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Abstract
Background Current evidence suggests a significant association between metabolites and ovarian cancer (OC); 
however, the causal relationship between the two remains unclear. This study employs Mendelian randomization 
(MR) to investigate the causal effects between different metabolites and OC.

Methods In this study, a total of 637 metabolites were selected as the exposure variables from the Genome-wide 
Association Study (GWAS) database (http://gwas.mrcieu.ac.uk/datasets/). The OC related GWAS dataset (ieu-b-4963) 
was chosen as the outcome variable. R software and the TwoSampleMR package were utilized for the analysis in this 
study. MR analysis employed the inverse variance-weighted method (IVW), MR-Egger and weighted median (WM) for 
regression fitting, taking into consideration potential biases caused by linkage disequilibrium and weak instrument 
variables. Metabolites that did not pass the tests for heterogeneity and horizontal pleiotropy were considered to 
have no significant causal effect on the outcome. Steiger’s upstream test was used to determine the causal direction 
between the exposure and outcome variables.

Results The results from IVW analysis revealed that a total of 31 human metabolites showed a significant causal 
effect on OC (P < 0.05). Among them, 9 metabolites exhibited consistent and stable causal effects, which were 
confirmed by Steiger’s upstream test (P < 0.05). Among these 9 metabolites, Androsterone sulfate, Propionylcarnitine, 
5alpha-androstan-3beta,17beta-diol disulfate, Total lipids in medium VLDL and Concentration of medium VLDL particles 
demonstrated a significant positive causal effect on OC, indicating that these metabolites promote the occurrence of 
OC. On the other hand, X-12,093, Octanoylcarnitine, N2,N2-dimethylguanosine, and Cis-4-decenoyl carnitine showed a 
significant negative causal association with OC, suggesting that these metabolites can inhibit the occurrence of OC.

Conclusions The study revealed the complex effect of metabolites on OC through Mendelian randomization. As 
promising biomarkers, these metabolites are worthy of further clinical validation.
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Background
Ovarian cancer (OC) is the sixth most common can-
cer in women of developed countries [1]. It is impor-
tant to note that OC is the most fatal of all gynecologic 
cancers and accounts for more than two thirds of all 
deaths due to gynecologic cancers [2], with a 5-year 
relative survival rate of 49% [3]. This is partly due 
to the fact that 70% of OC patients are diagnosed in 
advanced stage when they receive treatment for the 
first time, as there are no specific symptoms of OC in 
primary stages [4]. At present, early diagnosis of OC 
is dependent on B-ultrasound and serum cancer anti-
gen 125 (CA125) detection. However, sensitivity of 
CA125 drops significantly in early-stage disease and 
in premenopausal women [5]. One of the most funda-
mental differences between cancer and non-malignant 
cells is their metabolism [6]. A large number of cancer-
promoting components such as metabolites in ascites 
were reported to promote OC invasion and resistance 
to chemotherapy through surface-specific receptors 
on tumor cells [7]. Therefore, numerous studies have 
aimed to improve diagnosis and treatment of OC using 
metabolomics.

Metabolomics, which is the metabolites profiling in 
biological matrices, is a key tool for biomarker discov-
ery and personalized medicine and has great potential 
to elucidate the ultimate product of the genomic pro-
cesses [8]. Recently, it has been successfully utilized 
to find new biomarkers and investigate pathogenesis 
in OC. Metabolomics analysis revealed association 
of some biomarkers, including lysophosphatide and 
adrenaline glycosamide with epithelial ovarian cancer 
(EOC) [9]. Chen et al. identified and validated 27-nor-
5β-cholestane-3,7,12,24,25 pentol glucuronide as a 
diagnostic marker that is complementary to CA125 
[10]. Sphingomyelins 3–23 years before diagnosis were 
associated with increased risk of OC, regardless of his-
totype, with stronger associations among postmeno-
pausal women [11]. To date, metabolic profiling for 
OC has been performed with relatively small sample 
sizes that limit the robustness and statistical signifi-
cance of the results. In addition, most studies have had 
relatively limited follow-up with participants, which 
may be insufficient for detecting risk factors on cancer 
outcomes that take more than 10 years to develop.

An approach to overcome the potential limitations 
of observational epidemiology and strengthen the evi-
dence for a potential causal role of metabolite on OC 
risk is MR. In a MR study, genetic variants associated 
with an exposure of interest are identified from GWAS 
and subsequently applied to an independent data set to 
derive an unbiased estimate of the exposure-outcome 
association [12]. The MR study design offers several 
advantages over traditional epidemiological studies. 

First, MR can avoid the bias caused by reverse cau-
sality to a certain extent [13]. Second, MR studies are 
independent to common behavioral, physiological, and 
socioeconomic confounders owing to random assign-
ment of alleles at meiosis. Third, MR design resem-
bling randomized controlled trial (RCT) significantly 
reduced concerns in terms of ethical, applicability, and 
financial issues [14].

In this study, we employed MR analysis to conduct 
a summary statistical analysis of the GWAS data in 
European populations, aiming to determine the causal 
effects of 637 human metabolites on OC.

Materials and methods
Data source and software preparation
The dataset corresponding to human metabolites is 
derived from the GWAS database (http://gwas.mrcieu.
ac.uk/datasets/), which includes a total of 637 metab-
olites. The dataset associated with OC is encoded as 
ieu-b-4963 in the GWAS database. The MR analysis in 
this study primarily relied on the TwoSampleMR pack-
age in R software (version 4.1.3). Moreover, for the MR 
analysis and the graphical representation of the out-
comes, a suite of R packages were utilized, encompass-
ing “ieugwasr, plinkbinr, ComplexHeatmap, circlize, 
dendextend, dendsort, tidyverse, and ggforestplot”.

Instrument variable selection
The selection criteria for single nucleotide polymor-
phisms (SNPs) associated with the 637 metabolites 
are based on the following criterion: P < 5*10− 6. To 
ensure the independence among SNPs, i.e., adherence 
to the Mendelian second law, this study set the param-
eters for linkage disequilibrium as follows: r2 < 0.001 
and kb > 10,000. SNPs selected based on these crite-
ria are considered instrumental variables (IVs) and are 
included in subsequent analyses.

Exclusion of weak IVs
To ensure the accuracy of the results, this research 
employs the F-statistic as a measure to reflect the 
degree of association between instrumental vari-
ables and the exposure. The formula for calculating 
the F-statistic is as follows: F = (β/SE) 2. In this study, 
an evaluation criterion for weak IVs is set as F < 10. 
Given the first assumption of MR analysis, which is the 
assumption of instrument relevance, it is necessary to 
ensure a significant association between IVs and the 
exposure. Therefore, weak IVs selected based on the 
aforementioned method should be excluded.

Data analysis
The analysis in this study was conducted using the 
TwoSampleMR package in R software (version 4.1.3). 

http://gwas.mrcieu.ac.uk/datasets/
http://gwas.mrcieu.ac.uk/datasets/
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The IVW results was utilized to determine whether 
there is a significant causal effect between the expo-
sure and the outcome. Building upon this, exposures 
identified as positive (P < 0.05) were further subjected 
to False Discovery Rate (FDR) testing to minimize 
the risk of Type I errors, or false positives. The FDR 
analysis was also conducted using the R software (ver-
sion 4.1.3). Concurrently, with the aim of assessing 
the frequency of Type II errors, this study made use 
of the mRnd online resource (https://shiny.cnsgenom-
ics.com/mRnd/) to perform calculations of statistical 
power [15]. During the calculation of statistical power, 
the parameter for the Type I error rate (α) was set to 
0.05.

To mitigate potential biases introduced by indi-
vidual models, the weighted median and MR-Egger 
methods were employed as supplementary and refer-
ence approaches to the IVW model. If the causal effect 
directions are consistent across these three models, it 
suggests a relatively stable causal effect between the 
exposure and the outcome. P < 0.05 was considered 
statistically significant.

Heterogeneity, horizontal pleiotropy, Steiger upstream 
test and PhenoScanner
The Cochran Q test and MR-Egger intercept test were 
employed in this study to assess heterogeneity and 
horizontal pleiotropy, respectively. Heterogeneity 
represents the variability in the causal effect of SNPs 
associated with the exposure on the outcome. If het-
erogeneity is significant, it suggests an unstable causal 
effect. Horizontal pleiotropy indicates the possibility 
that SNPs directly affect the outcome through factors 
other than the exposure. If horizontal pleiotropy is sig-
nificant, it implies that the causal effect is not valid. 
The Steiger upstream test, also known as the Steiger 
filtering method, is used to assess the directional-
ity of the exposure on the outcome. If the Steiger test 
yields a significant result, it indicates that the exposure 
is upstream of the outcome, confirming the correct 
directionality. In all three test methods mentioned, a 
significance level of P < 0.05 is considered statistically 
significant. Additionally, the results obtained from the 
PhenoScanner database [16] (http://www.phenoscan-
ner.medschl.cam.ac.uk/) serve as an important refer-
ence for ruling out horizontal pleiotropy of this study.

Results
Data and detailed information
The metabolite-related GWAS dataset used in this 
study is primarily based on the genetic locus study 
conducted by Shin et al. [17] in 2014, which inves-
tigated the impact of genetic variations on human 
metabolism, as well as the genome-wide study on 
human circulating metabolites conducted by Kettunen 
et al. [18] in 2016. The dataset comprising 637 metab-
olites was presented in detail in Supplementary Mate-
rial 1 (Suppl 1. Detailed Information of 637 Human 
Metabolite Data). The GWAS dataset corresponding 
to OC, encoded as ieu-b-4963, was derived from the 
sequencing results of 199,741 samples conducted by 
Burrows et al. in 2021. All the metabolite datasets and 
the OC related dataset were based on sequencing per-
formed on individuals of European ancestry. Figure  1 
illustrates the workflow for metabolite selection in this 
study.

IVs selection and exclusion of weak IVs
The GWAS dataset for all metabolites was screened for 
SNPs based on the criterion of P < 5*10− 6. The param-
eters for linkage disequilibrium were set as r2 < 0.001 
and kb > 10,000. If a metabolite had an insufficient 
number of SNPs for MR analysis, it was excluded from 
the study. The SNPs selected based on the criterion of 
F statistic ≥ 10 are presented in detail in Supplemen-
tary Material 2 (Suppl 2. List of Filtered SNPs). The F 
statistics for all SNPs ranged from 19.1702 to 508.7844.Fig. 1 Flow chart for filtering metabolites

 

https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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MR analysis and test results
As shown in Fig. 2, the MR analysis revealed a potential 
causal effect between 31 metabolites and OC (P-value 
of IVW < 0.05). Following FDR analysis, no exposures 
were excluded due to adjusted P-values ≥ 0.05. The 
analysis process of the FDR-adjusted P-values is dis-
played in Supplementary Material 3 (Suppl 3. FDR-
adjusted P-values of 31 Metabolites). Supplementary 
Material 4 (Suppl 4. IVW Analysis Results and Sta-
tistical Power Values for 31 Metabolites) presents the 
results of the statistical power calculations. It is note-
worthy that the statistical power for most metabolites 
is not optimal, indicating a higher probability of com-
mitting Type II errors. In the context of this study, we 
prioritize a lower probability of Type I errors, which 

inevitably compromises some degree of statistical 
power. Faced with the trade-off between Type I and 
Type II error rates, our focus is predominantly on min-
imizing the occurrence of Type I errors.

Figure  3 presents a circular heatmap illustrating the 
P values and β values of IVW, MR-Egger and weighted 
median methods corresponding to the aforemen-
tioned metabolites (Fig.  3A and B). Among them, 26 
metabolites showed consistent causal effects with the 
IVW direction based on the weighted median and 
MR-Egger. Furthermore, 9 metabolites successfully 
passed tests for heterogeneity, horizontal pleiotropy, 
and exhibited the correct causal effect direction in 
the Steiger test. Table 1 displays the 9 metabolites that 
passed the tests along with their respective P-values. 

Fig. 2 Forest plot for MR results of 31 metabolites
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Supplementary Material 5 (Suppl 5. Results of Phe-
noScanner) presents the results retrieved from the 
PhenoScanner database, which do not show significant 
horizontal pleiotropy. It is noteworthy that currently, 
there is no method that can completely eliminate the 
influence of horizontal pleiotropy, and the interpreta-
tion of the results from PhenoScanner also carries a 
certain degree of subjectivity.

Scatter plots of MR analysis
Figures  4 and 5 present the regression results of the 
SNPs corresponding to the aforementioned 9 metabo-
lites using the IVW, weighted median and MR-Egger 
algorithms. Figure  4 indicates that androsterone sulfate 
(Fig.  4A), propionylcarnitine (Fig.  4B), 5alpha-andro-
stan-3beta,17beta-diol disulfate (Fig.  4C), total lipids in 

medium VLDL (Fig.  4D), and concentration of medium 
VLDL particles (Fig. 4E) exhibit significant positive causal 
effects on OC. Conversely, X-12,093 (Fig. 5A), octanoyl-
carnitine (Fig.  5B), N2,N2-dimethylguanosine (Fig.  5C), 
and cis-4-decenoyl carnitine (Fig.  5D) show significant 
negative causal associations with OC.

Discussion
OC is a silent cancer which rate survival mainly relays 
in early stage detection. The discovery of reliable OC 
biomarkers plays a crucial role in the disease manage-
ment and strongly impact in patient’s prognosis and sur-
vival. In this study, we used MR method to determine 
the casual relationship between 637 metabolites and 
OC. Specifically, androsterone sulfate, propionylcarni-
tine, 5alpha-androstan-3beta-17beta-diol disulfate, and 

Table 1 Details of 9 metabolites that passed the test
ID P value of 

heterogeneity(IVW)
P value of 
heterogeneity(MR-Egger)

P value of horizontal 
pleiotropy

P value of Stei-
ger test

Direc-
tion

met-a-460 0.8771803 0.8869046 0.3295969 1.00E-07 Forward

met-a-479 0.9631611 0.9478844 0.9274689 0.0232969 Forward

met-a-581 0.4351166 0.367689 0.6573945 1.20E-06 Negative

met-a-615 0.9353139 0.9141247 0.643113 2.57E-05 Negative

met-a-679 0.9930601 0.9899221 0.9868937 0.0463142 Negative

met-a-746 0.5434027 0.5008567 0.519298 0.0442872 Forward

met-a-753 0.7539987 0.7425412 0.4255294 0.0009622 Negative

met-c-912 0.8923032 0.9145709 0.2126228 0.0196859 Forward

met-c-913 0.728432 0.7458959 0.2694708 0.0208481 Forward

Fig. 3 The circular heatmap shows the P values and β values of algorithms corresponding to 31 metabolites. (A) Heatmap of P values corresponding to 
31 metabolites. (B) Heatmap of β values corresponding to 31 metabolites
Note:The clustering algorithm used in the circular heatmap is an unsupervised clustering method, which simply represents the similarity among the data 
points
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medium VLDL may promotes OC oncogenesis. While 
X-12,093, octanoylcarnitine, N2,N2-dimethylguanosine, 
and cis-4-decenoyl carnitine may suppress OC.

Accumulating evidence has demonstrated that lipid 
metabolism is substantially reprogrammed in can-
cers [19]. Lipid uptake and storage are also elevated in 

malignant tumors [20]. These mechanisms further affect 
tumor biology, such as immune escape and cellular inva-
sion [21]. Cholesterol and triglycerides are insoluble in 
water and therefore these lipids must be transported in 
association with lipoproteins. Plasma lipoproteins can 
be divided into seven classes, including chylomicrons, 

Fig. 4 Scatter plots of 5 metabolites with forward direction
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chylomicron remnants, VLDL, IDL, LDL, HDL, and Lp (a). 
VLDL is responsible for carrying triacylglycerol synthe-
sized in the liver to peripheral tissues for utilization. The 
surface proteins of VLDL include apolipoprotein (Apo) 
B-100, Apo C-I, Apo C-II, Apo C-III, and Apo E. Among 
these, Apo B-100 is the core structural protein and is pro-
duced by the liver [22]. A research revealed that VLDL 
levels were elevated in lung cancer patients compared 
to non-cancer subjects [23]. In addition, VLDL pro-
mote breast cancer progression and metastasis through 
Akt-induced (epithelial–mesenchymal transition) EMT 
and angiogenesis [24]. To the best of our knowledge, 
the effect of VLDL on OC has not been studied. And we 
found that medium VLDL may promotes OC oncogen-
esis. This could be due to higher concentrations of VLDLs 
in the blood are often translated into higher levels of ath-
erogenic particles and LDLs. VLDL uptake brings lipids 
and offers a sustainable source of energy for cancer cells 
[25].

Androsterone sulfate was the most abundant 5 alpha-
reduced androgen metabolite in serum. Androsterone 

sulfate was identified as independent variables associated 
with the incidence of hepatocellular carcinoma (HCC) 
and non-alcoholic fatty liver disease (NAFLD) advanced 
fibrosis [26, 27]. Androsterone sulfate seem robust to pre-
dict the abortion rate of the polycystic ovary syndrome 
(PCOS) group, with an AUC of 0.941 [28]. Our research 
showed androsterone sulfate may be the risk factor for 
OC. The underlying mechanism leading to the adverse 
outcome remain unclear.

Acylcarnitines are esters arising from the conjugation 
of fatty acids with L-carnitine. They are widely used and 
produced in cellular energy metabolism pathways. The 
well established biologic function of acylcarnitine is to 
transport acyl groups from the cytosol into the mito-
chondrial matrix for β-oxidation, leading to the produc-
tion of energy to sustain cell activity [29]. Acylcarnitine 
had being identified as important indicators in metabolic 
studies of many diseases, including metabolic disorders, 
cardiovascular diseases, diabetes, depression, neurologic 
disorders, and certain cancers [30]. In a previous study, 
propionylcarnitine was significantly associated with lung 

Fig. 5 Scatter plots of 4 metabolites with negative direction
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cancer incidence [31]. Chen J et al. suggested that ele-
vated propionylcarnitine was considered as potential bio-
marker candidates to diagnosed EOC [10]. Our results 
were consistent with the above.

In contrast to propionylcarnitine, octanoylcarni-
tine was gradually diminished in patients with HCC, 
and combining AFP with the metabolic biomark-
ers included octanoylcarnitine slightly increased the 
AUC value in the test set to 0.97 [32]. Our results also 
showed that octanoylcarnitine was negatively associ-
ated with OC. To date, the expression of octanoylcar-
nitine in different tumors remain conclusive [33], the 
expression in OC needs to be further verified. We also 
found that another acylcarnitine metabolite (cis-4-de-
cenyl carnitine) was negatively correlated with OC. 
Studies of cis-4-decenyl carnitine in tumors are still 
lacking.

In addition to medium VLDL and acylcarnitine, we 
also found another two potential metabolites bio-
marker. The study of 5alpha-androstan-3beta-17beta-
diol disulfate was limited to the field of Alzheimer’s 
disease (AD) [34]. And elevated serum N2, N2-dimeth-
ylguanosine was used for chronic kidney disease 
(CKD) diagnosis [35]. Urinary excretion of N2,N2-
dimethylguanosine by adults was used for acute leuke-
mia follow-up [36].

There are still some limitations in this study. Firstly, 
this study utilized GWAS data of the same ethnicity 
(European population) as both the exposure and out-
come groups in the Mendelian randomization analy-
sis, aiming to minimize potential confounding effects 
of ethnicity on the outcome. However, this approach 
introduces limitations to the generalizability of the 
findings, as the conclusions may be subject to bias 
when extrapolated to the entire human population due 
to racial factors. Secondly, this study has yet to pro-
vide evidence regarding the mechanisms and molecu-
lar pathways through which metabolites influence the 
development of OC. Ultimately, the statistical power 
associated with the metabolites in this study is gener-
ally low, suggesting an increased likelihood of incur-
ring Type II errors. Upon meticulous review, we infer 
that this is attributed to the disproportionately low 
number of cases in the outcome (ovarian cancer). The 
reason for the low proportion of cases in the dataset 
should be attributed to the relatively low incidence 
rate of ovarian cancer. These limitations will guide 
our future research directions and drive continuous 
improvement.

Conclusion
To summarize, our study revealed the complex effect 
of metabolites on OC through Mendelian randomiza-
tion. As promising biomarkers, these metabolites are 
worthy of further clinical validation.
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