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Introduction
The adaptation mechanisms for living at altitude in a 
hypoxic environment have long been an important sci-
entific issue in the field of evolution and genetics, but 
they have yet to be fully elucidated. Tissues and organs 
under hypoxia cannot get enough energy to support basic 
vital activities, which can lead to problems such as high 
blood pressure, brain damage, and even death [1, 2]. The 
liver is one of the most important organs in animals, 
responsible for biological transformation, metabolism, 
excretion, regulation, and other physiological functions 
[3, 4]. Many reports have described that hypoxia can 
affect liver function, including energy metabolism [5, 6]. 
Tibetan chickens (Gallus gallus; TBCs), an indigenous 
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Abstract
Background  Exploring the hypoxia adaptation mechanism of Tibetan chicken is of great significance for revealing 
the survival law of Tibetan chicken and plateau animal husbandry production. To investigate the hypoxia adaptation 
of Tibetan chickens (TBCs), an integrative metabolomic-transcriptomic analysis of the liver on day 18 of embryonic 
development was performed. Dwarf laying chickens (DLCs), a lowland breed, were used as a control.

Results  A total of 1,908 metabolites were identified in both TBCs and DLCs. Energy metabolism and amino acid 
metabolism related differentially regulated metabolites (DRMs) were significantly enriched under hypoxia. Important 
metabolic pathways including the TCA cycle and arginine and proline metabolism were screened; PCK1, SUCLA2, 
and CPS1 were found to be altered under hypoxic conditions. In addition, integrated analysis suggested potential 
differences in mitochondrial function, which may play a crucial role in the study of chicken oxygen adaptation.

Conclusions  These results suggest that hypoxia changed the gene expression and metabolic patterns of embryonic 
liver of TBCs compared to DLCs. Our study provides a basis for uncovering the molecular regulation mechanisms of 
hypoxia adaptation in TBCs with the potential application of hypoxia adaptation research for other animals living on 
the Qinghai-Tibet plateau, and may even contribute to the study of diseases caused by hypoxia.

Keywords  Tibetan chickens, Metabolomics, Transcriptomics, Embryonic liver, Hypoxia

Metabolomics and transcriptomics 
of embryonic livers reveal hypoxia adaptation 
of Tibetan chickens
Mingming Xue2, Runjie Yu2, Lixian Yang2, Fuyin Xie2, Meiying Fang2 and Qiguo Tang1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10030-w&domain=pdf&date_stamp=2024-1-30


Page 2 of 12Xue et al. BMC Genomics          (2024) 25:131 

breed distributed in the Qinghai-Tibet plateau, are a very 
good model for researching adaptations to hypoxic envi-
ronments. However, little is known about the metabolic 
changes due to hypoxia adaptation during embryonic 
liver development, especially in animals like TBCs that 
have adapted to the high-altitude environments of the 
Qinghai-Tibet plateau.

Metabolomics is a powerful tool used to analyze the 
composition and content changes of small molecule 
metabolites during a specific period of time. It provides 
insights into the relative relationship between metabo-
lites and physiological and pathological changes [7]. 
There are three commonly used detection methods for 
metabolomics including nuclear magnetic resonance, 
gas chromatography-mass spectrometry (GC-MS), and 
liquid chromatograph mass spectrometry (LC-MS) [8]. 
Tan et al. used GC-MS to perform metabolic analysis 
on the chicken pectoralis major and serum [9], while 
Zhang et al. used LC-MS to analyze biomarkers related 
to the freshness of chilled chicken [10]. Further, Zhang 
et al. used LC-MS to determine the impact of dietary 
energy levels on the rumen microbial composition and 
its relationship to the quality of Black Tibetan sheep meat 
[11]. However, little metabolomics analysis on the TBC 
embryonic liver have been reported.

Many studies on the hypoxia adaptation mechanisms 
of indigenous animals of the Qinghai-Tibet plateau 
have been carried out using transcriptomics analyses. 
Related progress has mainly involved energy metabolism, 
hypoxia response, the Ca2+ signaling pathway, and cell 
survival and proliferation [12, 13]. Zhang et al. have used 
transcriptomics to analyze the chorioallantoic membrane 
of TBCs embryos under hypoxia [14]; however, it is nec-
essary to explore the gene expression patterns of the TBC 
embryonic liver during hypoxia.

This study aimed to better understand the hypoxia 
adaptation of the TBC embryonic liver by investigating 
and comparing the fertilized eggs of TBCs and DLCs 
in normoxia (NTBCs and NDLCs) and simulated high-
altitude hypoxic environments (HTBCs and HDLCs). To 
achieve this, we conduct transcriptome and metabolome 
analyses on liver tissues collected on day 18 of embry-
onic development, categorizing them into the HTBC18, 
HDLC18, NTBC18, and NDLC18 groups. Through this 
work, we hoped to explore the differences in hypoxia 
adaptation patterns in the embryonic liver of TBCs and 
DLCs under different oxygen concentrations and further 
reveal the potential molecular mechanism of TBC adap-
tation to hypoxia.

Results
Multivariate statistical analysis
The principal component analysis (PCA) method was 
used to observe the overall distribution of metabolites 

and differences between samples from different groups. 
The PCA model yielded R2X parameter values of 0.435 
in positive ion mode and 0.459 in negative ion mode 
when comparing HTBC18 and HDLC18 and 0.463 in 
positive ion mode and 0.489 in negative ion mode when 
comparing NTBC18 and NDLC18 (Fig. S1). There was 
an overlap in HTBC18 vs. HDLC18 and NTBC18 vs. 
NDLC18 comparisons, indicating that each group was 
not well separated in this model. Partial least-squares 
discriminant analysis (PLS-DA), a supervised projection 
method based on the regression extension of PCA, was 
used to reveal a more apparent segregation of the differ-
ent groups. The score plot generated by PLS-DA showed 
a separation between the groups (Fig.  1). The model 
showed the parameters of Q2 and R2Y were all > 0.5, 
demonstrating the model fit the data well. Permutation 
tests further indicated that the model fit the experimen-
tal data well (Fig. 1). The score plots from the orthogonal 
partial least-squares discriminant analysis (OPLS-DA), 
which was performed to modify the PLS-DA and had 
enhanced interpretability, also revealed a clear separation 
of all groups, with good fit and predictability (Fig. S2).

Metabolite profiles in TBCs and DLCs
A total of 1,123 metabolites by positive ion mode and 785 
metabolites by negative ion mode were initially identified. 
Figure 2 shows the distribution of differentially regulated 
metabolites (DRMs) in the different groups (including 
unidentified). There were 402 and 425 metabolites sig-
nificantly up-regulated and 490 and 253 metabolites sig-
nificantly down-regulated in NTBC18 vs. NDLC18 and 
HTBC18 vs. HDLC18 comparisons, respectively. Using 
Pearson correlation analysis, we analyzed the correla-
tion between DRMs. Results comparing HTBC18 and 
HDLC18 groups are shown in Fig.  3. Phenylpropanoids 
and polyketides had a closer relationship with benze-
noids, nucleosides nucleotides and analogues in the posi-
tive ion model (Fig. 3A and C), and metabolites were more 
closely related to each other in the negative ion model 
(Fig.  3B and D). In addition, the relationship between 
metabolites was higher in the HTBC18 vs. HDLC18 com-
parison than in the NTBC18 vs. NDLC18 comparison 
(Fig. S3). We focused on lipid and oxygen-related com-
ponents annotated as “lipids and lipid-like molecules” 
and “organic oxygen compounds” (Table S1 and Table 
S2). Five differential lipid metabolites were identified only 
in the HTBC18 vs. HDLC18 comparison including ste-
roid esters ((19r)-9-acetyl-19-hydroxy-10,14-dimethyl-
20-oxopentacyclo[11.8.0.0 < 2,10 > 0 < 4,9 > 0.0 < 14,19 >]
henicos-17-yl acetate and cholesteryl sulfate), fatty acyls 
(citraconic acid and eicosenoic acid), glycerophospholip-
ids (phosphatidylcholine (Pc) 36:2). Of these, compared 
to HDLC18 group, only Pc 36:2 was down-regulated in 
HTBC18 group. Additionally, one differential or ganic 
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oxygen compound (pyruvaldehyde) was identified 
between HTBC18 and HDLC18 groups (Table S1).

Clustering and KEGG analysis of DRMs in TBCs and DLCs
To further understand the biological functions of DRMs, 
we first performed cluster analysis in the NTBC18 
vs. NDLC18 and HTBC18 vs. HDLC18 comparisons 
(Tables S3 and S4). DRMs were enriched by KEGG 
analysis (Table S5). Significant pathways (P-value < 0.05) 
are shown in Fig.  4. The only significant pathway in 
the NTBC18 vs. NDLC18 comparison was amino acid 
metabolism (alanine, aspartate, and glutamate metabo-
lism) (Fig.  4A). DRMs identified in the HTBC18 vs. 
HDLC18 comparison were significantly enriched in car-
bohydrate metabolism (pyruvate metabolism, propano-
ate metabolism, butanoate metabolism, and the citrate 
cycle (TCA cycle)), nucleotide metabolism (purine 
metabolism), membrane transport (ATP-binding cas-
sette (ABC) transporters), amino acid metabolism (argi-
nine, proline, and tyrosine metabolism), the biosynthesis 
of other secondary metabolites (caffeine metabolism), 
and metabolism of cofactors and vitamins (nicotinate 
and nicotinamide metabolism) (Fig.  4B). Malate, pyruv-
aldehyde, succinate, propionic acid, creatine, maleic acid, 
and 3-methoxytyramine were enriched in carbohydrate 
and amino acid metabolism, which were all up-regulated 
except for 3-hydroxybutyric acid and s-adenosylmethio-
nine in HTBC18 groups (Table 1).

Gene expression profiles in TBCs and DLCs
We compared the differentially expressed genes (DEGs) 
in HTBC18 vs. HDLC18 and NTBC18 vs. NDLC18 com-
parisons. There were 105 and 113 significantly upregu-
lated DEGs and 94 and 121 significantly downregulated 
DEGs in NTBC18 vs. NDLC18 and HTBC18 vs. HDLC18 
comparisons, respectively. Comparing NTBC18 and 
NDLC18 groups, DEGs were mainly enriched in nervous 
system process, detection of stimulus, arginine and pro-
line metabolism, and fatty acid degradation (Fig. 5B and 
D). Comparing HTBC18 and HDLC18 groups, DEGs 
were mainly enriched in alpha-amino acid metabolic 
process, regulation of progesterone biosynthetic pro-
cess, amino acid metabolic pathways, and the TCA cycle 
(Fig.  5A and C). Transcription factor analysis indicated 
that zf-C2H2, T-box, bHLH, TF-bZIP, ETS, and LRRFIP 
were differentially expressed when comparing HTBC18 
and HDLC18 (Fig. 5E) and Pou, Homeobox, bHLH, and 
T-box were differentially expressed when comparing 
NTBC18 and NDLC18 (Fig. 5F).

Integrative metabolomics-transcriptomics analysis in TBCs 
and DLCs
To further understand the correlation between DRMs 
and DEGs, we integrated and analyzed metabolomic 
and transcriptomic data and the KEGG pathways shared 
between them. In total, 20 metabolomic and 20 tran-
scriptomic pathways were shared between both NTBC18 
and NDLC18 groups and between HTBC18 and HDLC18 
groups (Fig. 6A and B). Among the top 10 shared path-
ways of the largest number of DEGs and DRMs, five 

Fig. 1  Multivariate analysis of metabolomics in Tibetan chickens (TBCs) and Dwarf laying chickens (DLCs) under normoxia and hypoxia. (A and C) PLS-DA 
score plot and permutation test in a positive ion model. (B and D) Negative ion models in TBCs and DLCs both under hypoxia and normoxia

 



Page 4 of 12Xue et al. BMC Genomics          (2024) 25:131 

pathways were the same between TBCs and DLCs under 
normoxia or hypoxia, including metabolic pathways, 
tyrosine, pyruvate, purine metabolism, and arginine and 
proline metabolism; five pathways were unique to the 
HTBC18 and HDLC18 comparison group, including bio-
synthesis of amino acids, carbon metabolism, neuroac-
tive ligand-receptor interaction, butanoate metabolism, 
alanine, aspartate and glutamate metabolism (Fig. 6C and 
D). Five pathways including the TCA cycle were signifi-
cantly enriched between HTBC18 and HDLC18 groups 
(Fig.  6E). The DEGs between HTBC18 and HDLC18 
groups included PCK1 and SUCLA2 enriched in the 
TCA cycle, ALDH18A1 and PYCR1 enriched in arginine 
and proline metabolism, and CPS1 and H6PD enriched in 
carbon metabolism related to malate and succinate. The 
DEGs between NTBC18 and NDLC18 groups included 
ABC transporters ABCB1 and ABCC4 and ALDH9A1, 
ADH1C, and ACADSB enriched in fatty acid degradation 
related to deoxyinosine and maltotriose.

Discussion
Low oxygen adaptation to high altitudes has always 
been a scientific problem attracting wide attention. The 
environmental oxygen concentration decreases gradu-
ally with increased altitude, causing various functional 
disorders in animals affecting normal growth and devel-
opment and may even cause death [15]. TBCs deal with 
this problem by adjusting their physiology [16, 17] and 
because of this, are a good model to study hypoxic adap-
tation. Many studies have found that hypoxia adapta-
tion in plateau animals is closely related to metabolism 
[18–20]. The liver is one of the most important metabolic 
organs. Metabolic changes in the liver under hypoxia 
have been well described [21], but no research has been 
reported how embryonic TBC livers adapt to hypoxia. 
Metabolomics is a reliable tool for uncovering the rela-
tionship between metabolism and phenotype. In this 
study, we investigated the metabolism patterns of embry-
onic TBC livers on day 18 of development by integrating 
analysis of the transcriptome with metabolome data.

Fig. 2  The differentially regulated metabolites (DRMs) by volcano plot in a positive ion model (A and C) and a negitive ion model (B and D) both under 
hypoxia and normoxia in TBCs and DLCs. The circles with red and blue are model-separated metabolites with VIP > 1, P-value < 0.05, and Foldchange > 1.5 
or < 0.67
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Fig. 4  Bubble map of KEGG pathways of DRMs between TBCs and DLCs under normoxia (A) and hypoxia (B) (P-value < 0.05)

 

Fig. 3  The co-regulatory relationships of DRMs between HTBC18 and HDLC18 groups. (A and B) The co-regulatory relationships of DRMs in positve and 
negitive ion models (|r| >0.8 and P-value < 0.05). (C and D) Correlation Heatmaps of DRMs in positive and negitive ion models (VIP > 1, P-value < 0.05)
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Among the NTBC18 and NDLC18 groups, the most 
diverse DRMs were involved with lipids and lipid-like 
molecules, organic acids and their derivatives, and 
organic oxygen compounds. The lipids and lipid-like mol-
ecules involved consisted of fatty acyls, glycerophospho-
lipids, prenol lipids, and steroids and steroid derivatives. 
This result is consistent with previous reports [22, 23]; 
the liver is important for synthesizing lipids. Through 
KEGG enrichment analysis, we identified that these 
enriched metabolites were involved with many path-
ways, including in amino acid metabolism, membrane 
transport, cell growth and death, the endocrine system, 
and signal transduction. The only significantly enriched 
pathway of amino acid metabolism (alanine, aspartate, 
and glutamate metabolism) included succinate. Succinate 
is an intermediate in the TCA cycle, plays a crucial role 
in mitochondrial ATP production, and acts as a signal 
for inflammation that stabilizes the transcription factor 
hypoxia-inducible factor-1a in specific tumors [24, 25]. 
We found that succinate was up-regulated when com-
paring HTBC18 and HDLC18 groups. This suggests that 
succinate may not only be involved in metabolism, but 
may also play a role in the hypoxia adaptation of TBCs. 
Furthermore, we observed that D-galacturonic acid and 
adenosine 5’-monophosphate were associated with mem-
brane transport and signal transduction, highlighting 
underlying distinctions between TBCs and DLCs under 
normoxic conditions.

Unlike under normoxia, the most diverse DRMs were 
mainly enriched in metabolism processes including car-
bohydrate, amino acid, nucleotide, cofactor, and vitamin 
metabolism under hypoxia. Carbohydrate metabolism 

changes included pyruvate metabolism and the TCA 
cycle. Malate, pyruvaldehyde, s-lactoylglutathione, and 
succinate were DRMs between HTBC18 and HDLC18; 
pyruvaldehyde and s-lactoylglutathione were signifi-
cantly different only under hypoxia. Pyruvaldehyde is the 
reduction product of pyruvate and s-lactoylglutathione 
can be used to produce lactate, both of which are impor-
tant intermediates in pyruvate metabolism [26]. Studies 
have shown that animals under hypoxia can respond to 
the challenge by increasing their glycolysis rate to gen-
erate energy [27, 28]. Changes in phosphocreatine and 
creatine were identified as related to amino acid metab-
olism, including arginine, proline, and tyrosine metabo-
lism. Creatine, the main component of organic acids, is 
the central component of energy metabolism for resyn-
thesizing ATP [29]. Phosphocreatine reproduces ATP by 
binding to adenosine diphosphate (ADP) in a reversible 
reaction catalyzed by creatine kinase [30]. Phosphocre-
atine is a high-energy molecule capable of resynthesiz-
ing ATP much faster than the oxidative phosphorylation 
and glycolysis processes [31]. These results indicate that 
TBCs may have higher metabolism and energy supply 
capacity than DLCs under hypoxia, which is consistent 
with our previous results under hypoxia conditions in the 
brain of TBCs and DLCs on day 18 of embryonic devel-
opment [32]. Differences in membrane transporter (ABC 
transporters) exist under hypoxia between TBCs and 
DLCs. The ABC transporter family is one of the largest 
transporter families and plays an essential function in all 
living creatures in transporting specific molecules across 
lipid membranes [33]. The outcomes of our study suggest 
that hypoxia significantly influences the ABC transporter 
pathway, highlighting its potential as a pivotal area for 
further investigation.

We further explored the differential effects of hypoxia 
on the embryonic liver of TBCs and DLCs by integrat-
ing transcriptome and metabolome data. All of path-
ways were significantly enriched in metabolic pathways 
by KEGG analysis both under normoxia and hypoxia. 
We found that hypoxia caused changes in liver metabo-
lism of embryonic TBCs and DLCs. No shared path-
ways were significant in both omics analyses of NTBC18 
and NDLC18 groups, while five shared pathways (TCA 
cycle, tyrosine metabolism, caffeine metabolism, butano-
ate metabolism, and arginine and proline metabolism) 
were significant when comparing HTBC18 and HDLC18 
groups. DEGs PCK1 and SUCLA2 and metabolites 
malate and succinate were enrichened and related to the 
TCA cycle. PCK1 is the first rate-limiting enzyme in liver 
gluconeogenesis and catalyzes the conversion of oxalo-
acetate to phosphoenolpyruvate; hypoxia can upregu-
late PCK1 to trigger gluconeogenesis to glycogenolysis 
[34, 35]. SUCLA2 encodes the TCA cycle enzyme ADP-
specific succinate-CoA ligase (β subunit) and is critical 

Table 1  Differentially regulated metabolites (DRMs) between 
HTBC18 and HDLC18 groups annotated to “carbohydrate 
metabolism” and “amino acid metabolism” by KEGG enrichment 
analysis (P-value < 0.05)
Pathway Map ID Map Name DRMs
Carbohydrate 
metabolism

gga00620 Pyruvate 
metabolism

Malate, Pyruvaldehyde,
S-lactoylglutathione, 
Succinate

gga00640 Propanoate 
metabolism

Dl-a-hydroxybutyric 
acid, Propionic acid,
Pyruvaldehyde, 
Succinate

gga00020 Citrate cycle 
(TCA cycle)

Malate, Succinate

gga00650 Butanoate 
metabolism

3-hydroxybutyric acid,
Maleic acid, Succinate

Amino acid 
metabolism

gga00330 Arginine 
and proline 
metabolism

Creatinine, Phospho-
creatine, Creatine, 
S-adenosylmethionine

gga00350 Tyrosine 
metabolism

Maleic acid, Succinate,
3-methoxytyramine,
3,4-dihydroxy-l-phe-
nylalanine
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for mitochondrial succinate-CoA ligase and nucleotide 
diphosphokinase activities [36]. SUCLA2 can also regu-
late the succinylation and enzyme activity of glutaminase 
under oxidative stress, thereby enhancing the level of glu-
tamine metabolism [37].

DEGs ALDH18A1 and PYCR1 and metabolites cre-
atine and phosphocreatine enriched in arginine and 
proline metabolism are of concern. ALDH18A1 encodes 
a bifunctional ATP- and NADPH-dependent mitochon-
drial enzyme which catalyzes the reduction of glutamic 

acid to delta1-pyrroline-5-carboxylate, a key step in 
de novo synthesis of proline and arginine [38]. PYCR1 
encodes mitochondrial pyrroline 5-carboxylate reduc-
tase 1 that catalyzes the NADPH-dependent conversion 
of pyrroline-5-carboxylate to proline; PYCR1 activity is 
increased under hypoxia [39]. In addition, DEG CPS1, 
enriched in carbon metabolism and the biosynthesis of 
amino acids, also deserves attention. Although no shared 
pathway was significant in both omics analyses, CPS1 
encodes the mitochondrial enzyme that catalyzes the 

Fig. 5  The top 30 differentially expressed genes (DEGs) found by gene ontology (GO) analysis, the top 20 DEGs found by KEGG pathway analysis, and the 
transcription factor analysis between TBCs and DLCs under normoxia and hypoxia. (A and C) The top 30 DEGs from GO analysis and the top 20 enriched 
pathways for DEGs between HTBC18 and HDLC18 groups. (B and D) The top 30 DEGs from GO analysis and top 20 enriched pathways for DEGs between 
NTBC18 and NDLC18 groups. Transcription factor analysis between TBCs and DLCs under hypoxia (E) and normoxia (F). BP: biological process; CC: cellular 
component; MF: molecular function
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synthesis of carbamoyl phosphate from ammonia and 
bicarbonate and also represents a core mitochondrial 
nucleoid protein [40]. These results suggest that not only 
amino acid metabolism, but mitochondria should be the 
focus of our future research under hypoxia.

Among the significantly different pathways, few are 
noteworthy, such as lipid metabolism. Both TBCs and 
DLCs had enriched steroid hormone biosynthesis path-
ways in both normoxia and hypoxia, but the related 

metabolites were different. Progesterone and 17alpha-
hydroxyprogesterone were enriched when comparing 
NTBC18 and NDLC18 groups, while cholesteryl sulfate 
and 5alpha-androstan-17beta-ol-3-one were enriched 
when comparing HTBC18 and HDLC18 groups. 
20-Hydroxyarachidonic acid was enriched in the circu-
latory system of NTBC18 and NDLC18 groups, while 
adenosine was enriched in the circulatory system of 
HTBC18 and HDLC18 groups. 20-Hydroxyarachidonic 

Fig. 6  Integrative metabolomic-transcriptomic analysis of TBCs and DLCs under normoxia and hypoxia. Venn diagram of pathways involving differential 
genes and differential metabolites between HTBC18 and HDLC18 groups (A) and between NTBC18 and NDLC18 groups (B). The top 10 shared pathways 
of the largest number of DEGs and DRMs between HTBC18 and HDLC18 groups (C) and between NTBC18 and NDLC18 groups (D). (E) The significantly 
enriched and shared KEGG pathways of DEGs and DRMs between HTBC18 and HDLC18 groups via KEGG enrichment analysis
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acid is an effective vasoconstrictor and plays a complex 
role in hypertension, the automatic regulation of cerebral 
blood flow, and blood-brain barrier (BBB) integrity [41]. 
Adenosine is a ubiquitous endogenous regulator whose 
main function is to maintain cell and tissue homeosta-
sis under pathological and stressful conditions and is a 
potent modulator of inflammation [42]. These results 
indicate that although similar pathways are enriched 
under both normoxia and hypoxia, there may be differ-
ences in the regulation mode between TBCs and DLCs. 
The synthesis and degradation of ketone bodies was 
enriched only under hypoxia. Ketone bodies, a group of 
fuel molecules that act as an alternative energy source 
to glucose, are a consequence of lipid metabolism [43]. 
DEGs PLA2G4A and DGKQ and metabolite 1-stearoyl-
sn-glycerol 3-phosphocholine (LPC (18:0)) were enriched 
in glycerophospholipid metabolism when comparing 
HTBC18 and HDLC18 groups and ALDH9A1, ADH1C, 
ACADSB, and 4-piperidinecarboxamide were enriched 
in fatty acid degradation when comparing NTBC18 and 
NDLC18 groups. These results indicate that hypoxia dif-
ferentially alters lipid metabolism pathways in TBCs and 
DLCs.

Conclusions
Through transcriptome and metabolome analysis, we 
focused on hypoxia adaptation profiling of the embryonic 
liver under hypoxia on day 18 of development in TBCs 
and DLCs. In summary, our results showed that in this 
developmental stage, TBCs and DLCs had different gene 
and metabolism expression patterns. The main differ-
ences were in membrane transport and signal transduc-
tion under normoxia and energy metabolism and amino 
acid metabolism under hypoxia. While under both nor-
moxia and hypoxia lipid metabolism was enriched, the 
DRMs and metabolic pathways were different. More 
importantly, vital candidate genes PCK1, SUCLA2, and 
CPS1 and metabolic pathways including the TCA cycle 
and arginine and proline metabolism were identified that 
warranted further investigation; subsequent research 
could focus on mitochondria. These above results pro-
vide a basis for uncovering the molecular regulation 
mechanisms of hypoxia adaptation in TBCs and a poten-
tial application of hypoxia adaptation research for other 
animals living on the Qinghai-Tibet plateau. These results 
may even contribute to the study of diseases caused by 
hypoxia.

Materials and methods
Sample collection
Fertilized eggs of TBCs and DLCs (100 eggs of each 
breed per condition) collected at the Experimental 
Chicken Farm at China Agricultural University (CAU) 
were transferred to normoxia (21% O2) and hypoxia (13% 

O2) incubators and the temperature was maintained 
at 37.8  °C with a relative humidity of 60% according to 
our previous article [27]. Day 18 aligns with the major 
physiological transition during embryonic development, 
specifically the switch in respiratory patterns [44, 45], 
making it a key period for studying the impact of oxygen 
levels on hatchability and survival [46, 47]. Therefore, we 
focused our investigation on day 18 embryos. Liver tissue 
was collected on day 18 of embryonic development and 
frozen in liquid nitrogen immediately for future analysis, 
as previously described [27].

RNA extraction and transcriptome analysis
Total RNA was isolated from each liver sample using 
TRIzol® Reagent following the guidelines provided by the 
manufacturer (Tiangen, Beijing, China). Subsequently, 
RNA samples were analyzed based on the A260/A280 
absorbance ratio using a Nanodrop ND-2000 system 
(Thermo Scientific, Waltham, MA, USA). The integrity 
of RNA was evaluated with an Agilent Bioanalyzer 4150 
system (Agilent Technologies, Santa Clara, CA, USA).

Paired-end libraries were prepared using an ABclonal 
mRNA-seq Lib Prep Kit (Abclonal, Wuhan, China) fol-
lowing the manufacturer’s instructions. The library prep-
arations were sequenced on an Illumina Novaseq 6000 
(Illumina, San Diego, CA, USA) and 150  bp paired-end 
reads were generated. Raw data (raw reads) of the fastq 
format were processed through in-house perl scripts 
removing reads containing adapter sequences, reads 
containing ploy-N, and low-quality reads from the raw 
data. The reference genome (ftp://ftp.ensembl.org/pub/
release-108/fasta/gallus_gallus/dna/) and gene model 
annotation files (ftp://ftp.ensembl.org/pub/release-108/
gtf/gallus_gallus/) were downloaded from genome web-
sites directly. The reference genome underwent indexing 
before aligning the paired-end clean reads using Hisat2 
v2.0.5 [48]. Subsequently, FeatureCounts v1.5.0-p3 was 
employed to enumerate the reads mapped to individual 
genes [49]. Calculation of the Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) for each 
gene was performed based on the gene length and the 
corresponding mapped read counts. Differential expres-
sion analysis was performed using the DESeq2 R package 
(1.16.1). Genes with Padj < 0.05 and|log2 fold change| >1 
were considered to be differentially expressed [50].

Enrichment and transcription factor analysis
The clusterProfiler R software package was used for 
Gene Ontology (GO) function enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses [51]. For the transcription factor 
analysis, we annotated DEGs using the AnimalTFDB 
database (http://bioinfo.life.hust.edu.cn/AnimalTFDB/). 

ftp://ftp.ensembl.org/pub/release-108/fasta/gallus_gallus/dna/
ftp://ftp.ensembl.org/pub/release-108/fasta/gallus_gallus/dna/
ftp://ftp.ensembl.org/pub/release-108/gtf/gallus_gallus/
ftp://ftp.ensembl.org/pub/release-108/gtf/gallus_gallus/
http://bioinfo.life.hust.edu.cn/AnimalTFDB/
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Differentially expressed transcription factors were cat-
egorized based on their transcription factor families.

Metabolite extractions and LC-MS/MS analysis
Liver tissues were cut on dry ice (~ 80  mg) into 2 mL 
Eppendorf tubes and were homogenized with 200 μL of 
H2O and five ceramic beads. The homogenized solution 
underwent metabolite extraction by adding 800 μL of a 
methanol/acetonitrile mixture (1:1, v/v). Following cen-
trifugation for 20 min at 14,000 g and 4 °C, the resulting 
supernatant was dried using a vacuum centrifuge. Sub-
sequently, for LC-MS analysis, the dried samples were 
reconstituted in 100 μL of an acetonitrile/water solvent 
(1:1, v/v) and then centrifuged at 14,000 g for 15 min at 
4  °C. The resultant supernatant was used for injection 
[52].

LC-MS/MS analysis was previously described in the 
published work [53]. In brief, the analysis was performed 
using a UHPLC (Vanquish UHPLC, Thermo Fisher Sci-
entific, Waltham, MA, USA) coupled to an Orbitrap 
(Shanghai Applied Protein Technology Co., Ltd, Shang-
hai, China). Hydrophilic interaction liquid chromatogra-
phy separation was conducted using a 2.1 mm x 100 mm 
ACQUIY UPLC BEH Amide 1.7  μm column (Waters, 
Wexford, Ireland). Subsequently, sample solution was 
aerosolized in both positive and negative modes of elec-
trospray ionization (ESI). Mass spectrometry (MS) data 
were analyzed using the freely available XCMS soft-
ware. The collection of Algorithms of MEtabolite pRo-
file Annotation was employed for annotation isotopes 
and adducts. Only variables with more than 50% of their 
nonzero measurement values in at least one group were 
retained from the extracted ion features. Metabolite 
compound identification was executed by comparing the 
accuracy of the m/z value.

Statistical analysis
Statistical significance was assessed using one-way analy-
sis of variance (ANOVA) to test homogeneity of vari-
ances via Levene’s test, followed by a Student’s t-test. 
Prism 7.0 (GraphPad Software Inc., San Diego, CA, USA) 
was employed for calculations and figure plotting. Dif-
ferences were considered to be statistically significant 
for P-values < 0.05. Scale bars represented the standard 
error of the mean (SEM) from at least three separate 
experiments.

Following sum-normalization, the processed data were 
analyzed by R package (ropls), as previously described 
[54]. This involved multivariate data analysis, including 
Pareto-scaled PCA and OPLS-DA. Then, the robust-
ness of the model was evaluated through 7-fold cross-
validation and response permutation tests. The variable 
importance in the projection (VIP) value of each vari-
able in the OPLS-DA model was calculated to indicate 

its contribution to the classification. A Student’ s t test 
was applied to determine the significance of differences 
between two groups of independent samples. Variables 
with VIP > 1 and P-value < 0.05 were considered to screen 
for significantly changed metabolites. Pearson’s correla-
tion analysis was performed to determine the correlation 
between two variables.
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