the number of animals used to obtain the CNVR effect 
for each pre-adjusted phenotype). To adjust for multiple 
testing, a Bonferroni correction at α = 0.05 genome-wise 
significance level was applied by dividing α by the total 
number of CNVRs.

Gene annotation and functional analyses
The CNVRs significantly associated with the phenotypes 
were used for the annotation. The gene and QTL anno-
tation in these regions was performed using the GALLO 
package [69], utilizing annotated data for Bos taurus 
sourced from the Ensembl database (www.ensembl.
org/Bos_taurus/Info/Index) and the reference genome 
ARS-UCD1.2 [64]. Additionally, the Cattle QTL data-
base (www.animalgenome.org/cgi-bin/QTLdb/BT/
index) was used as a resource for obtaining previously-
reported QTL information. To test the significance of 
the QTL representativeness, it was performed a QTL 
enrichment analysis using GALLO package. This analysis 
is based on a hypergeometric test approach, where the 
number of QTLs annotated within the candidate regions 

for each QTL type is compared with the observed num-
ber of QTLs in the reference database. Subsequently, 
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID; version 6.8) [70] was used for 
conducting Gene Ontology (GO) and KEGG pathway 
enrichment (p < 0.05) analyses to identify biological pro-
cesses, molecular functions, cellular components, and 
biological pathways associated with the positional candi-
date genes identified.
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