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Abstract 

Copy-number variations (CNVs), which refer to deletions and duplications of chromosomal segments, represent 
a significant source of variation among individuals, contributing to human evolution and being implicated in various 
diseases ranging from mental illness and developmental disorders to cancer. Despite the development of several 
methods for detecting copy number variations based on next-generation sequencing (NGS) data, achieving robust 
detection performance for CNVs with arbitrary coverage and amplitude remains challenging due to the inherent 
complexity of sequencing samples. In this paper, we propose an alternative method called OTSUCNV for CNV detec-
tion on whole genome sequencing (WGS) data. This method utilizes a newly designed adaptive sequence segmenta-
tion algorithm and an OTSU-based CNV prediction algorithm, which does not rely on any distribution assumptions 
or involve complex outlier factor calculations. As a result, the effective detection of CNVs is achieved with lower 
computational complexity. The experimental results indicate that the proposed method demonstrates outstanding 
performance, and hence it may be used as an effective tool for CNV detection.
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Background
Copy number variation is a type of structural variation 
in which a copy or deletion event impacts a large num-
ber of base pairs. According to evidence, copy number 
variations in specific genes may affect the levels of gene 
expression in one or more cancer types, which may affect 
how many types of cancers develop and progress [1]. 
Deletions or amplifications of relatively significant DNA 
fragments are referred to as copy number variations 

(from 50 base pairs to several trillion bases) [2]. Because 
of the intimate relationship between CNV and gene 
expression, particularly in the tumor [3] cells where the 
influence of CNV on oncogenes and suppressor genes is 
particularly significant, as well as the high association of 
specific copy number variants with intellectual disabil-
ity, autism [4], and schizophrenia [5], detecting CNV has 
become an important challenge for researchers and clini-
cal laboratory practice.

More and more CNV detection techniques are being 
developed as a result of the advancement of next-gener-
ation gene sequencing technologies and the expansion 
of the volume of data produced [6]. These techniques 
generally fall into one of four categories for data utiliza-
tion: paired-end mapping (PEM), read depth (RD), split 
read (SR), and de novo genome assembly (AS). Each of 
these approaches has unique traits and a range of poten-
tial applications. The PEM-based method, which has 
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a superior identification effect for big-length deletion, 
employs the relation between the spacing of the double-
ended read segment and the length of the inserted frag-
ment to assess whether the gene sequence is altered. The 
SR-based method detects variant breakpoints using non-
normal alignment information and offers good detection 
results for all deletion lengths. The AS-based strategy 
to reassemble short sequences before variant identifica-
tion, which theoretically should have the greatest iden-
tification results, is seldom used in real investigations 
because of the enormous amount of good quality data 
that is needed as well as the expensive cost of assembly. 
The primary method for identifying genomic copy num-
ber variations is the RD-based approach, which relies on 
the correlation between read coverage depth and actual 
copy number [7–9]. Theoretically, it is capable of identi-
fying any type of variation, but due to coverage depth’s 
statistical properties, it needs to be enhanced in terms of 
its ability to detect copy number variation that is smaller 
in size and amplitude.

Based on the NGS data and the aforementioned meth-
odologies, several different methods have been created, 
the majority of which are RD-based. FREEC [10, 11] 
calls genomic alterations by constructing and normal-
izing read depth profiles, it can also estimate the purity 
of tumor cells and can be used for the detection of ger-
mline variant events when control samples are provided. 
CNVnator [12] detects copy number variation events by 
employing a mean-shift algorithm on read depth pro-
files under a predefined strategy. ACE [13] fits a model 
to the read depth data, calculates the tumor purity and 
cell ploidy with the least amount of error, and then fore-
casts the absolute copy number. iCopyDAV [14] detects 
copy number variation events utilizing Total Variation 
Minimization (TVM) and Circular Binary Segmenta-
tion (CBS). CNV-LOF [15] finds CNVs from the stand-
point of local data density, which significantly improves 
the efficiency of local CNV identification. CNV_IFTV 
[16] creates isolated forests to calculate the anomaly 
scores of read depth profiles, then applies the total vari-
ation model to smooth the scores and forecast CNVs. 
By combining different sequencing signals, LUMPY [17] 
suggests a signal mapping framework to predict CNV. It 
can also find several other forms of gene structural vari-
ants. PEcnv [18] fills the gap in the recognition of small 
CNVs by detecting CNVs of varying sizes using a base 
coverage corrected model and a dynamic sliding win-
dow. IhybCNV [19] improves detection performance by 
integrating results from different detectors. LDCNV [20] 
blends global and local and presents a better anomaly 
score computation algorithm based on KNN that more 
accurately captures the degree of abnormality. Restricted 
by the intrinsic complexity of NGS data, how to efficiently 

retrieve valuable information from the heavy data and 
how to set thresholds with more confidence still has to be 
researched further to further evaluate the data features in 
order to forecast CNV more consistently through simple 
and interpretable computational algorithms.

In light of the aforementioned factors, we here pre-
sent a novel method for detecting CNV in NGS data, 
named OTSUCNV (based on OTSU). The idea is to use 
a straightforward and efficient sliding window strategy to 
locate breakpoints in RD data, and then use the OTSU 
method on the tiny data that has been processed to auto-
matically isolate the anomalous portion. The two impor-
tant contributions that we make are as follows: 

1. A simple dynamic sliding window model is used to 
process the RD data so that base sequences in adja-
cent positions with similar RD values are merged, 
and breakpoints are identified.

2. The combination of the T-test and the adapted OTSU 
algorithm for the categorization of copy number 
abnormal and normal events allows for the correct 
identification of even low amplitude variant events 
with high confidence.

Methods
Overview of the OTSUCNV
Figure 1 depicts the method’s workflow. It accepts a fasta-
formatted reference sequence file and a bam-formatted 
read segment alignment file, preprocesses the input data, 
and then executes two primary phases to declare the 
CNV, including: 

1. The entire DNA sequence is divided into contigu-
ous and non-overlapping segments using the boxplot 
threshold and the adaptive mean window calculator 
proposed in this paper.

2. Using the independent samples T-test combined 
with the OTSU algorithm, CNV was inferred from 
the deviation between each segmental profile and the 
normal profile.

In addition, the method is implemented in Python and 
is available for free at https:// github. com/ hotsn ow- sean/ 
OTSUC NV.

Preprocessing
Based on the input BAM alignment files, we can obtain 
the read count (RC) profile by tallying the number of 
read segments aligning to each position of the reference 
sequence, representing the coverage of each base posi-
tion. Subsequently, we binning the reference genome into 
non-overlapping bin windows, and compute the average 
read count for each bin window, which is referred to as 
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the read depth (RD) profile. Following the acquisition of 
the initial RD profile, some preprocessing will be applied 
to it, including eliminating reference genome unlawful 
bases and correcting GC bias, the latter of which uses a 
technique developed in earlier work [7, 12]. The RD pro-
file needed for further processing will be obtained after 
the preprocessing. The RD profile can be written as fol-
lows, where N stands for the number of bins:

where ri represents the RD value of each bin.

Segmentation
The pre-processed data are now ready to perform the 
segmentation procedure in order to identify contigu-
ous regions with the same copy number (similar read 
depth values). In this paper, we propose an adaptive slid-
ing window algorithm to accomplish the segmentation 
task, which determines the possible breakpoint locations 
based on the robustness mean difference between the 
local left and right sides, and then merges adjacent bins 
with similar RD values into larger segments. The algo-
rithm is briefly described as follows.

First, for the sequence R to be processed, inspired by 
other researches [21, 22], we define the local one-sided 
robustness mean at a position i as

(1)R = [r1, r2, · · · , rN ]
T ∈ R

N×1

where ωm,i represents the weight of position m relative 
to the computational point i, theoretically, if the point 
m belongs to the same segment as the point i, then the 
weight ωm,i is large, otherwise, it is small. In addition, k 
represents the maximum value of the one-sided size of 
the sliding window, which is used to limit the amount of 
calculation when many consecutive points belong to the 
same segment, and can be artificially specified. And k is 
much smaller than the size N of the RD profile.

To make the weight assignments reasonable, we use the 
following formula:

A negative power function is used to achieve the purpose 
of decreasing the weights as the distance from the calcula-
tion point increases, where ri − ri−1 allows the weights to 
keep decreasing smoothly and slowly while the breakpoint 
is not crossed, and once the breakpoint is crossed, the sig-
nificant difference in the RD values at the breakpoint will 
result in a significant decrease in the weight of subsequent 
calculations. According to this formula, due to the low 
weight of points from different segments, the resulting 
mean will better represent the average RD value of the same 

(2)u
right
i =

k
m=i ωm,irm
k
m=i ωm,i

(3)ωm,n = e
−
∑m

i=n (ri−ri−1)
2

Fig. 1 Flowchart of the OTSUCNV method
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segment as the calculated points. In addition, if the weight 
ω is less than a certain threshold during the computation, 
the computation will be terminated directly to improve 
the computation efficiency and the robustness of the mean 
value. The threshold can also be specified artificially.

Along with the local mean, we define the local robust-
ness mean difference as:

We calculate Diffi at each position in the sequence Diff 
according to the above equation to obtain a sequence of mean 
differences, denoted as Diff. In the sequence Diff, the values 
at the breakpoints will form extremes concerning the values 
on both sides of them. To mitigate the impact of small local 
extrema on the algorithm, here we use a boxplot procedure to 
filter out regions with relatively large values in Diff. The for-
mulas to calculate the upper and lower bounds are as follows:

Q1, Q3, and IQR are all statistical parameters of Diff. Q1 rep-
resents the first quartile, Q3 is the third quartile, and IQR is 
the difference between Q1 and Q3. By using the upper and 
lower bounds provided by the boxplot, we can efficiently fil-
ter out the relatively large and small values within a dataset.

For the filtered larger values as well as the smaller value 
regions, we further filter the local extreme or minimal val-
ues among them, and their locations are the breakpoints.

For the hyperparameters mentioned in the above algo-
rithm, in addition to being artificially specified, a better 
parameter selection strategy has been derived in this study 
through extensive experiments, and the user can simply 
ignore the specification of parameters and use the default 
implementation in the provided program. The pseudo-code 
of the algorithm is shown below (Algorithm 1).

Algorithm 1 Segment point detection

(4)Diffi = u
right
i − u

left
i−1

(5)
upperLimit = Q3+ 3.5× IQR

lowerLimit = Q1− 3.5× IQR

From Algorithm  1, it can be seen that the computa-
tional workload of this algorithm mainly focuses on the 
calculation of the robustness mean at each position. 
The calculation formula (2) for the robustness mean 
requires the computation of the weights of neighbor-
ing points. In the process of calculating the weights 
(formula 3), the sum of squared distances can be accu-
mulated during the loop. Therefore, the complexity 
of calculating each neighboring point is O(1). As the 
number of points calculated around each point is sig-
nificantly smaller than the scale of the RD profile, the 
overall computational complexity can be regarded as 
O(N). Therefore, the proposed algorithm can accom-
plish the segmentation task with a relatively low and 
stable time complexity.

After the segmentation, we partition R into some 
consecutive non-overlapping segments of different 
sizes according to the segmentation result, expressed 
by the following equation.

where si represents the set of all RD values for the i-th 
segment.

To achieve a clearer understanding of the algorithm steps, 
we have provided a simple diagram in Fig. 2. The x-axis in 
the figure represents the position index, and the red point 
represents the RD values, while the blue line represents the 
calculated mean difference (formula 4). The two horizon-
tal dashed lines represent the upper and lower limits, and 
the two green points represent the breakpoints obtained in 
the end. From the Fig. 2, it can be observed that the robust 
mean difference calculated using the proposed formula can 
effectively reflect the probability of a point being a break-
point. After filtering with the threshold of the boxplot, 
reasonable inferences can be made regarding the potential 
location of breakpoints.

Inferring CNVs based on the OTSU
Generating probability
Based on the set S obtained by the segmentation proce-
dure, the RD values need to be initially classified accord-
ing to their numerical magnitude. The probability of 
occurrence of each category of RD values must be evalu-
ated before applying the OTSU algorithm. Therefore, the 
independent samples T-test is used here to test all the si 
two-by-two pairs, and the sets that are not significantly 
different are aggregated into the same class. This results 
in several categories of RD values, and assuming a total of 
m categories, each category can be expressed as the set of 
several segments that are not significantly different from 
each other:

(6)S = [s1, s2, · · · , sn]
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where |Ci| and ni denote the number of elements in Ci and 
n denotes the number of elements in the set S.

We take the average value of the RDs contained in each 
class as a representative value, and the ratio of the num-
ber of its elements to the number of all segments as the 
probability of the occurrence of this RD value. Then for a 
certain average value of RD, the probability correspond-
ing to it is as follows:

Predicting CNVs by OTSU
After the previous processing, the average RD value 
of each category and its corresponding probability of 
occurrence can be obtained. Next, to distinguish the 
abnormal segments from normal segments, we use the 
OTSU [23] method, which is an application method 
for the automatic selection of thresholds in the field of 
image segmentation with simple computation and good 
self-adaptability and can find a threshold with high con-
fidence according to the distribution of the data itself.

First, for copy number variation detection, we can 
consider the abnormal event as the foreground and 
the normal event as the image’s background. Since 
copy number abnormalities can be simply divided into 
two types of numerical performance: increasing and 

(7)

Ci = [s∗, ...]
m
∑

i=1

|Ci| =

m
∑

i=1

ni = n

(8)P(ui) =
|Ci|

n
=

ni

n
,ui =

∑

s∗∈Ci
RDs∗

ni

missing, in order to unify the processing, we find the 
distance of all RD values to the RD values correspond-
ing to the normal copy number and obtain the follow-
ing distance array (the distances are listed in ascending 
order):

where unormal denotes the RD value corresponding to the 
normal copy number, which can be calculated by any rea-
sonable method, the most common method is to take the 
plural. In this paper, we use a more robust method to cal-
culate it, this method can be referred to [24]. For conven-
ience, we denote the previously obtained probabilities as:

Note that the index of the probabilities indicated above 
corresponds to the index of the distance values.

According to the characteristics of the RD-based 
method, the larger the deviation from the normal RD 
value, the more abnormal the segments corresponding to 
that RD value are. Now suppose that the data are divided 
into two categories C0 and C1 by a certain threshold k 
where C0 represents the category less than or equal to the 
threshold and C1 represents the category greater than the 
threshold, then the probability of occurrence of each cat-
egory and the respective mean values are given by the fol-
lowing equation:

(9)
D = abs([u1,u2, · · · ,um] − unormal)

= [x1, x2, · · · , xm], x1 ≤ x2 ≤ · · · ≤ xm

(10)

P = [p1, p2, · · · , pm]
m
∑

i=1

pi = 1

Fig. 2 Example of Segmentation
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where

The between-class variance is defined as:

After that, by searching the optimal threshold k that 
maximizes the between-class variance, the normal and 
abnormal data can be separated.

Algorithm 2 OTSU classifier

According to Algorithm 2, it can be seen that the OTSU 
classifier only has a single loop of m iterations, therefore 
the time complexity of this algorithm is O(N), which is 
linear complexity.

In addition, owing to the peculiarity of CNVs, the mag-
nitude of the gain fragment can be much larger compared 

(11)

ω0 =

k
∑

i=1

pi = ω(k)

ω1 =

m
∑

i=k+1

pi = 1− ω(k)

µ0 =

k
∑

i=1

xi Pr(xi|C0) =

k
∑

i=1

xipi/ω0 = µ(k)/ω(k)

µ1 =

m
∑

i=k+1

xi Pr(xi|C1) =

m
∑

i=k+1

xipi/ω1 =
µT − µ(k)

1− ω(k)

(12)

ω(k) =

k
∑

i=1

pi

µ(k) =

k
∑

i=1

xipi

µT = µ(m) =

m
∑

i=1

xipi

(13)

σ 2 = ω0 · (µ0 − µT )
2 + ω1 · (µ1 − µT )

2

= ω0 · ω1 · (µ1 − µ0)
2

=
(µT · ω(k)− µ(k))2

ω(k) · (1− ω(k))

to the loss fragment. This can cause an imbalance in the 
distribution, which can be similar to uneven lighting in 
image segmentation which can have a significant impact 
on the performance of the OTSU algorithm. Here we use 
a simple strategy to reduce the negative impact of this 
situation on the prediction results, called extreme value 
suppression. In brief, before applying the OTSU algo-
rithm, we reduce the values in the distance array D that 
are too large, using the following formula:

where Dmean represents the average of all distance val-
ues. In theory, if the above-mentioned extreme values 
exist, then this step will affect just the data closest to 
the extreme values, achieving the goal of limiting the 
negative effects of the extreme values. If there is no such 
extreme value, the distance values corresponding to all 
anomalous RDs are equally reduced and have little effect 
on the prediction outcomes. In the subsequent sections, 
we will illustrate the effectiveness of this procedure with 
experimental results.

In order to provide a clearer understanding of the algo-
rithm steps, we have presented an example in Fig. 3. The 
x-axis in the figure represents the distance of all RD val-
ues relative to the normal RD value (refer to formula 9), 
while the y-axis represents the probability density of the 
values. And the dashed vertical line indicates the posi-
tion of the optimal threshold calculated by the OTSU 
algorithm. From the probability density curve of the data 
distribution in Fig. 3, it can be observed that all the data 
are mainly concentrated in two peaks, with the peak near 
the position close to 0 (corresponding to normal RD val-
ues) being higher. The optimal threshold calculated by 
the OTSU algorithm is precisely located near the valley 
where the two peaks intersect. This clearly demonstrates 
the reliability of differentiating between normal and 
abnormal data using the OTSU algorithm.

Results
To assess the effectiveness of OTSUCNV, we performed 
experiments on both simulated and real datasets. For 
each dataset type, we compared our proposed method 
with four peer methods designed for the same purpose. 
Furthermore, the efficacy of these methods was meas-
ured using precision, sensitivity, and F1-score metrics. 
Precision was defined as TP/PP, sensitivity as TP/P, and 
F1-score as the harmonic mean of precision and sensitiv-
ity. In this context, TP refers to the number of genomic 
positions that are duplicated both in the declared CNVs 
and the confirmed CNVs. PP corresponds to the total 
number of genomic positions included in the declared 

(14)D(i) =

{

D(i), D(i) <= Dmean

Dmean, D(i) > Dmean
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CNVs, whereas P represents the total count of positions 
in the confirmed CNVs.

Simulation studies
For the simulated experiments, we utilized hg38 as 
our reference genome, which is available for down-
load from the Ensembl database, http:// asia. ensem 
bl. org/. Then, we simulated the test gene sequences 
using SInC [25] and ART [26], along with a reference 
genome. In this study, SInC was responsible for simu-
lating copy number variations in the normal reference 
sequence, while ART was used to simulate sequencing 
of the generated test sequences and ultimately produce 
FastQ files [27]. Subsequently, BWA [28, 29] and Sam-
tools [30] were used with default parameters to obtain 
the aligned BAM file for CNV detection. In this study, 
we used SInC to generate three different sets of gene 
sequences with CNV region lengths ranging from 3000 
to 50000 bp. For each sequence, ART was employed to 
generate sequencing data with coverage depths of 2X, 
6X, and 10X. To ensure the reliability of our experi-
ments, each coverage depth was repeated 30 times to 
minimize experimental variability. Finally, the average 
performance of 90 samples was taken as the final met-
ric for each of the three different sequencing coverages.

Using the simulation data generated above, we com-
pared its performance with four different peer meth-
ods, which are FREEC [11], CNV-LOF [15], KNNCNV 
[31], and LDCNV [20]. Figure 4 shows the experimen-
tal results of these methods on simulation data, where 
the experimental results for each different coverage are 

averaged over a total of 90 samples for 3 different vari-
ant configurations and 30 sequencing repetitions of the 
simulation. According to the figure, FREEC shows an 
F1 score close to 0.8 in samples with different coverage. 
LDCNV performs poorly in terms of precision, rank-
ing fifth in F1 score. The F1 scores of CNV-LOF and 
KNNCNV improve with increasing sample coverage, 
ranging between 0.6 and 0.8. While our method out-
performs the other four peer methods in terms of pre-
cision, sensitivity, and F1 score. Even in samples with 
2x coverage, the F1 score remains around 0.9. Overall, 
OTSUCNV performs better than the other four peer 
methods on the simulated dataset.

To further discuss the importance of the extreme value 
suppression in the proposed method, we conducted an 
ablation experiment with the same experimental data 
and experimental steps for the extreme value suppression 
step. The experimental results are shown in Fig. 5, and it 
can be seen that the application of this step led to a sig-
nificant increase in the sensitivity of the CNV prediction, 
thus greatly improving the F1 score of the results.

Application to real datasets
The real sequencing samples were obtained from the 
1000 Genomes Project [32]. For our study, we selected six 
commonly used samples (NA12878, NA12891, NA12892, 
NA19238, NA19239, NA19240) in this field of research, 
all of which were aligned to the hg18 version of the ref-
erence sequence. In this algorithm study, these six sam-
ples were only used for tool performance validation. The 
DGV Gold Standard Variants for these samples were 

Fig. 3 Example of finding the optimal threshold using OTSU

http://asia.ensembl.org/
http://asia.ensembl.org/
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downloaded from the Database of Genomic Variants 
(DGV, http:// dgv. tcag. ca/ dgv/ app/ home) [33]

As shown in Fig. 6, we conducted comparison experi-
ments with four previous peer methods on six real data-
sets. Based on the experimental results, our proposed 
method achieves a relatively high level of F1 score. Spe-
cifically, CNV-LOF, FREEC, and LDCNV have lower 
overall rankings due to their lower precision. In com-
parison to KNNCNV, OTSUCNV demonstrates higher 
F1 scores on four samples and exhibits higher precision 
on each sample. Overall, OTSUCNV also demonstrates 
advantages in experiments with real samples.

Comparison of running time
To evaluate the execution efficiency of the algorithm, the 
proposed method was tested on 30 simulated samples 
along with four peer methods. The tests were conducted 
on a PC with a 2.9GHz CPU and 16.0GB memory. The 
average execution time for the 30 samples is shown in the 
Table 1.

In terms of execution time, our method is the fastest, 
except for FREEC. However, FREEC requires additional 

preprocessing to calculate the percentage of GC content 
in a given sequence file in FastA format, and its test time 
does not include the time for GC calculation. The step 
took approximately 8 seconds under the same experi-
mental conditions. Overall, OTSUCNV is an efficient 
CNV detection approach.

Discussion and conclusion
We developed a novel method for CNV detection in 
whole genome sequencing, called OTSUCNV, which has 
been demonstrated to perform well on samples of differ-
ent coverage depths and both real and simulated datasets. 
We can apply it to the analysis of germline and tumor 
data. OTSUCNV first segments DNA sequences using 
an adaptive sliding window technique, and then clusters 
the segmented RDs using independent sample T-tests to 
obtain the probability of occurrence of each class of RDs. 
Finally based on the OTSU algorithm, all RD representa-
tive values are classified as normal or abnormal, and the 
gene segments they correspond to are naturally indi-
cated as CNVs. Our method has several advantages: (1) 
the proposed sequence segmentation approach exhibits 

Fig. 4 Performance comparison of OTSUCNV with the four peer methods in terms of precision, sensitivity, and F1-score. The F1-score is shown 
in black dashed lines ranging from 0.1 to 0.9 with an increment of 0.1. a-c They represent the performance of the aforementioned approaches 
for three distinct coverage samples: 2x, 6x, and 10x

Fig. 5 Comparison of the performance of the original OTSU and the OTSU after applying the extreme value suppression in terms of precision, 
sensitivity, and F1-score

http://dgv.tcag.ca/dgv/app/home
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good breakpoint detection performance in RD-based 
methods; (2) the use of the modified OTSU method for 
CNV prediction eliminates the difficulty of manually 
selecting thresholds and demonstrates good performance 
both theoretically and practically; (3) compared to four 
peer methods, our algorithm has low computational 
time complexity, with segmenting and predicting stages 
having only linear time complexity. Overall, our method 
offers high cost-effectiveness in CNV detection.

We conducted studies with four peer approaches on 
both simulated and real datasets to illustrate the effec-
tiveness of the OTSUCNV method. The experimental 
results show that our method outperforms other four 
methods in terms of F1 scores, outperforming them 
comprehensively on simulation datasets and perform-
ing similarly to KNNCNV on real datasets. Moreover, 
through a comparison of running times, is has been 

proven that OTSUCNV is more efficient. Therefore, 
OTSUCNV may become a promising tool for detecting 
CNVs.

For future work, we plan to make improvements to 
our method in the following two areas: (1) In the RD-
based CNV detection method, the size of the RD cal-
culation window is a crucial factor but currently, the 
selection is based on empirical knowledge. Therefore, 
we intend to design an algorithm to avoid manual 
selection. (2) During the CNV prediction stage, we 
treat both gain and loss cases as the same anomalous 
event. Although the impact of this strategy is currently 
reduced by the method of extreme value suppression, 
it should be possible to find a more robust treatment. 
Therefore, we plan to further optimize the algorithm to 
solve this problem.
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