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Abstract 

Background In cellular activities, essential proteins play a vital role and are instrumental in comprehending fun-
damental biological necessities and identifying pathogenic genes. Current deep learning approaches for predict-
ing essential proteins underutilize the potential of gene expression data and are inadequate for the exploration 
of dynamic networks with limited evaluation across diverse species.

Results We introduce ECDEP, an essential protein identification model based on evolutionary community discov-
ery. ECDEP integrates temporal gene expression data with a protein–protein interaction (PPI) network and employs 
the 3-Sigma rule to eliminate outliers at each time point, constructing a dynamic network. Next, we utilize edge 
birth and death information to establish an interaction streaming source to feed into the evolutionary community 
discovery algorithm and then identify overlapping communities during the evolution of the dynamic network. SVM 
recursive feature elimination (RFE) is applied to extract the most informative communities, which are combined 
with subcellular localization data for classification predictions.

We assess the performance of ECDEP by comparing it against ten centrality methods, four shallow machine learning 
methods with RFE, and two deep learning methods that incorporate multiple biological data sources on Saccharomy-
ces. Cerevisiae (S. cerevisiae), Homo sapiens (H. sapiens), Mus musculus, and Caenorhabditis elegans. ECDEP achieves an AP 
value of 0.86 on the H. sapiens dataset and the contribution ratio of community features in classification reaches 0.54 
on the S. cerevisiae (Krogan) dataset.

Conclusions Our proposed method adeptly integrates network dynamics and yields outstanding results across vari-
ous datasets. Furthermore, the incorporation of evolutionary community discovery algorithms amplifies the capacity 
of gene expression data in classification.

Keywords Essential protein, Evolutionary community discovery, Protein–protein interaction network, Subcellular 
localization, Gene expression

Introduction
In gene knockout and parallel analysis of genome 
function in Saccharomyces cerevisiae (S. cerevisiae), 
researchers have unveiled a phenomenon: the deletion 
of specific genes, commonly referred to as essential 
genes, can result in the demise or infertility of organ-
isms. These essential genes give rise to essential proteins 
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that oversee the fundamental requirements of life, exert 
a profound influence on cellular metabolism and differ-
entiation [1, 2], facilitate the elucidation of cell growth 
and regulatory mechanisms, pinpoint pathogenic 
genes, and unveil potential drug targets [3, 4]. In the 
early stages of the research field, gene knockout, RNA 
interference, and transposon mutagenesis served as the 
foundational techniques for delving into gene function-
ality [5–7]. Despite their ability to yield precise sets of 
essential genes, these approaches required substantial 
resource allocation and time investments.

With the accumulation of high-throughput data and 
the completion of extensive proteome sequencing pro-
jects, technologies, including the S. cerevisiae two-hybrid 
system [8], affinity purification [9], and microarray analy-
sis [10], have ushered in a wealth of protein interaction 
data. In the realm of post-genomic research, experiments 
have illuminated a compelling insight: the phenotypic 
outcomes resulting from gene deletions in S. cerevisiae 
are substantially affected by the topological positions 
of their protein products within the molecular interac-
tion network [11]. This revelation has ignited an ongo-
ing surge of methods centered around the network-based 
identification of essential proteins. As research advances, 
it has become evident that certain highly connected 
central nodes may not necessarily qualify as essential 
proteins. Consequently, the research focus has pivoted 
from the global topology of proteins to the local topol-
ogy, exemplified by metrics such as the edge clustering 
coefficient [12]. This coefficient encapsulates the tight-
ness of connections between nodes at both ends of an 
interacting edge and their direct surroundings, serving as 
a critical indicator of potential participation in network 
community structures. Local average connectivity (LAC) 
[13] and local interaction density (LID) [14] also evalu-
ate protein essentiality by scrutinizing local neighbor-
hood relationships. Subsequent research uncovered that 
high-throughput protein–protein interaction (PPI) net-
works present false positives. To address this challenge, 
researchers have embarked on the integration of diverse 
biological information and network structures. Notably, 
owing to the tendency of essential proteins to congre-
gate into highly interconnected clusters, gene expression 
profiles have emerged as valuable data that researchers 
increasingly leverage [15–18].

In recent years, the development of multi-layer net-
work scoring methodologies, grounded in a wealth of 
biological information sources, has emerged as a focal 
point in research. RWHN [19] approach constructs het-
erogeneous networks that interweave PPI networks and 
protein domain, then establishes a transition probability 
matrix based on normalization operation. Simultane-
ously, researchers often harness gene expression data 

to forge co-expression networks or weighted networks, 
employing iterative algorithms to gauge protein signifi-
cance [20–22]. Another focusing area of research per-
tains to the dynamic attributes of networks. JDC [23], 
for instance, utilizes threshold calculations to binarize 
network fluctuations, subsequently combining degree 
centrality and the Jaccard similarity index to compute 
JDC scores. Meanwhile, CTF [24] identifies essential pro-
teins through edge features and multi-source informa-
tion fusion, culminating in edge-weighted PPI networks 
entwined with dynamic PPI data. The combination of 
gene expression data and its utilization to provide dyna-
mism constitutes a widely adopted approach among 
researchers. Nevertheless, such dynamism is typically 
employed in the context of scoring methodologies, with 
scant exploration into the intricate relationship aggre-
gations arising during the dynamic evolution process 
within deep learning methods.

Many machine learning and deep learning techniques 
have been deployed in the quest to predict essential pro-
teins. Given the intricate nature of network topology and 
biological features, a lot of methods have emerged for the 
selection of pertinent features, often through the prism of 
feature engineering. Within this landscape, Support Vec-
tor Machines (SVM) [25] and ensemble learning meth-
ods [26] have emerged as conventional machine learning 
methods. On the other side, deep learning approaches 
are designed grounded in the inherent characteristics 
of biological data. For instance, DeepEP [27] melds PPI 
networks with gene expression data, leveraging node-
2vec technology [28] to extract both topological and 
semantic features from the PPI network, then treats gene 
expression data as images and subsequently extracts its 
features through convolutional neural networks. Mean-
while, Zeng et al. [29] introduced a method that harmo-
nizes multiple biological information sources, deploying 
bidirectional long short-term memory (LSTM) networks 
to discern features from gene expression data, and then 
integrating PPI networks and subcellular localization 
data to enhance predictive capabilities. In a similar vein, 
MBIEP [30] capitalizes on depth-wise separable con-
volution to extract gene expression data features across 
diverse experimental contexts, while also processing 
subcellular localization data. While these methods each 
exhibit their unique strengths, it is worth noting that 
feature engineering-based approaches often necessitate 
the provision of an initial feature space. Moreover, the 
DeepEP model is bound by specific requirements con-
cerning the input data structure of gene expression data. 
Additionally, models reliant on LSTM may encounter 
performance challenges due to the relatively short time 
course of gene expression data. The MBIEP model, while 
using one-dimensional convolution, faces limitations 
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associated with input data requirements and a dearth 
of experimental projects in temporal and different envi-
ronments, thereby constraining its applicability scope. 
Furthermore, the model’s performance on H. sapiens 
datasets falls short of expectations.

Upon a summarization of prior research, it becomes 
evident that gene expression profiles, in isolation, con-
tribute minimally to classification and remain underuti-
lized. Furthermore, the exploration of dynamic networks 
within the realm of deep learning remains a relatively 
underdeveloped area. Existing deep learning methods 
often impose stringent data prerequisites, presenting 
a hurdle to their practical application. As a response 
to these challenges, we introduce the ECDEP model, 
founded upon an evolutionary community discovery 
algorithm. The central objective of ECDEP is to unlock 
more effective leverage of the dynamic attributes encap-
sulated within gene expression data. Within this frame-
work, inspired by the principles expounded in the works 
of IFPA [31] and JDC [23], a dynamic PPI network is 
sculpted using the 3-sigma rule. Notably, gene expres-
sion data does not directly constitute the features gov-
erning classification decisions; rather, its primary role 
lies in the construction of dynamic networks. We then 
analogized the PPI as a social network, with the TILES 
[32] algorithm harnessed to unearth communities dur-
ing the dynamic changes. Importantly, the TILES algo-
rithm concerns network topology during the community 
discovery process, thus, we obviate the need for an extra 
feature extraction from the static PPI network to prevent 
redundancy. Through observation windows, we extract 
communities acquired at different observation inter-
vals. The SVM recursive feature elimination (SVM-RFE) 
method is subsequently employed to pick 64 informa-
tive communities as sample features. Moreover, ECDEP 
incorporates subcellular localization as another feature, 
drawing inspiration from the processing method applied 
in MBIEP [30]. Proteins corresponding to subcellular 
localization are ranked in descending order, and the top 
n subcellular localization are selected. We exclude data 
from the 11th to the 64th positions, as they did not ame-
liorate model performance according to the conclusion 
from MBIEP. Ultimately, ECDEP utilizes fully connected 
layers to process the community features derived from 
dynamic networks, alongside features derived from sub-
cellular localization. Once these features are condensed 
into one-dimensional vectors of uniform length, they are 
seamlessly integrated into the final classification predic-
tion module.

We substantiate these propositions through exten-
sive comparative experiments conducted across three S. 
cerevisiae databases, as well as three additional species: 
Homo sapiens (H. sapiens), Mus musculus (M. musculus), 

and Caenorhabditis elegans (C. elegans). Initially, the 
ECDEP model is compared with ten centrality methods, 
including degree centrality (DC) [11], betweenness cen-
trality (BC) [33], closeness centrality (CC) [34], subgraph 
centrality (SC) [35], eigenvector centrality (EC) [36], 
maximum neighborhood component centrality (MNC) 
[37], local average connectivity (LAC) [13], local inter-
action density (LID) [14], sum of edge cluster coefficient 
(SoECC) [12], and cluster coefficient (ClusterC) [16]. 
Subsequently, ECDEP’s performance is gauged against 
four shallow machine learning methods combined with 
RFE, encompassing logistic regression RFE (LR-RFE), 
SVM-RFE, random forest RFE (RF-RFE), and AdaBoost 
RFE (AB-RFE). Finally, ECDEP is benchmarked against 
the deep learning models, DeepEP and MBIEP, which 
integrate multi-source information. The experimental 
results affirm ECDEP’s supremacy across most datasets, 
outperforming all comparative methods.

Materials and methods
Datasets and preprocessing
The ECDEP model takes inputs from diverse biologi-
cal data, including PPI network, essential proteins, gene 
expression profiles, and subcellular localization. The PPI 
networks are retrieved from a continuously updating 
database, BioGRID [38], and we also acquire S. cerevisiae 
PPI data from Krogan [39] and DIP [40] databases, which 
both store accurate verified physical interactions. For all 
PPI networks, we only adopt physical interactions and 
subsequently remove self-loops and duplicate records. 
The basic details of the processed PPI networks can be 
found in Supplementary Materials: Table S5 To label the 
samples, experimentally determined essential proteins 
are required. The essential proteins of S. cerevisiae, M. 
musculus, and C. elegans are obtained from DEG [41] 
and OGEE [42] databases, after merging and removing 
duplicates from these two sources, we remain 1132 S. 
cerevisiae essential proteins, 2914 M. musculus essential 
proteins and 700 C. elegans essential proteins. As for H. 
sapiens, referring to the treatment in DeepHE [43], after 
collecting 20 H. sapiens essential protein sets in the DEG 
database, we consider the protein to be vital if it appears 
in more than five sets. Detailed data processing is dis-
played in Supplementary Materials: Table S3.

The Subcellular localization data are attained from 
the All Channels Integrate column from the COM-
PARTMENTS [44] database. We consult the approach 
to handle subcellular localization presented in MBIEP 
[30] and incorporate slight modifications. Upon rang-
ing the subcellular localization in descending order 
based on the protein count and selecting the top 1024 
ones, we excluded the data in the interval between the 
top 11 and top 64 due to its minor contribution to the 
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result. Additionally, we individually retrieve GSE3431 
[45], GSE41828 [46], GSE3231 [47], and GSE77110 [48] 
from the GEO database [49], which all possess time 
course, as the gene expression profiles of S. cerevisiae, 
H. sapiens, M. musculus, and C. elegans. For elaborated 
processing and information, please refer to Supplemen-
tary Materials: Table S4.

Construction of dynamic PPI network
The Three Sigma Rule (3-sigma) is a common con-
cept in the field of statistics. As displayed in Formula 
(1 and 2), When applied to calculate the expression 
data for a given protein p, μ(p) indicates the arithme-
tic mean of the expression level from time 1 to time 
n. σ2(p) represents the variance of the gene expres-
sion level, while  EVi(p) signifies the expression level at 
time i.

Recently, the fluctuation of networks gradually 
received attention in the realm of identifying essential 
proteins, and gene expression data plays a significant 
role that providing network dynamics. When studying 
the relationship between vital proteins and dynamic 
networks, the 3-sigma rule is the most commonly used 
tool by researchers [31]. As shown in Formula (3 and 4), 
F(p) reflects the fluctuation in the expression curve of 
p, and higher values of σ(p) correspond to smaller val-
ues of F(p). The 3-sigma rule aids in assessing whether 
a protein’s expression level at a specific time surpasses 
the threshold t(p), indicating whether the protein is in 
an ’active’ or ’inactive’ state. When a protein is in an 
active state, it can engage with other active proteins 
and perform its function [23].

(1)µ(p) =

∑n
i=1EV 1(p)

n

(2)σ 2(p) =
n
i=1 (EV i(p)− µ(p))2

n− 1

Figure 1 illustrates the process of constructing dynamic 
PPI networks. Initially, in the static PPI network, proteins 
A, B, and C mutually interact. At every time step, we 
calculate the threshold t(p) and compare the expression 
level of each protein. If the expression level of either pro-
tein involved in the interaction falls below the threshold, 
we sever the interaction at this time step.

The expression level of a protein will be decreased after 
the protein has completed its function which leads to 
feedback for controlling the expression quantity, while 
its rate of turnover is constant [50]. We depict the evolv-
ing trend of the S. cerevisiae PPI network in Fig. 2. Here, 
EdgeNum and NodeNum denote the current number 
of edges and nodes in the network, while NewEdge and 
VanishEdge represent how many edges are generated and 
disappear at each moment, respectively.

Evolutional community discovery
The essence of the ECDEP model lies in the utilization of 
evolutionary community discovery techniques to extract 
features from dynamic networks and identify cohesive 
functional modules that emerge during the evolution-
ary process. While community discovery algorithms are 
frequently employed in the search for protein complexes, 
their application in the realm of essential protein identifi-
cation research remains infrequent.

Due to varying periods utilized in the experimental 
design of different gene expression data, observation 
units may range from minutes, hours, days, to weeks, 
etc., while dynamic community discovery algorithms 
often demand a higher level of temporal precision [51]. 
In contrast, evolutionary community discovery pri-
marily concentrates on tracking changes in commu-
nity structures and is typically applied to networks with 
more extensive time spans. The primary objective of 

(3)F(p) =
1

1+ σ 2(p)

(4)t(p) = µ(p)+ 3σ(p)(1− F(p))

Fig. 1 Employ the 3-sigma rule to acquire dynamic networks
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evolutionary community discovery is to investigate the 
structure and evolution process of communities, includ-
ing aspects such as their hierarchical arrangement and 
modularity. ECDEP model employs the TILES algorithm 
[32], originally designed for evolutionary community dis-
covery in dynamic social networks, to identify commu-
nities in dynamic PPI networks, which effectively detects 
the emergence and dissolution of communities.

Firstly, we provide a brief definition of the evolutionary 
community discovery algorithm. Consider an interaction 
streaming source denoted as S, along with a graph G = (V, 
E) in which V represents the set of vertices and E signifies 
the set of edges. Each interaction e ∈ E can be expressed as 
a triplet (u, v, t), wherein u and v designate the two verti-
ces constituting the edge, and t ∈ N denotes the time step 
at which this interaction was generated. Evolutionary com-
munity discovery aims to consistently identify and update 
the evolving community structure of graph G in response 
to the continuous generation of new interactions by S.

Subsequently, we present a basic introduction to the 
TILES algorithm. TILES operates continuously, analyzing 
the interaction streaming source S. Upon the generation 
of a new interaction by S, TILES employs a label propa-
gation mechanism to disseminate this alteration through-
out the network, thus refining the community members 
of the neighborhood. A node can belong to a community 
with two different levels of involvement: peripheral mem-
bership and core membership. Core member participates 
in at least one triangular relationship with other nodes 
within the same community. Conversely, nodes that serve 

as one-hop neighbors to core nodes are referred to as 
peripheral members. Notably, during the label propaga-
tion process, only core members can transmit commu-
nity membership information to their neighbors. TILES 
is capable of generating overlapping communities, each 
delineating different domains and functions.

Figure  3 [32] illustrates the community development 
process of TILES, where the red dashed lines represent 
newly added interactions, the colored regions denote 
distinct core communities and nodes connected by solid 
external edges without color represent peripheral mem-
bers. Nodes connected by dashed external edges without 
color do not participate in any community. The periph-
eral propagation step is employed to regulate events 
when new nodes join established communities. If a new 
node does not form a triangular relationship with any 
other nodes within the community, it becomes a periph-
eral member of the community. Additionally, if two exist-
ing nodes that do not have any intersecting neighbors 
interact, the peripheral propagation rule is also applied. 
However, the core propagation step assumes the exist-
ence of at least one common neighbor z between nodes 
u and v. As depicted in Fig. 3c, for each triplet (u, v, t), 
if two of the nodes belong to the core members of the 
same community, the third node also becomes a core 
member. Otherwise, as shown in Fig.  3a, the algorithm 
creates a new community based on the triangular rela-
tionship. Initially, we integrate communities that have 
appeared in different observation windows as the initial 
features using TILES, and subsequently, for each node’s 

Fig. 2 Overview of the temporal evolution of the S. cerevisiae PPI network
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features, we represent them using one-hot encoding. We 
construct an initial matrix with values set to 0 to reflect 
the presence of nodes in communities. Specifically, each 
row of the matrix corresponds to a sample, and each col-
umn corresponds to a community. If the node in the nth 
row exists in the mth community, then the feature matrix 
element at the nth row and mth column is set to 1; oth-
erwise, it remains 0. As illustrated in Fig.  4, a mapping 
graph of community features for Node P is depicted.

Feature selection with SVM‑RFE
By employing the TILES algorithm and fine-tuning the 
observation window, different communities can be gen-
erated for each observation interval. These communi-
ties may vary in size, exhibit varying degrees of overlap, 
or even remain entirely disjoint. Consequently, it is 

important to discern that not all observed communi-
ties possess optimal efficacy for the classification task at 
hand. Therefore, the ECDEP model further utilizes SVM-
RFE to enhance the performance of these communities. 
SVM, coupled with feature selection techniques, has 
been widely adopted in machine learning-based methods 
for identifying essential proteins [52].

SVM-RFE is an application of RFE that selects a subset 
of features by using the weight magnitude as ranking cri-
terion. Given a set of training samples, denoted as X0 = [x1, 
x2, …, xn]T, along with their corresponding labels, repre-
sented as y =  [y1,  y2, …,  yn]T, firstly, the process commences 
with the initialization of a subset of surviving features 
s = [1, 2, …, n] and an empty feature ranked list r = [].

Firstly, we observed that the initial number of commu-
nity features was large, and there was significant variability 

Fig. 3 The growth process of TILES communities

Fig. 4 Mapping Feature of Communities for Node P
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in scale: some communities contained many nodes, while 
others included only 2 to 3 nodes. Therefore, we decided 
to employ the SVM-RFE algorithm for feature extraction 
to retain informative features. Through experimentation, 
found that selecting 64 features achieved a good balance 
between model performance and computational efficiency 
(Supplementary Materials: Table S7). We also attempted 
to apply SVM-RFE to subcellular localization features. 
However, the extracted results did not meet the expected 
performance and were even inferior to using the origi-
nal features. Consequently, we chose to apply SVM-RFE 
exclusively to community features. The construction pro-
cess involves the following steps: X0 represents the initial 
feature set, where Xn is the community feature vector for 
each sample. Combining TILES from different observation 
windows resulted in various strong connected communi-
ties, each treated as a feature for the samples, forming a 
matrix where each row represents a sample, and each col-
umn represents a community. As shown in Formula (5), 
restrict the training samples to s, retaining only the features 
specified in s for all samples. Train an SVM classifier with 
the restricted samples X and the corresponding class labels 
y, obtaining the weight vector α . Rank the features based 
on the magnitude of weights in α , and remove the features 
with the smallest weights from the surviving feature sub-
set s. Through iterative iterations, the algorithm gradually 
eliminates features with minimal impact on classification 
performance, resulting in an optimized feature subset that 
enhances model performance and reduces overfitting.

The summations run overall training patterns Xk that 
are n-dimensional feature vectors, Xh · Xk denotes the 
scalar product, yk encodes the class label as a binary 
value + 1or − 1. δhk is the Kronecker symbol ( δhk = 1 if h = k 
and 0 otherwise), its role in the formula is to introduce an 
additional term between feature vectors. λ and C are posi-
tive constants (soft margin parameters), referred to as reg-
ularization and soft margin parameters, respectively. Their 
presence ensures convergence even in situations where the 
data is non-linearly separable or poorly conditioned. C is 
a parameter controlling the soft margin, ensuring conver-
gence even in cases of non-linear separability or poor con-
ditions. As illustrated in Formula (6). Given input training 
samples X and their corresponding labels y, the weight vec-
tor α is obtained through SVM-train.

(5)X = X0(:, s)

(6)

SVM− train =























Minimize over αk :

J =
�

1

2

�

�

hkyhykαhαk (Xh · Xk + �δhk )−
�

kαk

subject to :

0 ≤ αk ≤ C and
�

kαk yk = 0

As shown in Formula (7), compute the weight vector of 
dimension length(s), the weight vector w is a linear com-
bination of training patterns. Most weights αk are zero. 
The training patterns with non-zero weights are support 
vectors. Those with weight satisfying the strict inequality 
0 < αk< C are marginal support vectors.

For each feature i, compute its ranking criterion ci , as 
displayed in Formula (8), and wi represents the weight 
of feature i. Add the feature with the smallest selected 
ranking criterion to the beginning of the ranking list r, 
as shown in Formula (9). Then, remove the feature with 
the smallest ranking criterion from the feature set s. This 
process is repeated iteratively, gradually eliminating fea-
tures with minimal impact on classification performance, 
resulting in an optimized feature subset, as displayed in 
Formula (10).

Following this, SVM-RFE computes the ranking cri-
teria and identifies the feature with the smallest ranking 
criterion to update the feature ranked list, consequently 
eliminating the feature with the lowest ranking criterion. 
The iterative training and updating process continues 
until the set s becomes empty, ultimately obtaining a fea-
ture list sorted according to the criteria.

Prediction with ECDEP model
Figure 5 provides an overview of the ECDEP deep learn-
ing model’s architecture, which comprises three primary 
components: dynamic network construction, feature 
prioritization, and classification. The model takes three 
sources of biological information as input, namely sub-
cellular localization, PPI network data, and gene expres-
sion data.

In the dynamic network construction phase, ECDEP 
employs the 3-sigma rule in conjunction with temporal 
information derived from gene expression data to iden-
tify outliers at each time stamp. Subsequently, we merge 
this information with the static PPI network to capture 
the network’s interaction dynamics at each time point.

Moving on to the feature prioritization step, we uti-
lize an evolutionary community discovery algorithm 
to extract different overlapping communities from the 

(7)w =

∑

k

αkγkxk

(8)ci = (wi)
2, for all i

(9)r = [s (argmin (c)), r]

(10)s = s
(

1 : argamin (c) − 1, argamin (c)+ 1 : linght (s)
)
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dynamic network. Following this, we leverage SVM-
RFE for the purpose of selecting the most informative 
communities. These selected communities are then 
transformed into low-dimensional vectors, serving 
as node features. When combined with the features 
extracted from subcellular localization data, these fea-
tures are input into the final classification module to 
predict essential proteins.

Experiment result and analysis
Experiment setup
In the process of segmenting the dataset, we allocate 
80% of the data for the training set, while reserving the 
remaining 20% for the test set. Furthermore, to ensure 
a balanced dataset, we employ a sampling technique in 
the DeepEP [27]. As depicted in Formula (11), where M 

Fig. 5 The overall workflow of the EDCEP model. FC Layers: Fully Connected Layers. BN: Batch Normalization Process
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represents the number of essential proteins, and N repre-
sents the number of non-essential proteins, with M being 
less than N. The probability of selecting a non-essential 
protein instance is M/N  . Therefore, for a specific non-
essential protein, the probability of not being selected at 
least once after k draws is given by Formula (11). We set 
the threshold P value to 0.001, as a smaller P value indi-
cates more effective utilization of all non-essential pro-
tein samples, ensuring that no information is lost from 
the original dataset. Through this sampling technique, we 
can train with a balanced subset in each training epoch, 
ensuring that the classifier does not exhibit bias toward 
any specific class in each training batch. It’s important 
to note that all the machine learning and deep learning 
methods we compare undergo identical preprocessing 
steps, thus ensuring the fairness and consistency of the 
experimental setup.

For details on the experimental environment and pack-
age requirements, please access our GitHub repository 
(https:// github. com/ LionK ingAH AU/ ECDEP) or refer 
to the Supplementary Materials: Table S6. In ECDEP, 
we utilize binary cross entropy as the loss function and 
employ ReLU as the activation function. You can find a 
comprehensive list of other model parameters in Supple-
mentary Materials: Table S7. We conduct tests on various 
parameter configurations and provide our recommended 
settings.

Comparison with centrality methods
In order to assess the effectiveness of the ECDEP algo-
rithm, we conduct a comparative evaluation with mul-
tiple methodologies to gauge the performance and 
robustness of our model in predicting essential proteins. 
Centrality methods have long been employed for the 
identification of essential proteins. Our assessment of 
centrality methods proceeded as follows: Firstly, com-
pute the centrality value for each protein, sort them in 
descending order, and then select the top proteins as 
candidate essential proteins. Subsequently, we evaluate 
various metrics based on the number of true essential 
proteins among these candidates.

However, the proportion of essential proteins within a 
PPI network can vary across different species. In the case 
of S. cerevisiae (BioGRID), S. cerevisiae (Krogan), S. cere-
visiae (DIP), H. sapiens, M. musculus, and C. elegans, the 
respective proportions of essential proteins are 18.90%, 
27.86%, 22.49%, 11.32%, 28.22%, and 8.82%. Conse-
quently, we leveraged these species-specific proportions 

(11)p =

(

1−
M

N

)k

as the basis for selecting top centrality indices and assess-
ing the performance of the centrality methods.

Moreover, the proportion of essential proteins from 
various species leads to the imbalanced learning problem 
of essential protein identification. Therefore, we primar-
ily select the F-measure as the evaluation metric. The 
F-measure is the harmonic mean of recall and precision, 
offering a better reflection of a method’s ability to identify 
positive samples. As shown in Fig. 6, in all comparisons, 
ECDEP consistently outperforms centrality-based meth-
ods and surpasses the performance of SoECC, LAC, LID, 
BC, and CC, which excel in centrality methods, by mar-
gins of 0.30, 0.33, 0.33, 0.34, 0.24, and 0.22, respectively, 
across the S. cerevisiae (BioGRID), S. cerevisiae (DIP), 
S. cerevisiae (Krogan), H. sapiens, M. musculus, and 
C. elegans datasets. Furthermore, the best-performing 
centrality-based methods vary among different species, 
revealing the instability of centrality-based approaches, 
which are influenced by the size and density of networks. 
Additionally, ECDEP exhibits superior performance in 
terms of accuracy, precision, and recall compared to all 
centrality-based methods. Further details can be found in 
Supplementary Materials: Figure S2. It is anticipated that 
ECDEP would exhibit superior performance compared to 
centrality-based methods. ECDEP leverages additional 
gene expression data and subcellular localization infor-
mation to mitigate potential noise in the PPI network, 
and their biological characteristics significantly enhance 
its effectiveness in the final classification task. In con-
trast, centrality-based methods rely solely on the topo-
logical structure of the PPI network, and some of these 
methods have demonstrated acceptable results as well. 
Consequently, when lacking other biological information, 
centrality-based methods can serve as a viable approach 
for identifying candidate essential proteins.

Comparison with machine learning and deep learning 
methods
To further assess the performance of the ECDEP model, 
we conduct a comparative analysis involving four shallow 
machine learning algorithms, one deep learning method 
DeepEP, utilizing gene expression profiles, and another 
deep learning method MBIEP, which combines multiple 
biological information sources.

For the shallow machine learning algorithms, we utilize 
the same input data as ECDEP and incorporate recursive 
feature elimination techniques to optimize community 
features. As for the deep learning methods, the DeepEP 
model employed GSE3431 as input data, maintaining 
consistency with our experimental setup for S. cerevisiae. 
However, the gene expression data of other species differ 

https://github.com/LionKingAHAU/ECDEP
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from the S. cerevisiae dataset in shape and either short in 
temporal information or contain extra replicate samples. 
To ensure uniform input data across all species, we adjust 
these gene expression datasets according to the param-
eters specified in the DeepEP model, allowing for consist-
ent formatting. The MBIEP model had more stringent 
input requirements, necessitating not only gene expres-
sion data with temporal characteristics but also requir-
ing different experimental environments and replication 
samples. Consequently, when evaluating the MBIEP 
model’s performance across the three S. cerevisiae data-
sets, we utilized GSE7645 [53] data. For other biological 
gene expression datasets, that possess experimental con-
ditions and replication samples, we conduct data pre-
processing, including padding and trimming, to meet the 
input criteria of the MBIEP model.

In comparing our approach with both deep learning 
and machine learning methods, we primarily relied on 
F-measure, ROC (Receiver Operating Characteristic), 
and PR (Precision-Recall) curves to assess method per-
formance. These metrics offer a more objective evalua-
tion of our method’s capabilities, especially in the context 
of imbalanced binary classification problems.

Firstly, we evaluate the performance of ECDEP on the 
S. cerevisiae (BioGRID) dataset (Supplementary Mate-
rials: Figure S3). ECDEP achieves an AP value identi-
cal to that of MBIEP, while displaying a slight reduction 
of 0.01 in the AUC value compared to MBIEP. Notably, 
ECDEP outperforms DeepEP with an AUC value that 
is 0.12 higher and an AP value that is 0.42 higher. Fur-
thermore, our results indicate that ECDEP’s performance 
surpasses that of all shallow machine learning models 
included in the comparison. When compared to the Dee-
pEP model, both ECDEP and MBIEP, along with SVM-
RFE and LR-RFE, demonstrate superior performance. It 
is important to highlight that these models extra utilize 
subcellular localization data as input, resulting in signifi-
cantly improved predictive capabilities. This underscores 
the crucial role of subcellular localization information in 
enhancing the precision of essential protein prediction 
tasks.

Subsequently, we further assess the performance of 
the ECDEP model on two additional S. cerevisiae data-
bases, as illustrated in Fig.  7. On the S. cerevisiae (DIP) 
dataset, ECDEP exhibits superior performance compared 
to other methods. Specifically, it achieved AUC and AP 

Fig. 6 Comparison of ECDEP with centrality methods
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values that are 0.04 and 0.10 higher than MBIEP, 0.16 and 
0.43 higher than DeepEP, and 0.11 and 0.24 higher than 
the best-performing SVM-RFE among shallow machine 
learning methods. Notably, compared to the BioGRID 
dataset, most algorithms demonstrate a modest improve-
ment in performance. It’s worth mentioning that the 
BioGRID dataset possesses a larger network scale and 
density, presenting a challenge in effectively leveraging its 
rich and timely interaction data while mitigating noise.

On the S. cerevisiae (Krogan) dataset (Supplementary 
Materials: Figure S4), ECDEP continues to outperform 
other models, with AUC and AP values that exceed those 
of MBIEP by 0.03 and 0.07, DeepEP by 0.15 and 0.43, 
and the leading SVM-RFE by 0.07 and 0.15, respectively. 
Additionally, compared to the BioGRID database, the 
majority of algorithms demonstrated improved perfor-
mance. The Krogan dataset stands out due to its unique 
characteristics—all interaction edges are experimen-
tally confirmed, resulting in lower network noise and a 
higher proportion of essential proteins. This reduces the 
challenges associated with imbalanced learning in the 
dataset.

Across all three S. cerevisiae datasets, SVM-RFE and 
LR-RFE emerge as the top-performing shallow machine 
learning methods, while RF-RFE and AB-RFE pre-
sent comparatively poorer results. Our experimental 
approach involves the combination of 970 subcellular 
localization features and 64 community features into a 
single one-dimensional vector for input to the machine 
learning model. According to the results, the input fea-
tures exhibit a strong linear structure, which contributes 
to variations in the results.

In the next step, we investigate ECDEP’s performance 
across different species. Figure  8 depicts a compara-
tive analysis of H. sapiens dataset. ECDEP demonstrates 
notable advantages in this context, with AUC and AP val-
ues exceeding those of other models. Specifically, it out-
performs the MBIEP model by 0.01 in AUC and 0.21 in 
AP, surpasses the DeepEP model by 0.01 in AUC and 0.52 
in AP, and excels the best-performing SVM-RFE machine 
learning method by 0.02 in AUC and 0.33 in AP. This 
enhanced performance is particularly remarkable when 
contrasted with MBIEP.

It’s worth noting that in the MBIEP model, gene expres-
sion data are used as feature inputs, but its contribution 
to classification prediction is relatively low. In contrast, 
the ECDEP model adopts a novel approach by combin-
ing the PPI network and gene expression data, resulting 
in the creation of community modules exhibiting topo-
logical and functional characteristics. This innovative 
approach significantly enhances the model’s performance 
on this dataset.

Furthermore, it’s important to observe that while the 
differences in AUC values among the algorithms may not 
be substantial, the differences in AP values are quite sig-
nificant. This discrepancy arises from the fact that, in the 
context of the H. sapiens species dataset, the proportion 
of essential proteins is minor, exacerbating the challenge 
of imbalanced learning. AP values, which emphasize 
the predictive performance of positive samples, reveal 
that some comparative algorithms perform poorly on 
positive categories. Notably, DeepEP exhibits the lowest 
AP value among the compared algorithms, and it is the 
sole method lacking subcellular localization input. This 

Fig. 7 AUC and RP curves of ECDEP compared on the S. cerevisiae (DIP) dataset. SVM + RFE: Support Vector Machine with Recursive Feature 
Elimination; AB + RFE: AdaBoost with Recursive Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: 
Random Forest with Recursive Feature Elimination



Page 12 of 23Ye et al. BMC Genomics          (2024) 25:117 

observation reveals the critical role of subcellular locali-
zation data in predicting essential H. sapiens proteins and 
its substantial contribution to the prediction of positive 
samples.

As follows, we delve deeper into assessing the perfor-
mance of ECDEP on the M. musculus dataset, as illus-
trated in Fig.  9. ECDEP consistently demonstrates its 
superiority over all comparative methods, showcasing 
higher AUC and AP values. Specifically, it outperforms 
MBIEP by a margin of 0.10 in AUC and 0.19 in AP, and 
surpasses DeepEP by 0.18 in AUC and 0.22 in AP.

Among the shallow machine learning methods, SVM-
RFE emerges as the closest contender, with AUC and AP 

values trailing ECDEP by a modest 0.07 and 0.15, respec-
tively, while maintaining a slight edge over MBIEP by 
0.03 in AUC and 0.04 in AP.

In comparison to the results obtained from S. cer-
evisiae and H. sapiens datasets, it is noteworthy that all 
algorithms experience a minor reduction in AUC values. 
However, ECDEP and MBIEP stand out due to a nota-
ble decrease in AP values, setting them apart from other 
comparative algorithms, which exhibit minimal fluctua-
tions in AP values.

Our interest lies in understanding the variations in 
performance on the M. musculus dataset, given the 
high biological similarity between M. musculus and H. 

Fig. 8 AUC and RP curves of ECDEP compared on the H. sapiens dataset. SVM + RFE: Support Vector Machine with Recursive Feature Elimination; 
AB + RFE: AdaBoost with Recursive Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: Random Forest 
with Recursive Feature Elimination

Fig. 9 AUC and RP curves of ECDEP compared on the M. musculus dataset. SVM + RFE: Support Vector Machine with Recursive Feature Elimination; 
AB + RFE: AdaBoost with Recursive Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: Random Forest 
with Recursive Feature Elimination
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sapiens, including numerous homologous genes. We 
initially explored different labeling approaches, includ-
ing applying the DEG database alone, employing the 
OEGG dataset alone, selecting the intersection of both 
databases, and choosing data from both homologous 
genes and essential proteins in both H. sapiens and 
M. musculus species. Unfortunately, the experimental 
results fail to meet our expectations. Therefore, while 
ECDEP clearly outperforms all comparative methods 
on the M. musculus dataset, there remains an opportu-
nity for further refinement and enhancement.

On the C. elegans dataset, as depicted in Fig.  10, 
ECDEP continues to exhibit its superiority over all 
comparative methods. It notably surpasses MBIEP, 
boasting AUC and AP values that are 0.04 and 0.12 
higher, respectively. Among the remaining comparative 
methods, SVM-RFE emerges as the best method, albeit 
with AUC and AP values trailing ECDEP by 0.03 and 
0.11, respectively.

Importantly, all methods experience a significant 
decline in AP values on the C. elegans dataset, which 
holds the lowest proportion of essential proteins among 
all datasets, exacerbating its imbalanced learning chal-
lenge. Upon comparison, we find that despite its lower 
proportion of essential proteins, the C. elegans dataset 
yields a relatively higher AUC values for the algorithms. 
This phenomenon can be attributed to the dataset’s 
elevated ratio of negative samples, enabling the models 
to correctly identify more negative instances. However, 
the models struggle to accurately detect positive sam-
ples, resulting in high AUC but low AP scores. From 
Fig. 11a and b, it is evident that ECDEP outperforms all 
other machine learning models.

Similarly, while ECDEP maintains its superiority 
over all comparison algorithms on the C. elegans data-
set, its performance has markedly declined, which can 
be ascribed to the dataset’s limited number of positive 
samples and the inherent differences between species.

When we evaluate the performance of the ECDEP 
model across the four species, we observe that it excels 
on S. cerevisiae and H. sapiens datasets but experiences 
performance degradation on M. musculus and C. elegans 
datasets. Several factors contribute to this phenomenon, 
In addition to the impact of imbalanced datasets, essen-
tial protein labels, and differences between different spe-
cies, there is also the selection of gene expression data. In 
this study, gene expression data with temporal settings, 
such as the GSE3231 gene expression data for embryonic 
stem cell differentiation and the C. elegans time course 
study on binary restriction and aging, are included to 
provide temporal information. While these datasets were 
not directly employed as sample features and the utiliza-
tion of evolutionary community discovery methods effec-
tively leveraged PPI networks and gene expression data, 
nonetheless, these experiments had a one-sided focus 
to some extent, resulting in relatively limited functional 
communities within the dynamic network, contributing 
to the decline in model performance.

Figure  12 presents F-measure evaluation metrics for 
ECDEP and comparative algorithms across various data-
sets. On the S. cerevisiae (BioGRID) dataset, ECDEP’s 
F1 value falls 0.02 short of MBIEP’s performance. How-
ever, on the S. cerevisiae (DIP), S. cerevisiae (Krogan), H. 
sapiens, M. musculus, and C. elegans datasets, ECDEP 
outshines all comparison methods, boasting F1 values 
that surpass MBIEP by 0.14, 0.06, 0.15, 0.16, and 0.10, 

Fig. 10 AUC and RP curves of ECDEP compared on the C. elegans dataset. SVM + RFE: Support Vector Machine with Recursive Feature Elimination; 
AB + RFE: AdaBoost with Recursive Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: Random Forest 
with Recursive Feature Elimination
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respectively. This demonstrates ECDEP’s remarkable abil-
ity to identify positive samples across diverse datasets.

We conduct a more comprehensive comparison of 
ECDEP’s performance on other metrics (Supplemen-
tary Materials: Figure S8). While ECDEP’s accuracy 
on the H. sapiens dataset lags behind MBIEP by 0.03, it 
consistently achieves the highest accuracy across other 

datasets. Moreover, ECDEP consistently exhibits the 
highest precision on all datasets, except for recall values 
where it performs merely better on S. cerevisiae (DIP) 
and S. cerevisiae (Krogan) datasets. Conversely, LR-RFE, 
RF-REF, and SVM-RFE demonstrate the highest recall 
values across other datasets. This observation suggests 
that ECDEP tends to be more conservative in identifying 

Fig. 11 Comparative Analysis of AUC and AP Values. a The comparison of AUC values between ECDEP and machine learning methods on different 
datasets. b The comparison of AP values between ECDEP and machine learning methods on different datasets. SVM + RFE: Support Vector Machine 
with Recursive Feature Elimination; AB + RFE: AdaBoost with Recursive Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature 
Elimination; RF + RFE: Random Forest with Recursive Feature Elimination

Fig. 12 Comparison of ECDEP with machine learning methods. SVM + RFE: Support Vector Machine with Recursive Feature Elimination; 
AB + RFE: AdaBoost with Recursive Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: Random Forest 
with Recursive Feature Elimination
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positive samples, attributing to its higher credibility in 
positive sample identification, albeit potentially leading 
to some misclassification of positive samples as negative.

In contrast, shallow machine learning methods, while 
achieving high recall values, often compromise on preci-
sion, leading to misclassification of negative class sam-
ples as positive. Taking into account a comprehensive 
F-measure evaluation, the ECDEP model emerges as the 
most suitable choice for this task, balancing precision 
and recall effectively.

Comparison with ensemble learning and graph 
convolutional network methods
There’s currently a rise in methods that precisely pre-
dict essential proteins or genes solely based on sequence 
information, which is more available. These methods 
extract patterns from sequences to capture the charac-
teristics of essential proteins. To ensure the superior-
ity of our approach, in this section, we compared it to a 
method, EP-EDL [54], which relies on protein sequences 
and ensemble learning for accurate prediction of essen-
tial proteins. To ensure a fair comparison basis, we aimed 
to conduct the comparison on the same protein dataset. 
As our dataset is significantly larger than EP-EDL’s, we 
performed a match and ID mapping between the datasets 
using Uniprot IDs. However, within the EP-EDL dataset, 
there are 1045 proteins that are not included in our data-
set. Therefore, as illustrated in Supplementary Fig.  13, 
we opted to select the intersection of essential proteins 
and non-essential proteins present in both EP-EDL and 
ECDEP datasets. Due to the utilization of different data-
sets, we conducted retraining and testing. For EP-EDL, 
following the hold-out strategy outlined in its paper, we 
independently partitioned 20% of the essential proteins 

and an equal number of non-essential proteins, forming 
a balanced dataset of positive and negative samples. All 
other settings remained unchanged. For ECDEP, we re-
filtered the PPI network, constructed the dynamic net-
work, and extracted features based on the new dataset, 
while keeping the remaining parameters and configura-
tions constant. To ensure a comprehensive comparison, 
as depicted in Fig. 13, we present a comparison of differ-
ent evaluation metrics. Our proposed method exhibits 
higher scores by 0.14 in Accuracy and 0.09 in AUC scores 
compared to EP-EDL. However, the differences in other 
metrics are marginal, with only a lead or lag of one to 
two points. Nonetheless, considering an overall perspec-
tive, our proposed method still outperforms the EP-EDL 
method.

Given the rapid advancements in graph convolutional 
neural networks and the specific characteristics of our 
targeted task, we endeavored to address the node clas-
sification challenge within PPI networks using classical 
graph convolutional networks (GCNs) [55] on the S. cer-
evisiae (BioGRID) dataset. However, the outcomes did 
not align with our initial expectations. We explored the 
incorporation of community features, subcellular locali-
zation features, and a fusion of both as node attributes. 
Two-layer and three-layer GCNs were separately applied 
to these distinct feature sets. Unfortunately, the achieved 
results fell short of our anticipated performance bench-
marks. Based on our experimental findings, we hypoth-
esize that integrating community features within the 
GCN framework may not be conducive to enhanced 
performance. Additionally, the high dimensionality of 
subcellular localization features as node attributes might 
have adversely impacted model efficacy. Consequently, 
attempts to reduce the dimensionality of subcellular 

Fig. 13 Compare ECDEP with EP-EDL method with various metrics on the Intersection Proteins dataset
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localization features using SVM-RFE, condensing the 
initial 970-dimensional space to 256 dimensions, yielded 
unsatisfactory results. As shown in Supplementary Mate-
rials: Figures S15, we utilized AUC and AP scores as 
evaluation metrics. The performance of methods based 
on graph convolutional neural networks was significantly 
lower than that of the ECDEP method, which caught our 
attention. We speculate that this outcome may be due to 
imbalanced sample categories. We intend to delve deeper 
into this issue in our future research endeavors.

Ablation study in ECDEP
Contributions from different features
The ECDEP model takes community extracted from 
dynamic networks and subcellular localization data as 
its inputs. To ensure fairness and comparability, both 
sets of features undergo processing through fully con-
nected layers, resulting in one-dimensional vectors with a 
length of 16. To gain a deeper understanding of the rela-
tive contributions of these two input sources to the final 
classification across different species, for the subcellular 

localization and selected community features, we indi-
vidually processed these two types of features using mod-
ules within ECDEP. We then separately fed them into 
the classification layer for predicting essential proteins. 
As depicted in Fig. 14, we primarily used the area under 
the precision-recall curve as the primary evaluation met-
ric, comparing six different datasets. In the figure, the 
grey bars represent training and prediction solely using 
selected community features, the light orange bars repre-
sent training solely with subcellular localization features, 
and the dark orange bars represent training using a com-
bination of subcellular localization and community fea-
tures, which represents the results of the ECDEP model. 
It is evident that the subcellular localization data signifi-
cantly contributes more to the prediction tasks across 
different datasets. While the contribution of community 
features is comparatively lower, its inclusion elevates the 
AP score by varying degrees, ranging from 0.06 to 0.21. 
Therefore, we believe that in this model, both features 
are indispensable. In Supplementary Materials: Figures 
S9, we provide a comparison of the two features based on 

Fig. 14 Ablation study of features in ECDEP across six datasets evaluated with AP score. a f exhibit different species and datasets. COM: community 
feature; SUB: subcellular localization feature; COM + SUB: community feature combined with subcellular localization feature
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the area under the AUC curve. The inclusion of commu-
nity features similarly enhances the AUC score by 0.12 
on the M. musculus dataset, further demonstrating the 
indispensability of community features. These findings 
align with our previous results. Although gene expression 
data are not directly employed as sample features, the 
dynamic network it participates in constructing and the 
community modules it captures may exhibit some bias or 
limitations. Consequently, while the ECDEP model has 
made strides in enhancing the role of gene expression 
data in prediction, it remains clear that this feature’s con-
tribution alone is not sufficient to achieve optimal results.

Benefits of using various techniques
To enhance the precision of predicting essential proteins, 
this study employs a series of key techniques and strat-
egies. Initially, in light of the prevalent class imbalance 
in biological datasets, we implement down-sampling 
techniques to ensure that the model avoids favoring the 
majority class in its predictions. This effectively miti-
gates the risk of the model overly optimistic in identify-
ing nonessential proteins, ultimately contributing to the 
model’s improved generalization capability. Moreover, 
we leverage RFE techniques to proficiently address the 
complexities inherent in biological network communi-
ties while ensuring consistent input data shapes. The 
development of community modules within dynamic 
networks demands extensive feature engineering to aptly 
model intricate community structures. RFE serves a dual 
purpose by reducing dimensionality and preserving input 
data uniformity, thereby enhancing model scalability and 
generalizability. These integrated strategies empower our 

model to realize significant performance enhancements 
across diverse biological datasets.

The Fig. 15 illustrates the substantial positive influence 
on the model’s performance when employing downsam-
pling, as reflected in AUC and AP values. This is attribut-
able to downsampling’s ability to rectify class imbalance 
challenges within biological datasets, effectively prevent-
ing the model from developing a strong bias toward the 
majority class. Consequently, it reduces the likelihood 
of erroneous identifications of non-essential proteins, 
thus amplifying the model’s generalization proficiency. 
Downsampling markedly bolsters the model’s capacity 
to address imbalanced data, resulting in an overall boost 
in its generalization prowess. Furthermore, the strate-
gic utilization of RFE proves instrumental in navigating 
the intricate landscape of biological network communi-
ties, contributing to an augmented model performance. 
As RFE diminishes feature count, it simultaneously pre-
serves uniformity in input data shapes, thereby enhanc-
ing model scalability and generalization capabilities. 
RFE plays a pivotal role in managing the intricacies of 
community structures and feature engineering, exert-
ing a constructive influence on the model’s performance. 
Conversely, the deployment of raw data appears to have 
a somewhat subdued positive impact on the model’s per-
formance when contrasted with the utilization of pre-
processed data. This phenomenon may be attributed to 
the fact that the pre-processing and feature selection 
applied to biological data can effectively eliminate noise 
and redundancy, elevating data quality and aiding the 
model in capturing indispensable features. A notable 
aspect of our data analysis is that under the raw + RFE 

Fig. 15 Comparative analysis of AUC and AP values for downsampling and RFE experimental results. a AUC values comparison violin plot 
for downsampling and RFE experimental results. b AP values comparison violin plot for downsampling and RFE experimental results
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combination, AUC values appear lower in comparison 
to the raw + origin combination. This could be attributed 
to RFE’s capability to reduce data dimensionality, albeit 
occasionally resulting in the elimination of pivotal fea-
tures, thereby potentially adversely affecting the model’s 
performance. The raw + RFE combination might exclude 
some valuable features necessary for the classification 
task, consequently leading to a reduction in AUC values.

Detachment of every state in dynamic network
We further examined whether each snapshot of the 
dynamic network contributes to the final outcome. 
Therefore, as illustrated in Supplementary Materials: 
Figures S10, we took the example of S. cerevisiae (Kro-
gan) and sequentially detached its 12 states. The ECDEP 
process was then executed using the remaining 11 snap-
shots. Keeping the model’s parameters and other settings 
constant, a total of 12 models were trained to observe the 
impact after extracting each snapshot. As shown in Sup-
plementary Materials: Figures S11, we used the F1 score, 
AUC score, and AP score to measure the results. The 
red dashed line in the graph represents the results from 
ECDEP, depicting the overall evolutionary process in the 
entire graph. The x-axis ranges from T1 to T12, repre-
senting the training and prediction results after detach-
ing the snapshots at those time points. The extraction of 
snapshots resulted in lower F1 and AP scores compared 
to ECDEP’s results. The F1 score was at its lowest after 
extracting snapshot T11, experiencing a decrease of 
12.16% compared to ECDEP. The AUC and AP scores 
were lowest after extracting snapshot T12, decreasing 
by 6.43% and 13.23%, respectively, compared to ECDEP. 
However, the differences in results were relatively small 
when extracting snapshots at T2 and T7. Interestingly, 
the impact of network extraction at different time points 
did not show a clear correlation with the timeline con-
cerning the final outcome. Furthermore, contrary to our 
expectations, the extraction of the first snapshot did 
not result in the worst outcome. In the process of con-
structing the interaction streaming source of ECDEP, the 
behavior at the first time point involves generating all 
edges of the static network. Therefore, the first snapshot 
represents the static PPI network, upon which the sub-
sequent networks are constructed. As a result, the first 
snapshot contains the most comprehensive interaction 
information. However, according to results, its extrac-
tion did not yield the worst outcome. In conclusion, each 
state appears to be indispensable for the final predictive 
outcome.

Dynamic network versus static network
We utilized the first snapshot which contains the most 
comprehensive edge information to represent other 

snapshots. The first snapshot is the static PPI network 
obtained from public databases. In static PPI networks, 
node2vec [28] is the most commonly used method for 
extracting features, such as DeepEP [27], Zeng’s method 
[56], and DeepHE [43]. Therefore, in this comparison 
section, we employed node2vec to extract both the topo-
logical and semantic features of the network. The output 
embedding dimension was set to 64, allowing each pro-
tein node to have a 64-dimensional feature. This dimen-
sion matches the community feature dimension extracted 
from the dynamic network in ECDEP. we kept the other 
parts of the ECDEP model unchanged, replaced the input 
features of the community module with the embedding 
features from node2vec, and conducted training and 
predictions. As shown in Supplementary Materials: Fig-
ures S12, we used the F1 score, AUC score, and AP score 
to evaluate the two methods. In the figure, we used the 
prefix ’static_’ to describe features extracted from the 
static network and ’dynamic_’ to describe the results 
from ECDEP. The results indicate that the embedding 
features extracted based on node2vec experienced sig-
nificant decreases in F1 and AP scores across different 
datasets. Particularly, on the M. musculus dataset, the 
dynamic network method outperformed the static net-
work method by 18.95% in the F1 score, 17.38% in the 
AUC score, and 23.81% in the AP score.

Utilizing temporal methods for dynamic network
The ECDEP method relies on the TILES algorithm to 
extract communities that have emerged during the evo-
lutionary process of the graph. However, the sequential 
temporal characteristics of the graph also warrant explo-
ration, specifically delving into the trends in network 
evolution over time. Therefore, in this section, we explic-
itly leverage the temporal properties of dynamic graphs. 
Taking the S. cerevisiae (Krogan) dataset as an example, 
we extract both topological and semantic information 
of nodes in twelve snapshot networks using node2vec, 
resulting in (12, 64)-dimensional features for each node. 
Subsequently, we employ GRU [57], BiGRU [58], LSTM 
[59], and BiLSTM [60] for feature extraction. Afterward, 
the outputs are flattened and fed into a fully connected 
layer, yielding a 16-dimensional vector. Additionally, we 
maintain consistency in subcellular localization han-
dling, keeping other experimental settings consistent 
with ECDEP. We measure using AUC and AP scores, 
as depicted in Supplementary Materials: Figures S14. 
The performance differences among these RNN-based 
methods are marginal, none of them outperforming the 
ECDEP method. They lag behind the ECDEP method by 
only one to six points in AUC scores but by seven to nine 
points in AP scores. We speculate that our approach to 
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handling dynamic networks may not be suitable, leading 
to discrepancies between the results and expectations. 
In the future, we aim to explore solutions using dynamic 
graph convolutional networks or evolutionary graph con-
volutional networks to address this issue.

Exploration of the incompetent of machine learning 
methods
The primary reasons for the relatively poorer perfor-
mance of machine learning methods compared to deep 
learning methods can be attributed to two main factors: 
feature characteristics and the inherent attributes of 
machine learning.

Concentrate feature with dense layers
The imbalance in feature lengths can introduce bias into 
the results. In this scenario, subcellular localization fea-
tures have a length of 970, while community features 
extracted from gene expression data are limited to a 
length of 64. This disparity in feature lengths can impact 
the performance of machine learning models, as these 
models may exhibit a preference for handling longer fea-
tures while overlooking shorter ones. Machine learning 
models are generally sensitive to feature lengths, and in 
this specific case, the feature lengths may not be condu-
cive to optimal machine learning model performance. 
The imbalance in feature lengths and the presence of 
longer features can pose challenges for machine learn-
ing models during data analysis. To address this issue, the 
researchers made a deliberate choice to employ machine 
learning as the final classifier within the ECDEP model, 
thereby allowing deep learning methods to harness their 

strengths more effectively. Considering the feature length 
imbalance and the inherent characteristics of machine 
learning models, the decision to utilize machine learn-
ing as the concluding classifier within the ECDEP model 
was made. This strategic move serves to ensure that the 
model can proficiently manage these unique data attrib-
utes, leading to enhanced performance and robustness 
for the more accurate prediction of essential proteins.

As illustrated in the Fig. 16, a clear trend emerges when 
the models are trained using the fully connected layer. The 
results reveal a decrease in performance for SVM and LR, 
while AB and RF demonstrate improvements. It’s impor-
tant to note that SVM and LR are linear models designed 
for handling linearly separable or nearly linearly sepa-
rable data. In contrast, AB and RF are ensemble learn-
ing models known for their enhanced capacity to handle 
non-linear relationships. The fully connected layer, how-
ever, specializes in learning non-linear feature representa-
tions, which diverge from the fundamental principles of 
linear models. Consequently, the introduction of addi-
tional non-linearity through the dense layer may lead to a 
decline in feature performance for the linear models.

Use PCA for Feature Dimensionality Reduction
We applied Principal Component Analysis (PCA) as a 
dimensionality reduction technique tailored for subcel-
lular localization analysis. The process of PCA entails 
the extraction of principal components from the original 
features to represent the data while minimizing informa-
tion loss. The results of our experiments exhibit a distinct 
pattern, as seen in Fig. 17, which aligns with the observa-
tions described above.

Fig. 16 Performance evaluation of machine learning models after densed. a AUC value of machine learning model after densed. b AP value 
of machine learning model after densed. SVM + RFE: Support Vector Machine with Recursive Feature Elimination; AB + RFE: AdaBoost with Recursive 
Feature Elimination; LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: Random Forest with Recursive Feature Elimination



Page 20 of 23Ye et al. BMC Genomics          (2024) 25:117 

The sharp increase in cumulative explained variance, as 
depicted in the initial part of the curve, emphasizes the 
potency of a small number of principal components. These 
components encapsulate a substantial portion of the vari-
ance within the data, signifying their role in capturing major 
patterns and structures. We can infer that these initial com-
ponents are responsible for conveying the most influential 
information related to subcellular localization. Conversely, 
the slow convergence of the cumulative explained vari-
ance curve, as more principal components are added, sug-
gests a critical aspect of our approach. It indicates that we 
are progressively incorporating components that capture 
less significant variance in the data. However, the retained 
components continue to encapsulate the essential infor-
mation that characterizes subcellular localization patterns, 
ensuring that we do not overlook essential protein insights 
within the data. Despite these advantages, it is important 
to heed certain caveats when employing dimensionality 
reduction techniques like PCA in biological data analysis. 
One such consideration is the potential for information 
loss. By eliminating some components, we run the risk of 
removing subtle but important patterns or information 
embedded in the data, as indicated in the’Information Loss’ 
section. This implies that while PCA is effective in reducing 
dimensionality, it should be applied judiciously to avoid dis-
carding valuable data insights.

Principal components are linear combinations of the 
original features, making their direct interpretation chal-
lenging. Researchers need to consider this aspect while 

employing PCA and should be aware that interpreting the 
meaning of each component might not always be straight-
forward. Our application of PCA to subcellular localiza-
tion data mirrors the findings described in the literature. 
The tradeoff between dimensionality reduction, informa-
tion loss, and interpretability underscores the need for a 
balanced approach when implementing techniques like 
PCA in the analysis of complex biological datasets.

However, as illustrated in Fig.  18 the performance 
of the ECDEP model combined with PCA was less 
than satisfactory. This could be attributed to the loss of 
important information contained in the features that 
were omitted during PCA, resulting in a decrease in 
model performance. On the other hand, we also applied 
PCA to machine learning methods. Interestingly, we 
observed that the results improved only for AB + RFE 
and RF + RFE. This highlights the effectiveness of PCA 
in feature selection for specific machine learning algo-
rithms, such as AB and RF, combined with RFE. These 
results further underscore the complex interplay between 
feature selection techniques, data dimensionality reduc-
tion, and their impact on model performance.

Conclusions
In this article, we propose ECDEP, a deep learning 
model grounded on evolutionary community discovery. 
ECDEP leverages PPI networks, gene expression profiles, 
and subcellular localization data as inputs to tackle the 
underutilization of deep learning in network dynamics 

Fig. 17 PCA process on subcellular localization features across diverse datasets
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and the limited contribution of gene expression data in 
classification tasks.

The model begins by incorporating gene expression 
data containing temporal information and identifies 
outlier gene expression levels at each time step using 
the 3-Sigma criterion. If the expression of nodes in the 
static network is abnormal at a specific time, the cor-
responding edges will be removed. After establishing a 
dynamic network, we calculate the interaction stream-
ing sources by tracking newly generated and disap-
peared edges at each moment. Evolutionary community 
discovery techniques are applied to extract overlapping 
communities from the dynamic network, and SVM-RFE 
is employed to optimize the subset of community fea-
tures. Finally, the selected community features are com-
bined with subcellular localization data and fed into the 
classification module for prediction. Gene expression 
data in ECDEP contributes temporal information but 
doesn’t directly influence the final decision-making pro-
cess. This approach enhances the predictive capability 
of gene expression data.

The experiments in this article encompass three S. 
cerevisiae databases and datasets from three additional 
species. We compare ECDEP with ten centrality-based 
network topology methods, four shallow machine learn-
ing methods combined with RFE, and two deep learn-
ing methods incorporating multiple biological data 
sources. F-measure, AUC score, and AP score are used 

as primary evaluation metrics due to the imbalanced 
learning problem. Results indicate that while ECDEP 
performs slightly worse than MBIEP on the S. cer-
evisiae (BioGRID) dataset, it significantly outperforms 
other comparison methods on the S. cerevisiae (Kro-
gan), S. cerevisiae (DIP), H. sapiens, M. musculus, and 
C. elegans datasets. Notably, on the H. sapiens dataset, 
ECDEP achieves an AP value 0.21 higher than MBIEP. 
Subsequently, we analyzed the contributions of the two 
biological inputs in the ECDEP model to prediction 
outcomes on various datasets. On the S. cerevisiae (Kro-
gan) and M. musculus datasets, community contribu-
tions reached 0.46 and 0.57, respectively, highlighting 
ECDEP’s ability to enhance the role of gene expression 
data. ECDEP solely relies on temporal information from 
gene expression data without restrictions on input, as 
gene expression data isn’t directly utilized as a sam-
ple feature, thus improving the model’s generalization 
capability.

However, the ECDEP model exhibits decreased perfor-
mance on M. musculus and C. elegans datasets. Several 
factors contributing to this issue have been considered, 
including the selection of gene expression data, which is 
relevant to the model. Some gene expression data feature 
a time course, but their experimental environment and 
design, which have specific purposes, may introduce bias 
in subsequent functional community module detection. 
These challenges will be addressed in our future work.

Fig. 18 Comparing AUC and AP Values for ECDEP and Other ML Methods with PCA-Based Feature Extraction. a AUC Values of ECDEP and Other 
Machine Learning Methods after PCA-Based Feature Extraction. b AP Values of ECDEP and Other Machine Learning Methods after PCA-Based 
Feature Extraction. SVM + RFE: Support Vector Machine with Recursive Feature Elimination; AB + RFE: AdaBoost with Recursive Feature Elimination; 
LR + RFE: Logistic Regression with Recursive Feature Elimination; RF + RFE: Random Forest with Recursive Feature Elimination
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