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Abstract
Background Captivity and artificial food provision are common conservation strategies for the endangered golden 
snub-nosed monkey (Rhinopithecus roxellana). Anthropogenic activities have been reported to impact the fitness of R. 
roxellana by altering their gut microbiota, a crucial indicator of animal health. Nevertheless, the degree of divergence 
in gut microbiota between different anthropogenically-disturbed (AD) R. roxellana and their counterparts in the wild 
has yet to be elucidated. Here, we conducted a comparative analysis of the gut microbiota across nine populations 
of R. roxellana spanning China, which included seven captive populations, one wild population, and another wild 
population subject to artificial food provision.

Results Both captivity and food provision significantly altered the gut microbiota. AD populations exhibited 
common variations, such as increased Bacteroidetes and decreased Firmicutes (e.g., Ruminococcus), Actinobacteria 
(e.g., Parvibacter), Verrucomicrobia (e.g., Akkermansia), and Tenericutes. Additionally, a reduced Firmicutes/
Bacteroidetes ratiosuggested diminished capacity for complex carbohydrate degradation in captive individuals. The 
results of microbial functional prediction suggested that AD populations displayed heightened microbial genes 
linked to vitamin and amino acid metabolism, alongside decreased genes associated antibiotics biosynthesis (e.g., 
penicillin, cephalosporin, macrolides, and clavulanic acid) and secondary metabolite degradation (e.g., naphthalene 
and atrazine). These microbial alterations implied potential disparities in the health status between AD and wild 
individuals. AD populations exhibited varying degrees of microbial changes compared to the wild group, implying 
that the extent of these variations might serve as a metric for assessing the health status of AD populations. 
Furthermore, utilizing the individual information of captive individuals, we identified associations between variations 
in the gut microbiota of R. roxellana and host age, as well as pedigree. Older individuals exhibited higher microbial 
diversity, while a closer genetic relatedness reflected a more similar gut microbiota.

Conclusions Our aim was to assess how anthropogenic activities and host factors influence the gut microbiota of R. 
roxellana. Anthropogenic activities led to consistent changes in gut microbial diversity and function, while host age 
and genetic relatedness contributed to interindividual variations in the gut microbiota. These findings may contribute 
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Background
The golden snub-nosed monkey (Rhinopithecus roxel-
lana) is endemic to the temperate forests of the moun-
tainous highlands (1,500–3,400  m above sea level) in 
central and southwestern China. Their diet includes 
buds, flowers, leaves, bark, and lichen [1]. Classified as 
Endangered on the International Union for Conservation 
of Nature Red List [2], this species holds the status of a 
first-class national species in China, underscoring its sig-
nificance in conservation efforts. Captive breeding stands 
as a crucial strategy for the preservation of this valuable 
species, with over 50 organizations housing captive R. 
roxellana by 2019 [3]. Records from 1955 to 2016 indi-
cate 898 captive individuals, of which 673 were born in 
captivity [4]. Despite dedicated efforts to maintain and 
improve the health and fitness of captive individuals in 
recent decades, they remain susceptible to gastrointesti-
nal diseases, such as diarrhea and dyspepsia, compared 
to their wild counterparts [5–7]. This susceptibility may 
be attributed to dietary and environmental changes 
associated with captivity. Additionally, certain wild R. 
roxellana populations have been subjected to artificial 
food provision as a conservation measure. Although less 
intrusive, this anthropogenic disturbance may also exert 
adverse effects on the health of wild individuals [8, 9]. 
Therefore, elucidating the physiological changes induced 
by these anthropogenic activities, such as captivity and 
food provision, is essential for the effective conservation 
and breeding of this precious animal.

The gut microbiome plays a pivotal role in the health, 
nutrition, and physiology of wildlife [10, 11], includ-
ing various endangered animals both in the wild and 
in captivity [12, 13]. Captivity has been documented to 
induce significant alterations in the gut microbiota of 
non-human primates, such as chimpanzees, gorillas, 
red-shanked doucs, and Japanese macaques [14–16]. 
Some of these microbial changes are associated with an 
elevated risk of gastrointestinal diseases in captive non-
human primates [17–19]. This highlights the potential 
of gut microbial diversity and composition as crucial 
physiological indicators for assessing the health status of 
non-human primates [20]. R. roxellana belongs to colo-
bine monkeys. This group of animals have fermenting 
forestomaches that are crucial for digestion and nutri-
tion [21], underscoring the importance of studying the 
variations and susceptibility in their gut microbiota [22]. 
Recent attention has been devoted to exploring the gut 
microbial community structure and functions of R. roxel-
lana [23–28]. Previous studies have shown that captivity 

significantly alters the gut microbiota of R. roxellana 
[23], with captive individuals exhibiting lower micro-
bial alpha-diversity and reduced Firmicutes/Bacteroide-
tes ratios [29, 30]. These changes are accompanied by 
increased genes related to simple carbohydrate digestion, 
vitamin biosynthesis, and amino acid biosynthesis from 
carbohydrate intermediates, alongside decreased capac-
ity for fatty acid production and fiber digestion [29, 30]. 
Moreover, artificial food provision has been found to 
impact the gut microbiota of wild R. roxellana, resulting 
in lower microbial alpha-diversity [8]. However, com-
parative studies involving multiple artificial populations 
are limited, leaving uncertainty about the commonal-
ity of these microbial changes in anthropogenically-dis-
turbed (AD) individuals, encompassing both captive 
and provision-fed individuals. Given the crucial role of 
gut microbiota in host health, there is an urgent need 
for a comprehensive evaluation of gut microbial traits 
across different captive populations in China, especially 
in understanding the extent of deviation from their wild 
counterparts. This not only helps identify “at risk” popu-
lations, but also facilitates the optimization of the captive 
conditions.

Beyond its significance for species conservation, cap-
tive R. roxellana populations present an opportunity to 
investigate the determinants of the gut microbiota in 
non-human primates, given the well-documented physi-
ological traits (e.g., age and gender) and pedigree rela-
tionships. Physiological factors, including age and gender, 
have been identified as contributors in shaping the gut 
microbiota of non-human primates, including R. roxel-
lana [25, 31–33]. However, the significance of these phys-
iological factors across multiple populations with diverse 
dietary and environmental conditions remains unclear. 
While host genetic effects on the gut microbiome are 
nearly universal [34–37], the influences of pedigree rela-
tionships on the gut microbiota of primates is a topic of 
debate. Although many primate studies found no strong 
evidence for kinship effects on gut microbiomes [38–40], 
a recent extensive study in baboons revealed that individ-
uals inherit a significant portion of their gut communi-
ties from their ancestors [41]. Maternal relatives, whether 
residing in the same or different groups, exhibited more 
similar microbiota [42].

In this study, we conducted a comparative analy-
sis of the gut microbiota in one purely wild population, 
one wild population subject to artificial food provision 
(anthropogenic disturbance), and seven captive popula-
tions of R. roxellana. Our hypotheses were as follows: (1) 

to the establishment of health assessment standards and the optimization of breeding conditions for captive R. 
roxellana populations.
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The gut microbiota of AD populations, while displaying 
variations among themselves, is expected to show shared 
compositional and functional changes in comparison 
to their wild counterparts. This convergence may result 
in an increased resemblance to the gut microbiota of 
humans, as observed in other captive non-human pri-
mates [14, 15]. (2) Host physiology and pedigree relation-
ships are expected to exert significant impacts on the gut 
microbiota of captive individuals. We aim for this study 
to provide insights into the health status of various cap-
tive R. roxellana populations in China, and elucidating 
the drivers of gut microbiota variations across popula-
tions may offer valuable clues to optimize breeding con-
ditions of the captive R. roxellana.

Methods
Sample collection and host information
We obtained permission from Wanglang National Nature 
Reserve, Chengdu Zoo & Chengdu Research Institute 
of Wildlife, Beijing Zoo, Beijing Wildlife Park, Nanjing 
Hongshan Forest Zoo, Shanghai Wild Animal Park, and 
Shanghai Zoo, and Hangzhou Zoo to collect the feces 
samples from R. roxellana. Fresh fecal samples were 
promptly collected after defecation using a sterile spoon, 
focusing on the inner part to prevent contamination. The 
samples were preserved in liquid nitrogen until DNA 
extraction. No other animal experiments were conducted 
in this study.

We collected fecal samples from wild population 
without anthropogenic disturbance (wild, n = 10) in the 
Wanglang National Nature Reserve (103°16′E, 32°91′N) 
(Fig. 1a). Additionally, we collected fecal samples from a 
wild population with artificial food provision (wild-fed, 
n = 14) in Huangyangguan County, Mianyang City, Sich-
uan province, China (approximate 104°22′E, 32°63′N), 
near to the reserve.

For captive samples, we collected 7, 3, 24, 6, 33, 17, and 
9 fecal samples from Chengdu Zoo & Chengdu Research 
Institute of Wildlife (CDZ), Beijing Zoo (BJZ), Beijing 
Wildlife Park (BJWP), Nanjing Hongshan Forest Zoo 
(NJZ), Shanghai Wild Animal Park (SHWP), and Shang-
hai Zoo (SHZ), and Hangzhou Zoo (HZZ), respectively 
(Fig.  1a). In each zoo or park, keepers were responsible 
for feces collection and ensured individual identifica-
tion, with aach individual contributing one sample. The 
sex and age structure of the hosts is depicted in Fig. 1b. 
The animal pedigree relationship is illustrated in a net-
work (Fig. 1c), with kinship indices computed for pairs of 
individuals to denote their genetic relatedness. Specifi-
cally, for any two individuals, we identified all common 
ancestors, revealing the genetic paths connecting them. 
The relatedness of each genetic path was calculated fol-
lowing the formula (1/2)N, where N was the total edges in 
this path. The sum of the relatedness of all the paths was 

the kinship index of these two individuals. Similar meth-
ods were applied to calculate the maternal relatedness, 
but only paths consisting of maternal edges were consid-
ered. The sample collection process has been seamlessly 
integrated into routine animal management, causing no 
harm to the animals and imposing no additional stress. 
The captive and Wild-fed individuals were considered as 
AD groups. Detailed host information for the samples is 
provided in Table S1 (Supplementary data 1).

DNA extraction, PCR amplification, and sequencing
We performed fecal DNA extraction with MoBio DNeasy 
PowerSoil DNA isolation kit (Qiagen, Germany). We 
checked the quality of the DNA with a NanoDrop 2000 
Spectrophotometer (Thermo Scientific, United States), 
and amplified the V4–V5 region of bacterial 16 S rRNA 
gene with 515  F (5-GTGYCAGCMGCCGCGGTA-3) 
and 909R (5-CCCCGYCAATTCMTTTRAGT-3) prim-
ers. We constructed the PCR reaction system following 
the methods described previously [43]. We used blank 
controls in DNA extraction and PCR amplification, and 
observed no amplification band. We sequenced the prod-
ucts on an Illumina Novaseq 6000 platform. We analyzed 
raw reads with QIIME Pipeline1 (Version 1.7.0) [44]. In 
the trimming analysis, we used Usearch for chimerism 
check to remove low-quality sequences, flash for splic-
ing, and trimmomatic for quality control with default 
parameters [45]. We defined operational taxonomic units 
(OTUs) as sharing > 97% sequence identity, and classified 
representative sequences against the SILVA132 database 
[46]. Then, we obtained OTU tables containing taxon 
information (e.g., Phylum, Class, Order, Family, and 
Genus). We calculated the alpha- (i.e., observed OTU, 
Shannon index, and PD-whole-tree index) and beta-
diversity indices (i.e., weighted and unweighted UniFrac 
distances) with QIIME pipeline. We predicted microbial 
functions by Tax4Fun2 [47], based on KEGG database 
[48–50]. We uploaded sequencing data and relevant files 
to Genome Sequence Archive (https://ngdc.cncb.ac.cn/
gsub/) with the accession number CRA011956 (https://
ngdc.cncb.ac.cn/gsa/s/y0jKJ234). The human data were 
obtained from a study conducted on volunteers from 
George Washington University Foggy Bottom campus 
area [51].

Statistical analyses
Statistical analyses were conducted using IBM SPSS v21.0 
(IBM, Armonk, NY, USA) and R [52]. Graphs were gen-
erated using Graphpad prism 5, ArcGis, or ggplot2, an 
R package [53]. Intergroup differences in alpha-diversity 
were assessed using Kruskal-Wallis or Mann-Whitney U 
tests. Principal coordinates analyses (PCoA) were per-
formed to visualizze the similarity in bacterial composi-
tion between samples, and PERMANOVA was employed 

https://ngdc.cncb.ac.cn/gsub/
https://ngdc.cncb.ac.cn/gsub/
https://ngdc.cncb.ac.cn/gsa/s/y0jKJ234
https://ngdc.cncb.ac.cn/gsa/s/y0jKJ234
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to test potential differences in bacterial composition 
between animal populations. It is worth noting that the 
gut microbiota of the newly born individual (XZ73 from 
CDZ, approximate 30 days old) exhibited substantial dif-
ferences compared to other samples (Fig. 1a − b) and was 
therefore excluded from subsequent analyses.

To elucidate the impact of anthropogenic activities 
on the gut microbiota of R. roxellana, we performed 
pairwise differential analyses (Mann-Whitney U test) 

between each AD and the wild populations. The over-
lap of differential taxa between comparisons was visual-
ized using UpSetR [54]. We considered differential taxa 
shared by more than six pairwise comparisons as consis-
tent differences between the wild and AD populations. 
Indicative microbial features of each populations were 
identified using indicspecies (a R package) [55]. Similar 
analytical approaches were applied for assessing micro-
bial functional differences.

Fig. 1 Sampling information. (a) Geographic distribution and sample sizes of the nine R. roxellana populations. The eight anthropogenically-disturbed 
(AD) populations included seven captive populations (NJZ, SHZ, SHWP, HZZ, CDZ, BJZ, and BJWP) and one wild population with artificial food provision 
(wild-fed). One wild population without anthropogenic activities (wild) is used as a control. (b) Age and sex structure of the hosts. No differences in ages 
were detected between animal sources or genders (p > 0.05, Scheirer–Ray–Hare test). (c) Pedigree relationship network of the hosts
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We examined the potential effects of host physiological 
traits (i.e., gender and age) on gut microbial beta-diver-
sity using PERMANOVAs of vegan package. Given the 
significant differences in microbial composition between 
animal populations, we also conducted two-factor PER-
MANOVAs that considered both the animal sources and 
host physiological traits to assess the contributions of 
host physiological traits to the total variances. Since age 
emerged a significant factor, we conducted Spearman 
correlation analyses to identify bacterial taxa that varied 
with host ages.

To test whether hosts with closer genetic or maternal 
relatedness shared more similar gut microbiota, we con-
ducted Spearman correlations to examine the potential 
associations between microbial similarity distances and 
genetic or maternal relatedness. Pairwise relationships 
with a genetic or maternal relatedness of 0 were excluded 
from the correlation analyses. This is because animals 
from different populations consistently have a genetic 
and maternal relatedness of 0, and the substantial inter-
population dissimilarity in gut microbiota may lead to 
spurious associations between microbial composition 
and genetic and maternal relatedness.

Results
Differences in gut microbiota between R. roxellana 
populations
The predominant gut bacteria in R. roxellana include Fir-
micutes, Bacteroidetes, and Spirochaetes at the phylum 
level, Ruminococcaceae UCG-005, Rikenellaceae RC9 
gut group, Prevotella 7, Treponema 2, and Prevotella 1 
at the genus level (Fig.  2a − b). Among the groups, indi-
viduals from BJZ and CDZ exhibited the lowest and high-
est gut microbiota alpha-diversity, respectively (p < 0.05, 
one-way ANOVA and S.N.K post-hoc test; Fig. 2c). PER-
MANOVA results indicated significant differences in 
microbial beta-diversity (weighted UniFrac distances) 
between any two populations (q < 0.05, BH correction) 
(Fig. 2d). The PCoA scatter plot (based on weighted Uni-
Frac distances) clearly differentiated samples from differ-
ent populations, with the wild samples notably separated 
from the AD ones (Fig. 2e − f ). The wild group exhibited 
the highest number of indicative bacterial taxa (e.g., 
Actinobacteria, Verrucomicrobia, and Akkermansia), 
followed by HZZ (e.g., Negativicutes and Selenomonad-
ales, and Prevotella 7), BJZ (e.g., Rikenellaceae), NJZ (e.g., 
rumen bacterium NK4B4), BJWP (e.g., Ruminobacter), 
wild-fed (e.g., Oxalobacter) and CDZ (e.g., Candidatus 
Soleaferrea massiliensis), with the lowest in SHWP pop-
ulations (Figure S1). These findings suggest that the gut 
microbiota in a purely wild environment differed from 
that in environments with anthropogenic disturbance.

Effects of anthropogenic activities on the gut microbiota of 
captive R. roxellana
To uncover microbial changes associated with anthro-
pogenic activities (i.e., captivity and food provision), we 
performed pairwise differential analyses between each 
AD and the wild group (Fig. 3a). Subsequently, we identi-
fied the bacteria shared by more than six differential taxa 
pools (p < 0.05, Mann-Whitney U test) as consistently 
affected by anthropogenic activities (Fig.  3a − b). These 
included five phyla, among which Firmicutes, Teneri-
cutes, Verrucomicrobia, and Actinobacteria decreased in 
AD populations, while Bacteroidetes increased (Fig. 3c). 
A negative correlation was observed between the abun-
dances of Firmicutes and Bacteroidetes across groups 
(Fig. 3d), and all AD populations, especially SHWP and 
BJZ groups, exhibited a reduced Firmicutes/Bacteroide-
tes ratio (Fig. 3e). At the genus level, AD populations dis-
played increased Prevotellas, Bacteroids, Allpprevotella, 
and Alistipes, along with decreased Christensenel-
laceae R-7 group, Akkermansia, Parvibacter, Eschier-
ichia-Shigella, and members of Ruminococcaceae (e.g., 
Ruminococcus) (Fig. 3f and S2). Notably, an elevation in 
Bacteroidetes and Bacteroids abundance, coupled with 
a decline in Firmicutes abundance, rendered the gut 
microbiota of captive individuals more similar to that 
of humans (Fig. 3c − e and S2). Functional analyses indi-
cated that the gut microbiota of AD individuals were 
enriched in genes involved in overall metabolism (KEGG 
level I) and cofactors and vitamins metabolism (KEGG 
level II) (Fig. 4a − b). At level III, AD populations showed 
increased vitamin B6 metabolism and alanine, aspartate 
and glutamate metabolism, while they lost metabolic 
activities in antibiotics biosynthesis (e.g., penicillin and 
cephalosporin, isoflavonoid, 12-, 14- and 16-membered 
macrolides, nonribosomal peptides, and clavulanic acid) 
and secondary compounds degradation (e.g., naphtha-
lene, atrazine, and caffeine) (Fig. 4c). In addition to meta-
bolic functions, the gut metagenomes of AD populations 
had fewer genes involved in cell motility (i.e., bacterial 
chemotaxis and flagellar assembly) (Fig. 4d − e).

Effects of host factors on the gut microbiota of captive R. 
roxellana
Host gender showed only marginally significant effects on 
the gut microbial alpha- and beta-diversity (p = 0.05 − 0.1 
in two-way PERMANOVA; Fig. 5a − b and S3a − c), while 
host age was significantly associated with gut micro-
bial diversity indices (p < 0.05 in both one-way and two-
way PERMANOVA; Fig. 5c − d and S3d − f ). The relative 
abundance of Elusimicrobium, Oscillibacter, OTU 822 
(belonging to Oscillibacter), and OTU 4334 (belonging 
to Ruminococcaceae UCG-002) increased with host age 
(Figure S2g). The relative abundance of microbial genes 
involved in sesquiterpenoid and triterpenoid biosynthesis 
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also increased with host age (Figure S3h). We calcu-
lated the genetic and maternal relatedness of the host 
and found a significant positive correlation between gut 
microbial similarity and host genetic relatedness (Fig. 5e), 
but not for maternal relatedness (Fig. 5f ).

Discussion
Anthropogenic activities consistently impact the gut 
microbiota of R. roxellana
While the AD populations exhibiting significant differ-
ences in gut microbial composition among themselves, 
their distinctions from the wild R. roxellana populations 

Fig. 2 Comparison of the microbial diversity between different populations. (a − b) Bacterial composition at the phylum (a) and genus (b) levels. (c) 
Variation in microbial alpha-diversity (Shannon index) between groups. Different letters denote significant differences at a threshold of p < 0.05 (one-way 
ANOVA and S.N.K post-hoc test). (d) Heatmap illustrating the weighted UniFrac distances between samples from different populations. The color denotes 
the results of pairwise PERMANOVA on the beta-diversity (BH correction). The greater the intensity of red color, the more pronounced the statistical 
significance of the difference. (e − f ) PCoA scatter plot (e) and area plot (f) showing the similarity in microbial composition (based on weighted UniFrac 
distances) between samples from different populations
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Fig. 3 Differential analyses of gut microbial composition between captive and wild individuals. (a) Schematic map illustrating the workflow of differential 
analyses. Initial comparisons on gut microbiota were made between each AD population and the wild one population. This resulted in eight differential 
pools, with each differential microbe met the threshold of p < 0.05 (Mann-Whitney U test). Subsequently, differential microbes shared by at least six pools 
were considered consistently different in abundance between AD and wild individuals. (b) Upset plot displaying the numbers of microbes in the eight 
differential pools. (c − e) Humanized gut microbiota of captive populations at the phylum level. (c) Bar plot showing the proportions of the screened 
differential bacterial phyla. (d) Quantitative relationship between Firmicutes and Bacteroidetes across groups. (e) Ratios of Firmicutes to Bacteroidetes. 
Different letters denote significant difference between groups (p < 0.05, one-way ANOVA and S.N.K post-hoc test). (f) Heatmap depicting the variations in 
significant differential bacterial genera across groups. The average abundances of each bacterial genus were scaled to 0 − 1, where black and red colors 
represent 0 and 1, respectively. The colors of the row names denote the phyla

 



Page 8 of 14Liu et al. BMC Genomics          (2024) 25:148 

were more pronounced (Fig. 2d − f and S1). This empha-
sizes anthropogenic activities as significant drivers of gut 
microbiota variations in this study. In line with prior stud-
ies [29, 30], we observed increased proportions of Bacte-
roidetes and decreased proportions of Firmicutes (e.g., 
Ruminococcus), Actinobacteria (e.g., Parvibacter), Ver-
rucomicrobia (e.g., Akkermansia), and Tenericutes in the 

AD populations, resulting in a reduced Firmicutes/Bac-
teroidetes ratio (Fig. 3). A higher Firmicutes/Bacteroide-
tes ratio of the gut microbiota is linked to superiority 
in extracting energy from the diet [56]. Firmicutes (e.g., 
Ruminococcus), Actinobacteria (e.g., Bifidobacterium), 
and Verrucomicrobium (e.g., Akkermansia) phyla are 
associated with breaking down complex carbohydrates 

Fig. 4 Differential analyses of gut microbial function between captive and wild individuals. The analysis flow is the same as that used for microbial com-
positional differences. (a − b) Major differential KEGG items between captive and wild gut microbiota at hierarchical levels 1 (a) and 2 (b). Different letters 
denote significant difference between groups (p < 0.05, one-way ANOVA and S.N.K post-hoc test). (c) Heatmap presenting the main differential KEGG 
metabolic pathways at hierarchical level 3. The average abundances of each bacterial genus were scaled to 0 − 1, where black and red colors represent 0 
and 1 respectively. Red and green colors of the row names denote higher and lower, respectively, in the wild gut microbiota. (d − e) Main differential path-
ways other than metabolism at level 3. Different letters denote significant difference between groups (p < 0.05, one-way ANOVA and S.N.K post-hoc test)
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(e.g., cellulose and other insoluble polysaccharides) [57, 
58]. Although Bacteroidetes (e.g., Prevotella and Bacte-
roides) also contribute to fiber utilization [59, 60], their 
primarily target soluble polysaccharides [61]. Studies 
show that coarse fiber, rather than finely ground fiber, 
increases the intestinal Firmicutes/Bacteroidetes ratio, 
reducing diarrhoea in piglets [62]. These findings suggest 
that captive and artificially fed R. roxellana populations 
may have a diminished capacity for coarse fiber utiliza-
tion, possibly due to the loss of fiber diversity in their diet. 
Humanization of gut microbiota is a common occurrence 
in captive non-human primates and other mammals [14, 
15, 63]. Our results suggest that this pattern holds true 
for R. roxellana as well. For instance, Bacteroides, a pre-
dominant genus in the human gut microbiota [51], exhib-
ited a higher relative abundance in the gut microbiota of 

captive populations compared to the wild group (Figure 
S2).

Functional analyses indicated that AD populations 
exhibited a reduced capacity for antibiotics biosyn-
thesis and the degradation of secondary compounds 
(Figs.  4c and 6). Wild R. roxellana individuals, foraging 
in diverse environments during different seasons, con-
sume buds, bark, and lichen [64]. Lichen and bark are 
significant sources for the Actinobacteria [65–67], bac-
teria responsible for producing a significant portion of 
clinically used antibiotics [68]. In contrast, AD popula-
tions, likely foraging in less diverse environments due to 
artificial food provision, may experience a loss of certain 
microbial functions in their gut. The potential decrease 
in microbial antibiotics biosynthesis in captive individu-
als could contribute to their heightened susceptibility to 

Fig. 5 Associations of host factors (gender, age, and pedigree relationship) with gut microbiota in captive populations. (a − b) PCoA scatter plots showing 
the effects of host gender on gut microbial beta-diversity. Both the single-factor (gender) and two-factor (gender & population) PERMANOVA models 
were constructed to assess the significance of host gender in shaping the gut microbiota. (c − d) PCoA scatter plots showing the effects of host age 
on gut microbial beta-diversity. Both the single-factor (age) and two-factor (age & population) PERMANOVA models were constructed to evaluate the 
significance of host age in shaping the gut microbiota. (e − f) Associations of genetic (e) and maternal (f) relatedness with gut microbiota in captive 
populations. The associations of genetic and maternal relatedness with gut microbial similarity were analyzed using Spearman correlations. Pairwise 
relationships with a genetic or maternal relatedness of 0 were excluded from the correlation analyses to avoid spurious associations caused by large 
inter-population dissimilarity in gut microbiota
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gastrointestinal diseases. Remarkably, the gut microbiota 
of wild populations harbors a greater number of genes 
involved in flagellar assembly compared to AD popula-
tions (Fig. 4d − e). Bacterial antigens associated with fla-
gella have been implicated in colitis and inflammatory 
bowel disease [69]. This contradicts the increased sus-
ceptibility of AD populations to gastrointestinal diseases. 
The “old friends hypothesis” [70] may shed light on this 
discrepancy. Early exposure to specific microbes is essen-
tial for developing a healthy immune system. This inter-
action can modulate host’s immune system, potentially 
diminishing immune or allergic reactions and making 
these microbes less likely to be recognized as pathogenic 
[71]. The abundant flagellar assembly genes in wild indi-
viduals may result from early and prolonged microbe-
host interaction. Conversely, most captive individuals 
being born in captivity may lack early exposure to these 
bacteria, rendering their immune system more reactive 
to exogenous microbes and potentially inducing patho-
logical responses. Further research is needed to validate 
this speculation.

Although all AD populations shared common micro-
bial changes compared to the wild population, the SHWP 
and BJZ populations exhibited the most pronounced 
variations, particularly in the Firmicutes/Bacteroide-
tes ratio and microbial functional changes. In contrast, 
the NJZ and CDZ populations, along with the wild-fed 

population, showed minimal changes in their microbial 
traits, implying a health status similar to that of wild indi-
viduals in terms of microbial symbiosis. If the climatic 
factors can be excluded as significant contributors to 
these differences, the experiences of the NJZ and CDZ 
may offer valuable insights for other organizations.

Drivers of the variations in gut microbiota of R. roxellana
Our findings indicate that artificial food provision can 
impact the gut microbiota of wild R. roxellana, consis-
tent with the observation of previous studies [8, 30]. The 
substantial impact of diet on the gut microbiota has been 
well established in primates and other mammals [17, 37, 
72–78]. Given that captivity inevitably leads to changes 
in the dietary composition of R. roxellana, the significant 
differences in the gut microbiota between captive and 
wild populations may also be partly explained by altera-
tions in their dietary composition.

The gut microbiota of non-human primates may vary 
with host gender and age [33, 79–82]. This is consistent 
with our observations. The difference in microbial com-
position between males and females was marginally sig-
nificant (Fig.  5b). Female R. roxellana tended to have 
higher microbial alpha-diversity in their gut than males 
(Figure S3). Unlike the gender-related variation, the age-
related microbial changes in captive R. roxellana were 
much more significant (Fig. 5c − d). The variation of gut 

Fig. 6 A schematic diagram summarizing the effects of anthropogenic activities and host factors on the gut microbiota of R. roxellana
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microbiota with host ages has been widely reported in 
primates, but the variation trends differ between species. 
Studies on chimpanzees and marmoset suggest that gut 
microbial diversity indices negatively vary with the host 
age [31, 38, 83], while those on R. roxellana and human 
infant indicate positive associations [81, 84]. Our results 
are in line with the results of prior studies on R. roxel-
lana, suggesting microbial colonization in captive R. 
roxellana is an ongoing process. Age-related microbial 
variation in marmoset and rhesus macaques are char-
acterized by decreased Proteobacteria and/or increased 
Firmicutes [31, 80, 85], while in crab-eating macaques 
and humans, it is associated with change in the Fir-
micutes/Bacteroidetes ratio [86, 87]. In this study, we did 
not observe significant microbial changes at the phylum 
level, potentially due to the large variation in the abun-
dances of these phyla between populations. Alterna-
tively, we observed several differential bacterial genera or 
OTU whose abundances increased with host age. These 
included an OTU belonging to Ruminococcaceae, a bac-
terial family whose abundance decreased in the captive 
individuals. These results implied that providing addi-
tional microbial sources (e.g., wild environmental micro-
biota) may promote the establishment of a mature gut 
microbiota of captive R. roxellana.

As anticipated, captive R. roxellana with closer genetic 
relatedness shared more similar gut microbiota (Fig.  6). 
However, we did not observe significant associations 
between maternal relatedness and the gut microbiota. 
These results supported the role of heredity in shap-
ing the gut communities of primates [41]. Therefore, for 
captive populations, we should consider the potential 
effects of inbreeding on the microbial diversity and try to 
avoid microbial homogenization. Instead, efforts should 
be made to enhance genetic and behavioral interactions 
between different populations to improve microbial 
diversity.

There were two major limitations in this study. Firstly, 
the inclusion of only one wild population complicates 
the determination of whether the variances observed 
between wild and captive populations stem from anthro-
pogenic disturbances or merely reflect inherent differ-
ences between populations. Secondly, the functional 
analyses relied on the outcomes of 16  S rRNA gene 
amplicon sequencing. Additional investigations, employ-
ing metagenomics, are imperative to strengthen the 
robustness of the conclusions.

Conclusion
We examined the effects of anthropogenic activities and 
host factors on the gut microbiota of R. roxellana across 
multiple wild and captive populations. The findings 
underscored significant alterations in the gut microbiota 
induced by both captivity and artificial food provision, 

highlighting diet as a primary driver of these changes. 
The AD populations exhibited shared microbial shift, 
characterized by increased Bacteroidetes and decreased 
Firmicutes (e.g., Ruminococcus), Actinobacteria (e.g., 
Parvibacter), Verrucomicrobia (e.g., Akkermansia), and 
Tenericutes, along with a reduced Firmicutes/Bacteroide-
tes ratio. The gut microbiota of AD populations showed 
increased vitamin and amino acid metabolism, while 
decreased antibiotics biosynthesis and secondary metab-
olite degradation. These microbial changes might partly 
explain the heightened gastrointestinal susceptibility of 
captive individuals, with the degree of variation as poten-
tial indicators for assessing the health status of captive 
R. roxellana. For captive individuals, their gut microbial 
variation was driven by host age and genetic background 
(Fig.  6). These findings could aid in the establishment 
of health assessment standards and the optimization of 
breeding conditions for captive populations.
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