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Abstract
Background Buruli ulcer (BU) disease, caused by Mycobacterium ulcerans (MU), and characterized by necrotic ulcers 
is still a health problem in Africa and Australia. The genome of the bacterium has several pseudogenes due to recent 
evolutionary events and environmental pressures. Pseudogenes are genetic elements regarded as nonessential in 
bacteria, however, they are less studied due to limited available tools to provide understanding of their evolution and 
roles in MU pathogenicity.

Results This study developed a bioinformatic pipeline to profile the pseudogenomes of sequenced MU 
clinical isolates from different countries. One hundred and seventy-two MU genomes analyzed revealed that 
pseudogenomes of African strains corresponded to the two African lineages 1 and 2. Pseudogenomes were lineage 
and location specific and African lineage 1 was further divided into A and B. Lineage 2 had less relaxation in positive 
selection than lineage 1 which may signify different evolutionary points. Based on the Gil-Latorre model, African MU 
strains may be in the latter stages of evolutionary adaption and are adapting to an environment rich in metabolic 
resources with a lower temperature and decreased UV radiation. The environment fosters oxidative metabolism and 
MU may be less reliant on some secondary metabolites. In-house pseudogenomes from Ghana and Cote d’Ivoire 
were different from other African strains, however, they were identified as African strains.

Conclusion Our bioinformatic pipeline provides pseudogenomic insights to complement other whole genome 
analyses, providing a better view of the evolution of the genome of MU and suggest an adaptation model which 
is important in understanding transmission. MU pseudogene profiles vary based on lineage and country, and an 
apparent reduction in insertion sequences used for the detection of MU which may adversely affect the sensitivity of 
diagnosis.

Significance
Prevention and treatment of Buruli ulcer is still a problem but large whole genome datasets on M. ulcerans are 
readily available. However, genomic studies fail to thoroughly investigate pseudogenes to probe evolutionary 
changes in the bacteria, and this can be attributed to the lack of bioinformatic tools. This work studied 
pseudogenes in Mycobacterium ulcerans (MU) to understand its adapted niche and evolutionary differences across 
African strains. Our results posit an MU niche-adapted model important in understanding transmission. Also, MU 
pseudogene profiles vary based on lineage and country, suggesting their influence on pseudogenization patterns 
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Background
The Mycobacterium genus consists of free-living patho-
genic species like Mycobacterium marinum, host-adapted 
M. tuberculosis, M. leprae, and intermediates, M. ulcer-
ans (MU) [1]. MU causes Buruli ulcer (BU), a neglected 
tropical skin disease characterized by necrotic and 
undermined lesions. Although the associated mortality 
rate is low, disease morbidity seriously affects the qual-
ity of life of affected persons because the massive scarring 
which occurs upon healing results in the contraction of 
affected parts [2]. BU cases saw an apparent decline over 
the past decade, however, there is a recent increase in 
cases globally [3]. Genomic studies have shown that MU 
may have evolved from an M. marinum common ances-
tor through the acquisition of a 174 kb plasmid encoding 
mycolactone; the established major virulence factor [4, 
5]. The acquisition of the plasmid has led to the adaption 
to a new niche with the accumulation of pseudogenes 
and the reduction in the genome coding capacity [5, 6].

Pseudogenes are described as defective genes that have 
accumulated mutations (indels, frameshifts, and non-
sense) or affected by the insertion of transposable ele-
ments [7]. Pseudogenes are less studied [8, 9], however, 
they can define the evolutionary trajectory, preferred 
environment, and survival strategies of bacteria [7, 10]. 
The lack of tools has hindered the profiling of pseudo-
genes [10], however, the availability of annotation tools 
like the DDBJ Fast Annotation and Submission Tool 
[11] has replaced manual curation methods. In addition, 
algorithms and computational approaches for identify-
ing pseudogenes can facilitate characterization and func-
tional studies of pseudogenes. Recently, the Prokaryotic 
Genome Annotator Pipeline [12] identified 1410 pseudo-
genes in the MU Agy99 strain (ASM1392v2) as compared 
to 771 previously reported [5]. Moreover, most studies on 
MU genomes have not focused on pseudogene accumu-
lation and variations in the MU population [13–15].

We have developed a pipeline to predict and analyze 
the pseudogenomes of bacterial genomes to foster pseu-
dogene analysis. We utilized the genome sequences of 
172 MU clinical isolates, from Africa, with representative 
sequences from Australia, French Guiana, and the USA. 
Through pan-pseudogenome analyses, we show quan-
titative and qualitative variations across different MU 
isolates. We further propose a pseudogene-based niche 
model of MU and its implication on the transmission of 
BU.

Results
Pseudogenome dynamics among MU strains
Genome similarity/average nucleotide identity (ANI)
To understand pseudogene variation across the myco-
bacterial strains under study, the whole genome nucleo-
tide similarities (Average Nucleotide Identity) of MU and 
M. marinum M (MmarM) strains were first determined 
using dRep. The ANI scores reported are based on the 
comparison between the M. ulcerans strains and their 
closest species M. marinum and we used the M. mari-
num M reference strain. With an Average Nucleotide 
Identity (ANI) threshold of 98.5% for the primary clus-
ters, two [2] phylogroups were identified (Supplemen-
tary Figure S1). The large cluster consists of MU isolates 
(orange) with MmarM (blue) used as an outgroup. Com-
paring other non-African strains to the African strains, 
ANI for P7741 (French Guiana) was > 98.8%, 99.7% for 
the Australian isolate (MU496180), and 99.6% for Harvey 
(USA). For the in-house isolates, 99.9% was calculated 
for Z039 (Ivorian in-house strain) and > 99.8% for Z007. 
PA38 (Ghanaian in-house clinical strain) had the lowest 
similarity (> 99.4%) among the three in-house isolates 
when compared to the rest of the African strains. The 
MU strains were further divided in to two prominent 
clades; the purple-bounded box which had strains with a 
higher genome similarity to the reference strain Agy99, 
and the green-bounded box that shares an ancestor with 
the Agy99 clade (Supplementary Figure S1).

Pseudogene distribution across African strains
The number of pseudogenes identified in the African 
population were within the range of 1420 and 1520. Two 
populations were identified, corresponding to the two 
MU lineages (1 and 2) with fewer pseudogenes in lineage 
2 than in lineage 1 (Fig. 1a). Lineage 1 strains had a range 
of pseudogenes between 1429 and 1440 and lineage 2 
between 1460 and 1520. Lineage 2 isolates were from 
Benin, Cameroon, and Gabon (Fig.  1b). Some isolates 
from Cameroon, Gabon, and Uganda had fewer pseudo-
genes as compared to the rest of the lineage one isolates 
(Fig. 1b).

Pseudogene accumulation in African strains over time
The number of pseudogenes in African MU strains was 
further analyzed for their correlation with the sampling 
date. In lineage 1 (r (154) = 0.022, p-value = 0.777) and lin-
eage 2 (r [8] = 0.172, p-value = 0.683), there was no signifi-
cant correlation (Fig.  1c). A phylogeny-based approach 
using locally-weighted regression across the two lineages 

in the genome. We further identify a reduction in insertion sequences that are used for the detection of the 
bacteria which may affect the sensitivity of diagnosis.
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showed that the percentage of pseudogenes per genome 
increased from lineage 2 to lineage 1 and then remains 
stable (Fig. 1d). These indicate that pseudogene accumu-
lation may have stabilized, and the number of pseudo-
genes per MU genome and the sampling time may not be 
correlated.

Qualitative analysis of MU pseudogenomes
MU pseudogenomes were analyzed for the presence 
or absence of pseudogenes in their genomes. The pat-
terns observed (Fig. 2a) were based on the origin (Afri-
can and non-African) and lineages of the strains (Fig. 2a 
hierarchical cluster). Subclusters in lineage 1 were 

country-specific and this was observed for Cameroon 
(light blue)-Gabon (yellow) and Benin (light green)-Togo 
(deep blue) (Fig.  2a). Pseudogenization patterns were 
similar for isolates from specific African countries (Dem-
ocratic Republic of Congo, Ghana), however, no patterns 
were observed for the sampling collection date (second 
heatmap in Fig. 2a).

Further dimensionality reduction analysis with UMAP 
confirmed the hierarchical clustering (Fig. 2b). However, 
lineage 1 was further broken down into two different 
clusters. The bigger cluster, lineage 1 A (bounded in blue, 
Fig. 2b), had majority of the isolates in lineage 1 while the 
smaller cluster, lineage 1B (bounded in red, Fig. 2b), had 

Fig. 1 Distribution of pseudogenes across African MU strains. (a) Number of pseudogenes identified in the whole genome. (b) Distribution of the num-
ber of pseudogenes per country of isolate origin. The red dotted line indicates a boundary between the lineages based on the number of pseudogenes. 
Density is the frequency at which pseudogene numbers occurred. (c) Correlation between sample collection date and the number of pseudogenes in 
lineage 1 African strains. The blue line is a regression line with a negative Pearson’s rank correlation, r (156) = 0.022 (p-value = 0.78), and a gradient of -0.04 
pseudogenes per year. Points are coloured by the source (country) of the strains. (d) Locally weighted scatterplot smoothing regression of the percent 
pseudogenes per MU genome. Strains were ordered starting with the closest isolate to the M. marinum reference to the farthest isolate according to their 
order in a maximum likelihood phylogenetic tree, and this is surrogate to for the root-to-tip distance. Black, purple, and brown- bounded lines represent 
lineage 1, the smaller sublineage of lineage 1 and lineage 2 respectively
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isolates from Cameroon (light blue)-Gabon (yellow), and 
Uganda (deep green). Isolates from Gabon and Camer-
oon had more pseudogenes in common than when indi-
vidually compared to Uganda (Fig.  3 Cameroon (light 
blue)-Gabon (yellow) subclusters).

Lineage 2 (bounded in blue in Fig. 2b) was represented 
by isolates from Benin, Cameroon, and Gabon. To high-
light the diversity in pseudogenes across lineages 1 A and 
1B, they were compared to Agy99 reference strain. Lin-
eage 1 A, 1B and Agy99 had 1471 pseudogenes in com-
mon (Fig.  2c). Lineage 1  A had no unique pseudogenes 
but had an additional 771 pseudogenes common to only 
lineage 1B. Lineage 1B had the most unique pseudogenes 
(159) sharing 7 additional pseudogenes with only Agy99. 
This indicates the diversity in lineages 1B compared to 
1 A though both lineages have most pseudogenes in com-
mon. The Australian strain (MU496150) clustered with 
the African lineage 2 strains (Fig. 2b and Supplementary 
Figure S2) but lineage 2 share more pseudogenes (251) 

with Agy99 in addition to pseudogenes common to all 
three (Fig. 2d). However, a high number of pseudogenes 
was unique (321) to lineage 2 as well as pseudogenes 
(125) shared with only MU496150.

In-house sequenced clinical strains clustered away 
from the African lineages (Fig.  2b), which indicates dif-
ferences in pseudogene profiles. The Ivorian isolates 
Z039 and Z007 shared pseudogenes with both African 
(251) and non-African (255) strains (especially Harvey 
and P7741) (Supplementary Figure S3). However, PA38, 
shared 165 pseudogenes with the African strains com-
pared to 523 for the non-African strains and had the 
highest number (2885 and 2530) of unique pseudogenes 
among the three in-house isolates (Supplementary Figure 
S3). Pseudogenes similar to the African strains and the 
in-house strains were 1209 compared to 1370 pseudo-
genes in the non-African strains.

Pseudogenes peculiar to the African group include 
ESAT proteins (EsxP, EsxT), the trehalose transport 

Fig. 2 Clustering and phylogenetic analyses of pseudogenomes. (a) Comparison of pseudogenomes in M. ulcerans strains. Strains are coloured (left of 
the heatmap) based on the source (country), and on the immediate right, based on the year the sample was collected. The presence of a pseudogene 
is indicated by a blue bar and strains are clustered based on similarities in pseudogenome profiles (on the extreme left). (b) UMAP clustering of MU 
pseudogenomes. Isolates are coloured by country. Clusters are bounded in a blue line with lineage one and two clusters annotated. The red-bounded 
cluster represents a subcluster of lineage one with isolates from Gabon, Cameroon, and Uganda. Red arrows point to in-house isolates PA38, Z007, and 
Z039 while the blue arrow identifies the Australian strain. (c, d) Pie charts comparing the number of pseudogenes similar across Agy99, African lineage 1, 
African lineage 2 and the Australian strain MU496180
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system permease protein (SugA), and the Sulfate adeny-
lyl transferase protein. Pseudogenes specific to the non-
African strains include the siderophore export accessory 
protein (MmpS4), carbonic anhydrase 2, and the acid 
resistance serine protease (Marx). Pseudogenes in only 
Z007 include the chlorite dismutase and the TlpA fam-
ily protein disulfide reductase. Nitrate/nitrite transporter 
(NarU) and the ESX-5 secretion system protein (EccD5) 
were identified in only Z039 while the DNA replication 
and repair protein (RecF) and the resuscitation-promot-
ing factor (RpfC) were identified in only PA38.

Phylogenetic analysis on MU isolates
Further phylogenetic analysis showed that the Ivorian and 
Ghanaian in-house strains were part of lineage 1 sharing 

ancestors with other African strains from Côte d’Ivoire, 
Benin, and Ghana. PA38 had a larger genome (Prokka: 
CDS = 10,156; DFAST: CDS = 8505) than expected for 
African strains (Agy99 reference: CDSs = 5,193) and simi-
lar to the American strain Harvey (CDS = 9,177). PA38 
also had more base substitutions (length of tree branch in 
Supplementary Figure S5) compared to its closest branch 
(Benin strain MU3223964) in the clade. The small lineage 
1 subcluster formed a single clade, having a common 
ancestor with the large subcluster, however, the Ugandan 
strain had a common ancestor with the lineage 1 clade.

Selection pressure on MU pseudogenomes
Selection pressure was determined by the ratio of non-
synonymous mutations (dN) to synonymous mutations 

Fig. 3 Cellular and metabolic analyses of pseudogenes in African MU strains. (a) Cellular processes of pseudogenes in MU strains using the COG database. 
The hierarchical cluster represents similarities in COG patterns across MU strains. Colours represent the percentage of pseudogenes per pseudogenome. 
(b) KEGG metabolic pathway analysis of pseudogenomes of MU strains [50]. Pathway modules are coloured based on the broader metabolism groups 
and each pathway module has an M. ulcerans strain that shows at least ≥ 50% module completeness. The hierarchical cluster represents similarities in 
metabolic patterns across MU strains. (c) UMAP clustering of module completeness of pseudogenomes of MU strains. Strains are coloured by known 
origin. Clusters are bounded by a blue line with strains from lineage 1 and 2 annotated. Broken blue circles are subclusters of the larger lineage 1 cluster. 
The red-bounded cluster represents a lineage 1 subcluster with isolates from mainly Gabon and Cameroon. Red arrows indicate in-house isolates PA38, 
Z007, and Z039. (d) Distribution of KEGG metabolic pathways completely pseudogenized across the African MU strains
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(dS)). A dN/dS value < 1 represents negative selection, 
> 1 positive selection, and = 1 for neutral selection [16]. 
Selection pressure on the pseudogenome showed simi-
lar lineage division across the African isolates (Fig.  4a). 
Lineage 1 (pseudogenome = 0.719–0.72, functional 
genome = 0.27–0.28) had decreased dN/dS compared 
to lineage 2 (pseudogenome = 0.693–0.704, functional 
genome = 0.267–0.27), showing the decrease in non-syn-
onymous mutations (dN) in lineage 2 compared to lin-
eage 1 (Fig.  4b). Pseudogenomes (0.713 ± 0.032) showed 
a relaxed negative selection compared to the functional 
genes (0.275 ± 0.009) which represents the whole genome 
without pseudogenes (Fig. 4b).

PA38 had a very high dN/dS for the whole (0.49923) 
and functional (0.381384) genomes compared to the 
African MU strains (whole genome = 0.4079 ± 0.00213, 
functional genome = 0.2746 ± 0.00165). However, the 
pseudogenome was lower (0.532772) than the African 
strains (0.713 ± 0.032), indicating the role of the func-
tional genome in increasing the whole-genome dN/dS. 
The whole genome dN/dS for the Ivorian in-house iso-
lates was similar (Z007 = 0.417055, Z039 = 0.415869) to 
that of lineage 1, although slightly higher (Z007 = 0.29378, 
Z039 = 0.291345) for the functional genome and lower 
(Z007 = 0.514237, Z039 = 0.584934) for the pseudoge-
nome. For the non-African isolates, Harvey had the high-
est (0.294238) and lowest (0.47915) functional genome 
and pseudogenome dN/dS respectively. Also, P7741 
(French Guiana) had the highest (0.681232) and low-
est (0.256212) dN/dS values for the pseudogenome and 

functional genome respectively. The Australian strain, 
MU496180, had dN/dS values (whole genome = 0.381127, 
functional genome = 0.264045, pseudogenome = 0.61921) 
which were between P7741 and Harvey.

Evolved African MU strains and PA38
The genome characteristics of the African MU strains and 
PA38, as summarized in Table 1 shows that the African 
MU strains in this study had a reduced genome (African 
MU strains = 5,240,186 ± 23,883  bp) with reduced gene-
coding capacity (4005 ± 42 genes) compared to M. mari-
num M (6,660,144 bp, 5654 genes). This can be attributed 
to the accumulation of a high number of pseudogenes 
(1494 ± 80) and further genome erosion (MU strains = 5,2
40,186 ± 23,883 bp, M. marinum M = 6,660,144 bp). How-
ever, in PA38, there was a high number of pseudogenes 
(5617) (Supplementary Figure S3) with no observable 

Table 1 Pseudogenome and functional genome characteristics 
of African and PA38 MU strains
Genome characteristics African isolates PA38
Genome reduction Yes Yes
Expanded genome No Yes
Decrease in gene-coding capacity Yes Yes
Increased IS elements No Yes
Decreased purifying selection No Yes
Increased pseudogenes levels Yes Yes
Further genome erosion Yes No
Loss of mobilome (IS elements) Yes No
Increased purifying selection Yes No

Fig. 4 dN/dS mobilome analyses among the different M. ulcerans lineages and genomic elements present in M. ulcerans genomes. (a) Each point rep-
resents the average dN/dS value of an isolate and is grouped based on lineage. Mann-Whitney’s test was performed between lineage 1 and 2 and **** 
represents a p-value < 0.0001. (b) Each point represents the average dN/dS value of an isolate and is grouped based on lineage and the type of genomic 
element. Mann-Whitney’s test was performed between lineage 1 and 2 for each genomic element, and **** represents a p-value < 0.0001. (c) Distribu-
tion of mobilome-related genes and insertion sequence in African M ulcerans strains. The bar represents the distribution of the percentage of mobilome 
related-related genes in the functional genome. Only a single value is reported for the reference strain Agy99
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genome erosion (PA38 = 5,837,271 bp, African MU strain
s = 5,240,186 ± 23,883 bp, M. marinum M = 6,660,144 bp). 
Also there was further loss of the mobilome (9 ± 16) 
(Fig.  4c) and increased purifying selection (Fig.  3). In 
PA38, there was an expanded genome (CDS = 10,156), a 
high mobilome (mobilome = 134), and decreased purify-
ing selection, especially in the functional genome (dN/
dS = 0.381384) (Fig.  3). This highlights the two contrast-
ing characteristics of the evolved MU genomes with ref-
erence to M. marinum M.

Cellular and metabolic pathways of pseudogenes
In analyzing the cellular processes of pseudogenomes 
in the MU strains with the Clusters of Orthologous 
Genes (COG) database, most pseudogenes were 
involved in lipid transport and metabolism (14.66% 
± 0.31%). Other cellular processes included general 
function prediction only (genes with poorly character-
ized function) (9.67% ± 0.41%), secondary metabolites 
biosynthesis (8.1% ± 0.24%), and pseudogenes with 
unknown function (7.28% ± 0.37%) (Fig. 3a). There was 
minimal variation in COG profiles across the African 
MU lineages (t = -0.005, p-value = 0.996). However, 
COG groups such as defense mechanisms showed 
more pseudogenes for lineage 1 strains (2.69% ± 0.11%) 
compared to lineage 2 (1.93% ± 0.09%) (Fig.  3a). The 
lack of variation observed in the functional genome 
between the lineages (t = -10.506, p-value = 7.348) 
(Supplementary Figure S4), indicates that the addi-
tional defense-related pseudogenes present in lineage 1 
may have further been lost.

In-house clinical strains had similar COG pat-
terns compared to the Harvey strain. These include 
the cell wall/membrane/envelope biogenesis class (In-
house = 5.37%, Harvey = 5.8%), and signal transduction 
mechanisms class (In-house = 3.68%, Harvey = 3.62%). 
COGs that were similar between the African and the in-
house strains include energy production and conversion 
(7.27% ± 0.72, 7.39% ± 0.16), and inorganic ion transport 
and metabolism (4.92% ± 0.23%, 5.47% ± 0.13%) (Fig. 3a). 
However, there was pseudogenization of mobilomes 
(including transposons) in the in-house strains (1.88% ± 
1.79%) compared to the African strains (0.31% ± 0.1%) 
with Z039 having the least (0.68%).

The metabolic functions of pseudogenomes of the 
MU strains was determined with the KEGG database 
(Fig.  3b). Pathway variations were observed in twenty-
five different metabolic pathways (Supplementary Table 
S1). Prominent metabolic pathways that showed differ-
ences between the strains (Fig. 3b) include the succinate 
dehydrogenase (prokaryotes), carbapenem resistance, 
molybdenum cofactor biosynthesis (GTP to molybde-
num cofactor), histidine biosynthesis (PRPP to histidine) 
and assimilatory sulfate reduction (sulfate to H2S).

Twenty-five metabolic pathways were affected by 
pseudogenization (Supplementary Table S1). How-
ever, pathways that were more affected across the MU 
strains include the biosynthesis of secondary metabolites 
(undecylprodigiosin biosynthesis), carbon fixation (phos-
phate acetyltransferase-acetate kinase pathway), cofac-
tor and vitamin metabolism (NAD biosynthesis), drug 
resistance (carbapenem resistance), fatty acid metabo-
lism (beta-oxidation) and other carbohydrate metabolism 
(malonate semialdehyde pathway). Other metabolic pro-
cesses affected include aromatic degradation (benzoate 
degradation), ATP synthesis (succinate dehydrogenase), 
macrolide biosynthesis (tylosin biosynthesis), nitrogen 
metabolism (assimilatory nitrate reduction), sterol (beta-
oxidation, peroxisome) and terpenoid backbone biosyn-
thesis (C10-C20 isoprenoid biosynthesis, bacteria). These 
highlight the metabolic changes that have occurred in the 
African strains.

Further clustering across the strains identified clusters 
corresponding to the African MU lineages (Fig. 3c). How-
ever, the larger African lineage 1 cluster had subclusters 
(boundary with a broken line, Fig. 3c) with strains from 
the Democratic Republic of the Congo and Angola. The 
smaller African lineage 1 cluster (bounded in red, Fig. 3c) 
was joined by strains (Nigeria, Benin, Cameroon, and the 
Republic of Congo) from the large lineage 1 cluster. Lin-
eage 2 strains (labelled and blue-bounded in Fig. 3c) clus-
tered closely to the non-African isolates. The in-house 
isolates (red arrows in Fig.  3c) did not cluster with any 
of the African lineages (red arrows in Fig. 3c). This high-
lights the correspondence between the metabolic and 
pseudogene absence-or-presence analyses.

To determine the impact of pseudogenization on the 
whole genome, the functional genome was compared to 
the whole genome for pathways completely or partially 
pseudogenized (Supplementary Figure S6, Supplemen-
tary Figure S7, Supplementary Figure S8). Two KEGG 
metabolism groups; nitrogen metabolism and polyketide 
sugar biosynthesis were absent in the functional genome 
(Supplementary Table S1). Eighteen pathways were com-
pletely pseudogenized across the African MU strains 
(Fig.  3d); two pathways were lost in nitrogen metabo-
lism, enediyne biosynthesis, cysteine and methionine 
metabolism, cofactor and vitamin metabolism, carbon 
fixation, and biosynthesis of other secondary metabolites. 
Polyketide sugar unit biosynthesis, other carbohydrate 
metabolism, lipid metabolism, drug resistance, and aro-
matic amino acid metabolism lost one pathway each.

Discussion
In this study, pseudogenomes of different clinical MU 
strains were studied to understand the dynamics of pseu-
dogenes and the evolution of the bacteria, using a custom 
pipeline that was developed to identify and analyze the 
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bacterial pan-pseudogenome. The pipeline does not only 
provide current and readily available pseudogene identifi-
cation tools (Prokka, DFAST, and Pseudofinder) but also 
provides a combined and robust output of pseudogenes 
for each bacterial genome while reducing replicates. 
Further analyses (pseudogene distribution and cluster-
ing, COG clusters, and KEGG metabolic pathways) by 
the pipeline identifies pseudogenes to help delineate the 
impact of pseudogenization on the whole genome. This 
provides deeper insights into genome evolution in bacte-
rial populations as compared to current tools that iden-
tify pseudogenes [17, 18]. Also, it removes the need for 
raw sequence reads preprocessing before analysis as pres-
ent in Pseudofinder, and each stage in the pipeline can 
be run individually making it a flexible all-in-one tool for 
studying bacterial pseudogenes.

The pipeline was used to study mycobacterial genomes 
from different countries. Lineage- and country-spe-
cific clustering of mycobacterial strains based on their 
pseudogenomes indicate the influence of ancestry on 
the pseudogenome. For African MU strains, lineage 1 
emerged from an ancestral strain, which spread and 
occupied certain African regions [13] that has allowed 
African MU strains to persist [19, 20]. The thriving of 
these strains in these areas may have led to differential 
pseudogenization signatures of these different countries. 
The introduction of a second lineage into Africa [13] fur-
ther highlights the adaptation of the bacteria to Western 
and Central Africa as these strains had unique and shared 
pseudogenes with both lineage 1 and the non-African 
MU strains. However, the role of lineage 2 in disease bur-
den and transmission in Africa is unknown. The cluster-
ing of the Australian isolate with lineage 2 may require 
further a larger investigation to delineate the relationship 
between these two geographically distinct MU strains.

Although the in-house isolates were MU strains from 
Africa lineage 1 and shared pseudogenes with the Afri-
can isolates, their pseudogenome pattern was less similar 
to the African MU strains, especially PA38. Multiple loci 
VNTR genotyping shows that Z007, Z039, and PA38 have 
the common African profiles C and D [21]. PA38 further 
clustered with a strain from Benin pointing to the pos-
sible origin of the PA38 strain. The variations observed 
may be due to strain diversity that may have emerged in 
the sampled endemic communities [15, 22].

Based on the evolution of endosymbiont bacteria [7], 
the African MU strains are in stage two of evolutionary 
adaptation after pMUM plasmid acquisition. This was 
characterized by increased pseudogene numbers, further 
genome erosion compared to M. marinum M strain, the 
loss of insertion sequences, increased purifying selec-
tion (decreasing non-synonymous mutation), and the 
decrease in pseudogenes in both African lineages. The 
loss of insertion sequences (IS2404) in the second stage 

has implications for the diagnosis of BU because of its 
use in diagnosis [23]. This requires further studies into 
the variations in the number of IS2404 and other inser-
tion sequences in the genome, and how their elimina-
tion can impact diagnosis to inform better diagnostic 
strategies. The Ghanaian strain PA38, however, had an 
expanded genome, decreased genome-coding capacity, 
increased insertion sequence elements, and decreased 
purifying selection suggesting that it was in the first stage 
of evolutionary adaptation.

Metabolic variations observed across the MU strains 
identified multiple pathways including biosynthetic path-
ways (sterol and macrolide biosynthesis) partially or 
completely lost due to pseudogenization. This indicates 
the reduction in biosynthetic pathways that may not be 
currently essential for the bacteria [7]. The pseudoge-
nization of fatty acid metabolism-related genes indicates 
the elimination of a nonessential subset of these genes, 
however, MU has a large number of genes related to fatty 
acid metabolism [24]. The loss of the shikimate pathway, 
disruption of propionyl coA, and nitrate metabolism [5] 
were confirmed in this study.

Based on the pseudogenization of metabolic pathways 
across the MU strains, a niche model was generated. 
This proposed niche shields the bacteria from UV radia-
tion due to the loss of the undecylprodigiosin production 
pathway [25] in addition to the loss of the crtB gene [5] 
This niche fosters oxidative metabolism due to the loss 
of the dissimilatory nitrate reduction metabolic pathway 
that serves as an electron acceptor under anaerobic con-
ditions [26]. The niche has a lower temperature as com-
pared to its previous environment due to the loss of the 
Crassulacean acid metabolism (CAM) cycle light stage 
which is important for adapting to warm temperatures 
[27]. This is observed in the growth temperature (29–
33℃) of the bacteria [2] and the disease mostly affect-
ing the extremities of the body [28, 29]. Also, there is the 
availability of metabolic resources like amino acids (argi-
nine) and cofactors (coenzyme A) due to the loss of these 
pathways [10]. This niche either has less competition [30] 
and/or the acquisition of mycolactone has allowed for the 
reduction of other secondary metabolites [5]. Secondary 
metabolites lost include enediynes (cause cell death) [31], 
tylosin (a macrolide antibiotic) [32] and the loss of resis-
tance-mediated pumps (MexJK-OprM multidrug efflux 
pump that mediates resistance to tetracyclines and mac-
rolides) [33].

With the identification of seven metabolic pathways 
unaffected by pseudogenization across MU strains, four 
pathways were found to have viable drug targets through 
literature search. The four pathways were selected based 
on the importance of the pathway to the bacteria and its 
absence in humans [34]. These pathways include biotin 
synthesis which has the BioA enzyme important for M. 
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tuberculosis infection and persistence in tuberculosis. 
Compounds that inhibit BioA in M. tuberculosis include 
amiclenomycin [35] and N-aryl, N′-benzoylpiperazine- 
based compounds [36]. Another pathway is the betaine 
biosynthesis pathway. Betaine serves as an osmoprotec-
tant and some targets include BetA, BetB, and BetL [37, 
38]. Other pathways and their possible targets include 
tryptophan biosynthesis enzymes (TrpE, TrpA, and 
TrpB) [39] and essential beta-oxidation enzymes [24]. For 
the tryptophan biosynthesis pathway, indole propionic 
acid inhibits TrpE while a synthetic azetidine inhibits 
TrpA [39].

Conclusions
This study developed a pipeline to investigate the varia-
tions in MU pseudogenomes but can be extended to 
other bacteria to identify and analyze their pseudoge-
nomes. It is was observed that MU pseudogenomes are 
lineage- and location-specific. African MU strains are 
in the second stage of evolutionary adaptation, however, 
there are variations which are lineage-dependent. A pro-
posed pseudogene-based MU niche model highlights 
a niche that protects it from UV radiation and fosters 
oxidative metabolism with relatively lower temperature, 
availability of metabolic resources, and has less reliance 
on secondary metabolites. The in-house clinical strains 
differed in pseudogenomic signatures compared to the 
African population, however, phylogenetic relationships 
and VNTR genotyping highlight their close relationship 
with African MU strains. Also, the PA38 strain may be 
in the early stages of evolutionary adaptation. The high-
lighted pathways and targets unaffected by pseudoge-
nization can be further studied for alternative therapeutic 

targets for BU treatment. In summary, this tool provides 
the ability to investigate pseudogenomes in bacterial 
populations to generate insights and hypotheses for fur-
ther investigation.

Methods
Study design and strain information
In-house (PA38, Z007, and Z009) and African strains 
[13] were used in this sudy. In-house strains were col-
lected from 2018 to 2019 from patients reporting to the 
clinic with lesions that were characteristic of Buruli ulcer 
lesions and confirmed with IS2404 PCR. PA38 is from 
Pakro in Ghana, and Z007 and Z039 are Ivorian strains 
from Zoukougbeu. The African strains consist of 165 
clinical MU isolates from 11 countries (Fig. 5a) collected 
over 48 years (1964–2012). The method of sampling can 
be inferred that the isolates were obtained from patients 
reporting to the clinic. Agy99 reference strain is a clini-
cal isolate from Ghana and served as a reference to all 
the MU strains. Non-African clinical strains from French 
Guiana and the USA were included in this study for com-
parison. M. marinum M reference strain (USA) was also 
included for comparison to MU strains.

Pipeline development
Genome assembly
Whole genome data were obtained from the National 
Center for Biotechnology Information (NCBI) except 
for in-house genomes. The assembled genomes of 
PA38, Z007, and Z009 (Gyamfi et al., unpublished 
data) were sequenced with the Nanopore platform. 
The Illumina platform was used for the unassembled 
genomes of the African strains (PRJNA313185) and the 

Fig. 5 African MU strains and pseudogene analysis pipeline. (a) Distribution of M. ulcerans representing the African MU population [13]. (b) Pseudogene 
identification and analysis pipeline. Blue boxes indicate inputs, yellow boxes indicate pseudogenome identification, and green boxes indicate pseudogenome 
comparative analysis
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Australian isolate (Biosample SAMN00992193 from 
PRJNA163311). The assembled genome of the French 
Guiana strain (PRJEB30628) was sequenced using Nano-
pore and Illumina platforms, and that of the USA strain 
(PRJNA191796) was sequenced with the PacBio plat-
form. The Applied Biosystems platform was used to 
sequence Agy99 (PRJNA16230) and M. marinum M 
(PRJNA16725). The non-African strains were used as 
outgroups for comparison to the African strains and in-
house genomes.

To assemble the MU genomes, tools from Bactopia 
[40] were used with sequence reads (SRA) as input. Pre-
processing was done with sketch to estimate genome 
(https://mash.readthedocs.io/en/latest/sketches.html), 
adapters were trimmed with bbduk, and errors were cor-
rected with lighter. Read quality check was done with 
fastq-scan (https://github.com/rpetit3/fastq-scan) and 
fastqc (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc). The genomes were further assembled 
with shovill (https://github.com/tseemann/shovill) using 
skesa and misassembly correction was done with ragtag 
(https://github.com/malonge/RagTag). The corrected 
assembled contigs were scaffolded with Agy99 using rag-
tag. The quality of assembly was assessed with checkm 
(Parks et al. 2015) and U50 [41] to determine genome 
contamination and completeness.

Pseudogene prediction
Prokka [17], DFAST [11] and Pseudofinder [18] were 
used to identify pseudogenes from pipeline-assembled 
and already-assembled whole genomes. Pseudogenes 
were combined and cleaned with CD-HIT to remove 
duplicate pseudogenes [12] (Fig. 5b). Roary [8] was fur-
ther used to cluster pseudogenes and eliminate any addi-
tional duplicated pseudogenes generated from the use of 
different pseudogene prediction tools to finally generate 
the pseudogenome of each MU strain. The pseudoge-
nome of the isolates was written into various file formats 
(protein and nucleic acid fasta and GeneBank flat file ver-
sion 3 files) for downstream analysis.

Pseudogenomic analysis
Written and Roary files, from the pseudogene annota-
tion and cleaning step, were used for exploratory data 
analysis (EDA) (Fig. 5b). The distribution of pseudogenes 
across isolates as well as by country was plotted with 
seaborn (https://github.com/mwaskom/seaborn). The 
distribution of pseudogenes across isolates employed the 
use of a binning approach that combined Freedman-Dia-
conis’s Rule and Shimazaki & Shinomoto’s method [42] 
to optimize the selection of bin size. Pearson’s correla-
tion was calculated to determine the correlation between 
pseudogene accumulation across African MU strains 
with time.

To further understand pseudogenome dynamics across 
strains, selection pressure (ratio of synonymous and 
non-synonymous SNPs (dN/dS)) on pseudogenes was 
determined using Pseudofinder. For comparison, dN/dS 
was estimated for the whole genome and the functional 
genome (whole genome without pseudogenes) using the 
Basic Local Alignment Search Tool (BLAST) [43]. Iso-
lates were further clustered based on pseudogenomes 
using hierarchical clustering and Uniform Manifold 
Approximation and Projection (UMAP) [44] for low-
dimensionality representation. In using UMAP, differ-
ent parameters (metric, number of neighbours, and the 
number of components) were tested and the optimum 
was used while using the hierarchical cluster to inform 
optimum representation. All assessed metrics of the 
pseudogenomes of the isolates were used to assess the 
evolution of the MU strains.

The impact of pseudogenization on the cellular pro-
cesses and metabolism of the functional genome were 
determined using COGclassifier (https://github.com/
moshi4/COGclassifier) and Microbeannotator [45] 
respectively. Bar graphs and heatmaps were used for 
visualization, comparing the whole genome and the func-
tional genome. Comparisons made were used in gener-
ating a pseudogene-based niche model of MU. Finally, 
conserved pathways across the isolates were assessed for 
viability as possible drug targets.

Genomic analysis
The similarity of the scaffolded genomes was assessed 
using the average nucleotide identity calculated by dRep 
[46]. This is achieved by generating pairwise comparisons 
of the similarities in genomes using Mash [47]. The simi-
larity cutoff for MU was set at 98.5% [5] with M. mari-
num M as an outgroup. dRep was executed with default 
parameters and comparisons were further graphed with 
hierarchical plots.

To assess the phylogenetic relationships among the 
MU strains, parsnp [48] was used (default parameters) to 
identify single nucleotide polymorphisms (SNPs) occur-
ring in the core genome. The SNPs called were used to 
construct a maximum likelihood estimate tree with fast-
Tree2 [37] and the exported tree in newick format was 
visualized and edited with ITOL [49]. Trees branches 
with bootstrap greater than 50% were maintained with 
branches depicting the level of substitutions in the core 
genome.
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