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Abstract
Background  SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress 
responses. Sugar beet (Beta vulgaris L.), one of the world’s main sugar-producing crops, is a major source of edible and 
industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports 
on the SPL gene family in sugar beet are available.

Results  Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions 
on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were 
analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). 
Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. 
Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream 
of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression 
profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. 
BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy.

Conclusion  Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene 
structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that 
BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation 
of root expansion and sugar accumulation.
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Background
Sugar beet (Beta vulgaris L., 2n = 18) is an economically 
important crop grown in temperate and cold temperate 
regions and is the raw material for approximately 30% 
of the world’s sugar [1]. Sugar beet is also an important 
raw material for bioethanol and animal feed worldwide 
[2–3]. According to previous research, sugar beet origi-
nated from a halophyte known as Beta maritima L [4].. 
Through artificial domestication and cultivation, sugar 
beet is mainly used for feed and food, and edible sugar 
beet is further divided into industrial and edible types 
[5–9]. Currently, sugar beet is widely grown in Europe 
and temperate regions, making it an important economic 
crop [10–11].

Transcription factors play important role in biology 
[12–13]. Currently, transcription factors such as bHLH 
[14], MYB [15–16], HSP [17–20], and bZIP [21–22] are 
widely found in plants and animals. They perform vari-
ous functions during the growth and developmental 
stages of organisms to ensure normal growth and devel-
opment. Therefore, systematic research on biological 
transcription factors is important. Squamosa Promoter-
Binding Protein-Like (SPL) is a plant-specific transcrip-
tion factor that regulates plant growth and development. 
The SPL gene was first discovered in 1996, and Klein et 
al. isolated it from the Antirrhinum majus inflorescence 
cDNA library. Because it can recognize and bind to the 
SQUAMOSA promoter, it was named SBP1 and SBP2 
[23]. The SBP domain encoded by the SPL gene is highly 
conserved and contains approximately 76 amino acid 
residues [23–25]. The SBP domain is divided into three 
main parts: Zn-1 (Cys-Cys-Cys-His), Zn-2 (Cys-Cys-His-
Cys), and a nuclear localization signal (NLS) located at 
the C-terminal [25–27]. According to the gene structure 
and phylogenetic tree, 16 Arabidopsis SPL family mem-
bers were identified and divided into eight subgroups 
(I–VIII) [24, 28]. These Arabidopsis SPL family members 
have been shown to play important roles in the develop-
ment of Arabidopsis stems, leaves, and flowers [29–30]. 
To date, whole-genome identification and analysis of 
SPL transcription factors in many plants have been com-
pleted, including Arabidopsis [24, 28], rice [31, 32], millet 
[33], quinoa [34], corn [35], tomato [36], buckwheat [37], 
barley [38], and wheat [39].

SPL transcription factors play vital roles in plant 
growth and development. For instance, in Switchgrass, 
when PvSPL2 expression is suppressed, biomass yield 
can be enhanced, and the total soluble sugar content 
can be increased [40]. In Arabidopsis, under heat stress, 
SPL genes are downregulated by miR156 to counter the 
effects of high temperatures [41]. ZmSPL in maize regu-
lates several aspects of maize morphology, such as plant 
height, tillering, and grains [42]. OsSPL3 in rice can reg-
ulate plant cold resistance [43], and OsSPL14 has been 

associated with tiller number, grain weight, and disease 
resistance in rice [44–46]. Many plant SPL genes have 
been discovered and identified, and the functions of 
some SPL genes have been studied. Sugar beet has sub-
stantial economic value; however, the SPL gene family 
in sugar beet has not yet been identified. Therefore, it is 
important to perform genome-wide mining and the sys-
tematic identification of SPL genes in sugar beet.

Therefore, building upon the sugar beet genome, we 
systematically excavated, identified, and researched 
BvSPL genes in sugar beet. In this study, we identified 
eight BvSPL genes and analyzed their chromosomal dis-
tribution, gene duplication events, cis-acting elements, 
gene structures, and conserved motifs. Moreover, we 
analyzed the evolutionary relationship between the SPL 
genes of Arabidopsis, rice, maize, buckwheat, sorghum, 
and tomato and BvSPL genes in sugar beet. Addition-
ally, we investigated the expression of BvSPL genes 
under eight forms of non-biological stress in sugar beet 
seedlings and in different tissues of mature sugar beet, 
thereby providing a foundation for studying the biologi-
cal functions of BvSPL genes in sugar beet. In summary, a 
systematic analysis of the sugar beet SPL gene family was 
conducted to identify that BvSPL genes have critical roles 
in the growth and developmental processes of sugar beet. 
This lays a foundation and provides a reference for future 
sugar beet research.

Results
Identification of sugar beet SPL genes
Based on the complete sugar beet genome, two BLAST 
methods were used to obtain the SPL genes. After elimi-
nating duplicate genes, eight SPL genes were identified. 
Depending on the location of the eight SPL genes on the 
nine chromosomes, we named them BvSPL1–BvSPL8. 
The biological characteristics of the eight BvSPLs 
were analyzed, including the length of the amino acid 
sequence, protein molecular weight, protein hydrophilic-
ity, protein isoelectric point, and subcellular localization 
(Table S1). Subcellular localization prediction revealed 
that all eight BvSPL genes were located in the cell 
nucleus. The BvSPL protein with the most amino acids 
had 996 (BvSPL4), whereas that with the fewest amino 
acids had only 267 (BvSPL3). The isoelectric point ranged 
from 5.61 (BvSPL4) to 9.63 (BvSPL3), and the protein 
molecular weight ranged from 30.33  kDa (BvSPL3) to 
110.70 kDa (BvSPL4). All BvSPL proteins were found to 
be hydrophilic.

Phylogenetic analysis, classification, and multiple 
sequence alignment of BvSPL genes
To study the evolutionary relationship between sugar 
beet SPL genes, a phylogenetic tree with a bootstrap 
value of 1000 was constructed using the neighbor-joining 
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(NJ) method, which included eight sugar beet SPL pro-
teins and 16 Arabidopsis thaliana SPL proteins (Table 
S2). Based on the AtSPL classification method [24, 28], 
the BvSPL gene family was divided into six subgroups (II, 
IV, V, VI, VII, and VIII; Fig. 1A). Compared to the AtSPL 
gene family, the BvSPL gene family lacked subgroups I 
and III. Of these subfamilies, subgroups II and VII each 
contained two BvSPL members, and subgroups IV, V, VI, 
and VIII each contained one BvSPL member. After align-
ing AtSPL and BvSPL genes according to their respec-
tive subgroups, and based on the characteristics of the 
SBP domain, the SBP domains of the BvSPL genes were 
obtained (Fig. 1B).

The sequence of the SBP domain of the BvSPL gene was 
approximately 74 amino acids long, of which the CQQC, 
SCR, and RRR sequences in the SBP domain were highly 
conserved. All BvSPLs contained two zinc-finger struc-
tures (Zn-1 and Zn-2) and a bipartite nuclear localization 
signal (NLS) motif. However, the Zn-2 (Cys-Cys-His-Cys) 
sequence of BvSPL3 in subgroup VI had mutated and 
contained 15 more amino acids than the Zn-2 sequence 
of the AtSPL protein. Such mutations may cause changes 
in the zinc finger binding site, thereby affecting protein 

conformation and endowing the BvSPL3 gene with new 
functions. In the other subgroups, Zn-1, Zn-2, and 
NLS were highly conserved, and the phenomenon that 
occurred in BvSPL3 in subgroup VI was not observed.

Analysis of gene structure, motif composition, and cis-
acting elements of the BvSPL gene family
Eight BvSPL genes were identified at the genome-wide 
level; a phylogenetic tree of the full-length sequences of 
eight BvSPL proteins was constructed; and gene struc-
ture, sequence composition, and cis-acting elements were 
analyzed (Fig.  2; Table S3). The intron–exon structures 
of the same subgroup were similar, but there were large 
differences between the subfamilies. For example, sub-
group II (BvSPL1 and BvSPL4) all had ten exons, while 
sub-group VII (BvSPL5 and BvSPL7) all had three exons. 
The other four sub-groups (IV, V, VI, and VIII) had fewer 
exons, with an average of only 3.5 introns, which was 
close to sub-group VII. All BvSPL genes contained the 
SBP domain and subgroup II contained both the SBP and 
ANK domains (Fig. 2B).

To explore the conserved motifs of the eight BvSPL 
proteins, we used the MEME website to analyze ten 

Fig. 2  Phylogenetic relationship, gene structure, motif distribution, and cis-acting elements of sugar beet SPL genes. Among them, the number marked 
on the Node represents the confidence level. (A) Phylogenetic tree of the sugar beet SPL family, each node has 1000 repetitions. (B) Schematic diagram 
of the gene structure of sugar beet SPL genes, including UTR (untranslated region), CDS (coding sequence), domains (SBP, ANK domains), and introns 
(Number indicates the phase of the corresponding intron.). Light green represents UTR, yellow represents CDS, pink represents the structural domain 
SBP, and dark green represents structural domain ANK. (C) Conserved amino acid motifs (motifs 1–10) in BvSPL proteins: the line represents the relative 
length of the protein. (D) Cis-acting elements in the 2000 bp promoter sequence upstream of the BvSPL genes; different color blocks represent different 
cis-acting elements

 

Fig. 1  (A) Phylogenetic tree of the relationship between Beta vulgaris and Arabidopsis thaliana SPL proteins. Different block colors represent different 
subgroups, with green stars representing Arabidopsis thaliana and red triangles representing Beta vulgaris in the legend. (B) Multiple sequence alignment 
of the SBP domains of different subgroups of Beta vulgaris and Arabidopsis thaliana
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conservative motifs of the BvSPL family (Fig.  2C; Table 
S3). Motifs 1, 2, and 3 were found to exist in the entire 
BvSPL family, and they were arranged in a specific order 
of motifs 2, 1, and 3 on the BvSPL protein sequence. 
However, motifs 4, 5, 6, 7, 8, and 9 only existed in sub-
group II, whereas motif 10 only existed in BvSPL5 of sub-
groups II and VII.

A similar arrangement of motifs indicates relatively 
conserved protein structures. All BvSPL proteins had a 
specific arrangement of motifs 2, 1, and 3, indicating that 
the BvSPL family was relatively evolutionarily conserved. 
The arrangement of motifs also supported the reliability 
of subgrouping the BvSPL family.

To elucidate the function of BvSPL genes, the cis-acting 
elements in the 2  kb promoter region upstream of the 
BvSPL genes were investigated (Fig. 2D; Table S3). Of the 
cis-acting elements of BvSPL, elements related to light 
were the most abundant, and all BvSPL genes contained 
these elements. The following elements were related to 
plant hormones: MeJA (TGACG-motif, CGTCA-motif ), 
abscisic acid (ABRE), salicylic acid (TCA-element), 
and gibberellin (P-box, GARE-motif ). BvSPL genes also 
have cis-acting elements related to growth and develop-
ment, such as cis-regulatory elements related to meri-
stem expression and elements involved in defense and 
stress responses. BvSPL3 had cis-acting elements that 
responded to low temperatures and BvSPL3 also had high 
expression under low-temperature stress. These results 
indicate that the BvSPL gene family plays an important 
role in plant growth and development.

Chromosome distribution and gene replication of the 
BvSPL gene
We determined the physical location map of the eight 
BvSPL genes on the chromosome using the sugar beet 
genome (Fig.  3A). Eight BvSPL genes were unevenly 
distributed across the nine sugar beet linkage groups 
(LGs), and the entire BvSPL family was distributed on 
only four chromosomes (Chr3, Chr4, Chr5, and Chr6). 
Of them, Chr6 had the highest number of BvSPL genes 
(four; ~50%). The least abundant was on Chr4 and Chr5, 
both of which contained only one BvSPL gene (~ 12.5%). 
The remaining two BvSPL genes were found on Chr3 
(~ 25%). When one or more identical gene regions appear 
within 200  kb of a chromosome, it is referred to as a 
tandem duplication event. However, no tandem dupli-
cation events were not observed in the BvSPL family. A 
segmental duplication event was observed in the BvSPL 
gene family (Fig.  3B; Table S4). This segmental duplica-
tion event occurred on Chr6, and the genes involved in 
the segmental duplication were all members of subfam-
ily VII (BvSPL5 and BvSPL7), which also supports the 
subgroup grouping of the BvSPL family. Gene duplica-
tion events play an indispensable role in the generation 

of new functions and in gene amplification. The BvSPL 
gene family does not have tandem duplication events; 
however, there is a pair of segmental duplication events. 
Therefore, we believe that tandem duplication events 
have not played a role in the expansion of the BvSPL fam-
ily, while segmental duplication has played a certain role 
in the expansion of the BvSPL family.

Evolutionary analysis of BvSPL and SPL genes in different 
species
To study the evolutionary relationships of the SPL fam-
ily among different species, a collinearity map (Fig.  4A; 
Table S5) and a phylogenetic tree (Fig.  4B; Table S6) of 
BvSPL with six species (three dicotyledons: Arabidop-
sis thaliana, Solanum lycopersicum, and Fagopyrum 
tataricum, and three monocotyledons: Oryza sativa, 
Zea mays, and Sorghum bicolor) were constructed. Of 
the homologous genes of BvSPL and SPL in the six spe-
cies (Fig.  4A; Table S5), the homologous pair numbers 
were A. thaliana (seven pairs), S. lycopersicum (six pairs), 
F. tataricum (five pairs), O. sativa (four pairs), Z. mays 
(zero pairs), and S. bicolor (zero pairs). Compared with 
monocotyledons, BvSPL genes have more homologous 
genes than dicotyledonous plants. This suggests that 
the BvSPL genes may have originated from the ances-
tors of dicotyledonous plants after the differentiation of 
monocotyledons and dicotyledons. The BvSPL3 gene has 
homologous genes with the three dicotyledonous plants, 
but not with monocotyledonous plants, indicating that 
the BvSPL3 gene may have formed after the differentia-
tion of monocotyledons and dicotyledons.

We constructed a phylogenetic tree of BvSPL proteins 
and proteins from six other species, and used the MEME 
website to analyze the protein-conserved motifs of the 
seven species (Table S6). In the analysis of protein-con-
served motifs, motifs 1, 2, 4, and 6 were found in almost 
all SPL proteins. This suggests that the plant SPL family 
may have existed before the differentiation of monocoty-
ledons and dicotyledons. Although they evolved in differ-
ent directions after the differentiation of monocotyledons 
and dicotyledons, they remained relatively conserved 
as a whole. From the phylogenetic tree, although BvSPL 
had only five pairs of homologous genes with Tartary 
buckwheat SPL, we found that BvSPL was mainly aggre-
gated with Tartary buckwheat SPL genes. Therefore, we 
inferred that the BvSPL gene family was closer to the F. 
tataricum SPL gene family.

Expression patterns of the BvSPL gene under different 
abiotic stresses
To elucidate the physiological functions of BvSPL genes 
under abiotic stress, qRT-PCR was used to detect gene 
expression in the roots, stems, and leaves of beet seed-
lings under eight types of abiotic stresses (PEG, flooding, 
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darkness, salt, acid, alkali, cold, and heat). We found 
that some genes exhibited marked expression or sup-
pression under abiotic stress and many genes showed 
related expression under certain types of abiotic stress 
(Fig.  5A, Fig. S1). For instance, BvSPL6 was substan-
tially upregulated in the roots under all stress conditions 
but was downregulated in the stems and leaves. In the 
roots, the upregulation of BvSPL6 was extremely high, 
with most of the differences being more than 20-fold. 
We also discovered that BvSPL3 responded to all types 
of stress and displayed an extremely high, short-term 
(2 h) response in leaves under cold stress (-4 ℃). Many 
genes were initially downregulated, followed by upregu-
lation under abiotic stress. For example, under drought 
stress, the response of BvSPL2 in the roots, stems, and 
leaves initially decreased and then increased. Many 

genes were gradually up-regulated or down-regulated. 
Under salt (NaCl) stress, the expression of BvSPL5 in 
the roots, stems, and leaves gradually decreased. Under 
alkali stress (NaOH), the expression of BvSPL3 gradually 
increased under alkaline stress. Under heat stress (40 ℃), 
the expression of BvSPL genes changed markedly only 
after 24 h, and was mainly downregulated in roots, stems, 
and leaves. Therefore, we inferred that BvSPL genes are 
important for resistance to high temperatures.

Using gene heatmaps, the correlations between gene 
expressions were investigated. The correlation of BvSPL 
gene expression under different types of abiotic stress, 
and the correlation of gene expression under single 
stress (Fig. 5A, B, Fig. S1) were investigated. Under alka-
line stress (NaOH), positive correlation areas (BvSPL2, 
BvSPL5, and BvSPL7; BvSPL1, BvSPL3, and BvSPL4) and 

Fig. 3  (A) Distribution of the eight BvSPL genes in beet chromosomes, with gene density on chromosomes (Bin size = 100,000). (B) Chromosome dis-
tribution and gene duplication relationship of sugar beet SPL genes. The colored lines represent gene pairs between different chromosomes: the red 
line represents the BvSPL gene pair; from the inside out, the first and second outer circles are chromosome density (Bin size = 100,000), the third is the 
chromosome; the chromosome color is consistent with the gene pair line color on the chromosome
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Fig. 4  (A) Collinearity analysis of beet with six plants (Arabidopsis thaliana, Solanum lycopersicum, Fagopyrum tataricum, Oryza sativa, Zea mays, and Sor-
ghum bicolor). Red lines represent the species’ beet SPL genes and gene pairs, and gray represents collinear blocks in the beet and the species’ genomes. 
(B) The phylogenetic tree and motif composition of the SPL proteins of beet and six plants (Arabidopsis thaliana, Solanum lycopersicum, Fagopyrum 
tataricum, Oryza sativa, Zea mays, and Sorghum bicolor). Different module colors represent different motifs. The numbers on the evolutionary tree repre-
sent confidence levels. Red fonts represent BvSPL
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negative correlation areas (BvSPL1 and BvSPL4 with 
BvSPL2; BvSPL5, BvSPL6, and BvSPL7). We also found 
positive and negative correlation areas for other types of 
stress.

We then analyzed the correlation between BvSPL gene 
expression and eight types of abiotic stresses (Fig.  5B). 
We found that only a few genes had strong correlations, 
such as BvSPL2, BvSPL7, and BvSPL8. However, most 

Fig. 5  (A) Relative expression levels and gene expression correlations of BvSPL genes in beet seedling roots, stems, and leaves at 0 h, 2 h, and 24 h under 
eight types of abiotic stress detected using quantitative real-time polymerase chain reaction (qRT-PCR). The lowercase letters above the bars indicate 
significant treatment differences (α = 0.05, LSD). The expression level of BvSPL gene was normalized to the expression level of BvACTIN, and its relative 
expression level was displayed at 0 h, 2 and 24 h. (B) Correlation of BvSPL gene expression under eight types of abiotic stress. The expression values of 
the color gradient mapping from low (blue) to high (red) on the right side of the figure. (C) Predicted protein–protein interaction network of beet BvSPL 
proteins within the beet. Orange represents BvSPL proteins; blue represents other proteins within the beet; the larger the circle, the more interacting 
proteins there are
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BvSPL genes had no strong positive or negative correla-
tions; therefore, we speculated that the correlation of 
expression among BvSPL genes was low.

We predicted the interactions among the eight BvSPL 
proteins using the STRING online website to speculate 
on possible protein–protein interactions (Fig.  5C). We 
found no direct protein–protein interactions among the 
BvSPL family members, and BvSPL5 did not interact with 
proteins within the beet. However, BvSPL2, BvSPL7, and 
BvSPL8 interacted with beet proteins XP_010673830.1, 
XP_010692327.1, and XP_010693088.1. Therefore, we 
speculated that BvSPL2, BvSPL7, and BvSPL8 might 
regulate each other’s expression through three proteins, 
XP_010673830.1, XP_010692327.1, and XP_010693088.1, 
as intermediary bridges. This may also be true for BvSPL1 
and BvSPL4. This aligns with the gene expression correla-
tion shown in Fig. 5B.

Expression pattern of BvSPL gene in sugar beet maturation
Beetroots have substantial economic value; therefore, we 
tested the expression of BvSPL genes in the roots, stems, 
and leaves of mature beet (Fig.  6A, Fig. S1). We found 
that BvSPL3 and BvSPL6 were highly expressed in the 
roots, and BvSPL3 was highly expressed in the leaves. 
However, the expression of BvSPL7 was significantly 
down-regulated in both stems and leaves. The expres-
sion of BvSPL5 was down-regulated in roots and BvSPL8 
in stems. All these suggest that the sugar beet SPL family 
plays an important role in the maturation of sugar beet.

In the correlation analysis (Fig. 6B), clear positive and 
negative areas of correlation were found. There were 
seven genes in the positively correlated area and one gene 

(BvSPL5) in the negatively correlated area. We found 
that BvSPL5 was negatively correlated with seven other 
genes except for BvSPL2. BvSPL3, BvSPL6, and BvSPL7 
had a correlation of unity and were all expressed at much 
higher levels in beetroots than in stems and leaves. How-
ever, BvSPL3 was highly expressed in both roots and 
leaves, whereas BvSPL6 and BvSPL7 were extremely low 
in stems and leaves, but higher in roots. Therefore, we 
believe that there is a coupling phenomenon in the cor-
relation between BvSPL3, BvSPL6 and BvSPL7.

Discussion
Evolution of SPL gene family in sugar beet
SPL transcription factors in plants are involved in impor-
tant physiological processes such as plant growth, metab-
olism, gibberellin signal transduction, and leaf formation 
[47]. In the present study, the beet SPL transcription fac-
tor family was systematically analyzed and the functions 
of eight BvSPL genes were explored. Analysis of the phys-
icochemical properties of the eight BvSPL genes revealed 
that the physicochemical properties of BvSPL3 differed 
substantially from those of the other seven BvSPL genes. 
This indicates that the grand average hydrophobicity of 
the BvSPL3 protein was − 1.24, which was the lowest in 
the beet SPL family. For the Instability Index, the BvSPL3 
protein (49.05) was also the lowest. The molecular weight 
(~ 30.3  kDa) and length (267) of BvSPL3 were the low-
est, whereas its isoelectric point (9.63) was the highest. 
In the entire beet SPL family, BvSPL3 is closer to BvSPL1 
and BvSPL4, which are more closely related in terms of 
evolution; however, its physicochemical information is 
opposite to that of BvSPL1 and BvSPL4. In the expansion 

Fig. 6  (A) The expression patterns of eight SPL genes in mature sugar beet roots, stems, and leaves were detected using quantitative real-time poly-
merase chain reaction (qRT-PCR) technology. The lowercase letters above the bars indicate significant differences between treatments (α = 0.05, LSD). The 
expression level of BvSPL gene was normalized to the expression level of BvACTIN, and its relative expression level was displayed at 0 h, 2 and 24 h. (B) 
Correlation analysis of the expression of BvSPL genes in mature beet. The expression values of the color gradient mapping from low (blue) to high (red) 
on the right side of the figure
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and contraction of beet SPL gene family members, tan-
dem duplication did not play a role in the amplification 
of the BvSPL family, whereas segment duplication played 
a role. In the multi-sequence alignment, the Zn-2 region 
of the BvSPL3 gene has 15 more amino acids than the 
other BvSPL genes. In the evolutionary analysis of the 
SPL transcription factor family of dicotyledonous plants, 
it was found that the BvSPL3 gene had genes homologous 
to three dicotyledonous plant SPL genes, indicating that 
the BvSPL3 gene may be a relatively primitive gene. How-
ever, the BvSPL3 gene may be a special SPL gene that has 
evolved in beet to adapt to survival and has undergone 
gene sequence changes. Therefore, we speculate that the 
BvSPL3 gene plays an extremely important role in the 
growth and development of beet and may be related to 
the swelling of beetroot.

In the evolution of the sugar beet SPL transcription 
factor family, three monocotyledonous plants (O. sativa 
[31–32], Z. mays [35], and S. bicolor [35]) and three 
dicotyledonous plants (A. thaliana [24–28], S. lycopersi-
cum [36], and F. titanium [37]) were selected for a com-
parative analysis of the SPL transcription factor families 
(Fig. 4). Phylogenetically, sugar beet SPL members clus-
tered more with buckwheat and tomatoes, a finding that 
is consistent with that of Dohm et al. [1].. In the analysis 
of the conserved sequences of sugar beet SPL and those 
of the six species, most SPL proteins shared highly simi-
lar conserved sequences, including sequences 1, 2, 4, and 
6. In the collinearity analysis, sugar beet SPL genes had 
more homologous genes with dicotyledons. BvSPL3 and 
BvSPL8 had homologous genes in the three dicotyle-
dons but not in monocotyledons. This suggests that these 
three genes may be unique genes that evolved in dicoty-
ledons after the differentiation of monocots and dicots.

Research has suggested that introns can produce dif-
ferent exon combinations through selective splicing dur-
ing protein translation, thus translating different proteins 
and increasing their complexity [48, 49]. Furthermore, 
introns have been found to function independently of 
their coding genes. For example, introns can regulate cell 
starvation resistance through the TORC1 and PKA nutri-
ent-sensing pathways [50]. Analysis of the beet SPL tran-
scription factor family revealed that subfamily II had far 
more introns than the other subfamilies. Most research-
ers believe that in the ancient ancestors of organisms, 
there were a large number of introns, but with the evo-
lution of organisms, a large number of introns were lost, 
which is the early intron hypothesis [51–54]. Therefore, 
we speculate that SPL subfamily II is older than the other 
subfamilies.

Response of beet SPL gene to abiotic stress and its 
spatiotemporal expression in different tissues
In organisms, gene expression is often a prerequisite for 
gene function, and gene expression patterns are usu-
ally related to gene function [55]. The SPL gene is widely 
involved in plant growth and development and plays a 
vital role in promoting the transition of plants from the 
seedling stage to the mature stage [56, 57]. For example, 
in A. thaliana, AtSPL3, AtSPL4, and AtSPL5 genes are 
involved in morphogenesis [30]. We examined the gene 
expression of all members of the beet SPL family under 
eight abiotic stress conditions (Fig. 5, Fig. S1). The results 
showed high expression or repression of BvSPL genes 
in abiotic stress, such as BvSPL1, BvSPL3, BvSPL5, and 
BvSPL6. In abiotic stress, there was a phenomenon where 
the gene expression of BvSPL genes first increased and 
then decreased, or decreased and then increased. For 
instance, under alkaline stress (0.2 mol/L NaOH), BvSPL2 
showed a decrease in expression, followed by an increase 
in expression across the roots, stems, and leaves, similar 
to BvSPL5 in the stems and leaves. Under drought stress 
(PEG6000), BvSPL4, BvSPL7, and BvSPL8 showed an 
increase, followed by a decrease in the roots and stems. 
Similar phenomena were observed under other stress 
conditions. This suggests that these genes may be fast-
responding and capable of helping beet resist damage 
caused by adverse conditions in the short term. Similar 
phenomena have been observed in other species [33, 58].

Sugar beet can withstand a variety of abiotic stresses, 
such as salinity, drought, cold, and heat [59–64]. There-
fore, we speculate that the SPL gene family plays an 
important role in abiotic stress resistance in sugar beet. 
BvSPL3 and BvSPL6 may play strong roles in helping 
sugar beet resist abiotic stress. Under eight types of stress 
conditions, the BvSPL6 gene was highly expressed in 
the roots, whereas its expression was suppressed in the 
stems and leaves. This indicates that the BvSPL6 gene 
might be a key gene in sugar beet for controlling plant 
stress resistance, with sugar beet resisting abiotic stress 
either directly through the expression of BvSPL6 or by 
regulating the expression of other genes through BvSPL6. 
Whether BvSPL6 assists sugar beet in resisting abiotic 
stress through direct expression or acts as a messenger to 
help sugar beet resist abiotic stress by indirectly regulat-
ing other genes, BvSPL6 is a key gene in sugar beet resist-
ing abiotic stress and is worth investigating.

BvSPL3 exhibited extremely high gene expression in 
leaves under cold stress. Cold temperatures are critical 
factors limiting the economic yield of sugar beet, par-
ticularly long-term cold temperatures during the seed-
ling growth phase, which can ultimately lead to slow root 
growth and reduced sugar output [64, 65]. Cold tem-
peratures can also lead to a decrease in photosynthetic 
efficiency, CO2 assimilation rate, and leaf transpiration 
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rate in sugar beet seedlings, thereby affecting sugar beet 
growth and development [66, 67]. Therefore, we hypoth-
esized that BvSPL3 may help sugar beet alleviate these 
situations. Under heat stress, most sugar beet SPL genes 
show gene expression suppression in sugar beet roots, 
stems, and leaves, indicating that the sugar beet SPL fam-
ily is of significant importance to the heat tolerance of 
sugar beet.

In this study, we examined the expression levels of 
BvSPL genes in mature sugar beet (Fig.  5, Fig. S1). 
BvSPL3 and BvSPL6 were highly expressed in the roots, 
with BvSPL3 showing a differential expression up to 90 
times. The sugar beetroot is where sugar accumulates 
and is also the most important economic value of sugar 
beet. In sugar beet, BvCPD was found to promote the 
development of thin-walled cells and vascular bundles of 
the main root of sugar beet, thereby affecting the growth 
and development of the main root of sugar beet, ulti-
mately affecting the size of the main root of sugar beet 
[68]. The protein encoded by BvTST2.1 in sugar beet is 
a sucrose-specific transport protein, which is responsible 
for the absorption of sucrose in the vacuoles of the main 
root of sugar beet. Its expression promotes sucrose accu-
mulation in sugar beet roots [69]. The high expression of 
BvSPL3 and BvSPL6 in the main roots of mature sugar 
beet suggests that they may influence the size of the main 
root and sugar accumulation. In conclusion, BvSPL3 and 
BvSPL6 warrant further investigation.

Conclusion
This is the first study to analyze the SPL gene family in 
sugar beet on a whole-genome scale. Based on the whole 
genome, eight members of the sugar beet SPL gene fam-
ily were identified and the gene structure, conservative 
motifs, subfamily grouping, evolutionary relationships, 
abiotic stress, and spatio-temporal expression patterns 
of the eight BvSPL genes were analyzed, thereby inferring 
their possible biological functions. In evolution, frag-
ment duplication of the sugar beet SPL family has played 
a certain role in the expansion of the sugar beet SPL 
family. The BvSPL6 gene was highly expressed in roots 
under eight abiotic stresses, and also in roots at maturity. 
BvSPL3 may also have important biological functions in 
sugar beet resistance to cold stress. In the mature period, 
BvSPL3 may play a certain role in sugar beet enlargement 
or sugar accumulation.

Materials and methods
Sugar beet material and abiotic stress
The B. vulgaris variety (2n = 18) MA097 (Denmark 
Mairuibo International Seed Industry Co., Ltd., The Har-
bin Representative Office, Harbin, China) used in this 
experiment was provided by Professor Ruan Jingjun. 
Plant materials were grown in an artificial climate room 

at the College of Agriculture, Guizhou University. After 
waiting for the sugar beet to mature, samples of the 
root, stem, and leaves from beet with good growth sta-
tus and similar morphology (five replicates) were taken 
and immediately stored at -80 °C. When sugar beet seed-
lings grown in the same artificial climate room reached 
21 d, they were subjected to abiotic stress (acid: 0.2 mol/L 
HCl, alkali: 0.2 mol/L NaOH, salt: 5% NaCl, drought: 30% 
PEG6000, flooding: submerging the entire plant, dark-
ness: complete darkness, heat: 40 °C, cold: 4 °C). For the 
acid, alkali, salt, and drought treatments, the roots were 
submerged in solutions of the same volume. After 0  h, 
2 h, and 24 h of treatment, samples of the root, stem, and 
leaves (five replicates) were taken and immediately stored 
at -80 °C.

Whole genome identification of sugar beet BvSPL genes
The sugar beet genome was downloaded from the 
genome website (https://plants.ensembl.org/data/ftp/
index.html) and gene and amino acid sequences were 
extracted. SPL gene information was obtained from Ara-
bidopsis (https://www.Arabidopsis.org/) and rice (http://
Rice) and potential sugar beet SPL proteins from Arabi-
dopsis and rice SPL amino acid sequences were identified 
using BLASTp (score ≥ 100, e value ≤ 1e − 10).

Next, we obtained a Hidden Markov Model (HMM) 
consistent with the SPL structural domain (PF03110) 
from the Pfam protein family database (htxxp://pfam.
sanger.ac.uk/) and used HMMER3.3.2 software (default 
parameters) (htxxp://HMMER.org/) to search for SPL 
proteins. All possible BvSPL genes used were SMART 
(htxxp://smart.embl-heidelberg.de/) and CD-Search 
(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) 
was used to confirm the structural domains of all possible 
BvSPL proteins to finally obtain the BvSPL genes.

The protein-coding sequence length, molecular weight 
(MW), isoelectric point (pI), subcellular localization, 
grand average hydrophobicity, and instability index (II) 
of the BvSPL genes were determined. Subcellular local-
ization was obtained from the WoLF PSORT website 
(htxxps://psort.hgc.jp/), MW and PI were obtained 
from the ExPASy website (htxxp://web.expasy.org/prot-
param/), and the Grand Average of Hydropathicity and 
Instability Index (II) was obtained using TBtools software 
(htxxps://github.com/CJ-Chen/TBtools).

RNA extraction, cDNA reverse transcription, and qRT-PCR 
analysis of total material
RNA was extracted using a plant RNA extraction kit 
(Takara Biomedical Technology Co., Ltd., Beijing, China). 
The concentration and purity of total RNA were mea-
sured using a spectrophotometer and reverse transcribed 
into cDNA using the Hiscript II Q RT Supermix for 
qPCR kit (Vazyme Biotech Co, Ltd., Nanjing, China). The 

https://plants.ensembl.org/data/ftp/index.html
https://plants.ensembl.org/data/ftp/index.html
https://www.Arabidopsis.org/
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
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qRT-PCR primers were designed using Primer Premier 
5.0. The internal reference gene was BvACTIN [70–71]. 
The qRT-PCR was performed using SYBR Premix Ex 
Taq II (Takara Biomedical Technology Co., Ltd., Beijing, 
China) and repeated at least three times. The relative 
gene expression was calculated using the 2−(ΔΔCt) method.

BvSPL gene structure, cis-acting elements, conserved 
motifs, and protein interactions
The TBtools software was used to align BvSPL genes with 
sugar beet genes and to construct a BvSPL gene map. The 
PlantCare website (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/) was used to predict the pos-
sible cis-acting elements (upstream of 2000  bp) in the 
promoter of the BvSPL gene family. The MEME website 
(htxxps://meme-suite.org/meme/tools/MEME) was used 
to analyze the ten most conserved motifs in the full-
length protein sequence of the BvSPL family. MEGA11 
software was used to align the SPL protein structural 
domains based on different subgroups of sugar beet and 
Arabidopsis using the default ClustalW parameters. The 
STRING website (htxxps://cn.string-db.org/) was used 
to predict potential protein interactions within the sugar 
beet BvSPL family, and the results were visualized using 
the Cytoscape software.

Chromosomal distribution and gene duplication of BvSPL 
genes
The physical location information of BvSPL genes and 
the gene density information of the chromosomes were 
extracted from the sugar beet genome and plotted. The 
MCScan X package was used to analyze gene duplica-
tion events of the BvSPL genes (default parameters), and 
TBtools software (https://github.com/CJ-Chen/TBtools) 
was used for homology analysis and plotting.

Statistical analysis
JMP software (version 6.0) was used for the analysis of 
variance (ANOVA) and conducted Least Significant Dif-
ference (LSD) comparisons at a significance level of 0.05 
(p < 0.05). Origin software was used to plot the histo-
grams of gene expression levels.
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