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Abstract
Background  Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data 
matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to 
obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in 
the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in 
the dendrogram.

Results  We developed DendroX, a web app that provides interactive visualization of a dendrogram where users 
can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters 
for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R 
or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for 
DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms 
with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive 
chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful 
clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We 
found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has 
its members sharing broad anticancer, anti-inflammatory and antioxidant activities.

Conclusions  DendroX solves the problem of matching visually and computationally determined clusters in a cluster 
heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally 
occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent 
mechanisms.

Keywords  Dendrogram, Cluster analysis, LINCS L1000, Natural medicine

DendroX: multi-level multi-cluster selection 
in dendrograms
Feiling Feng1†, Qiaonan Duan2†, Xiaoqing Jiang1, Xiaoming Kao3* and Dadong Zhang2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10048-0&domain=pdf&date_stamp=2024-1-31


Page 2 of 9Feng et al. BMC Genomics          (2024) 25:134 

Background
A cluster heatmap consists of a heatmap and two dendro-
grams in its basic form [1]. While it does not specify the 
number of clusters on each dimension, users can divide 
the dendrograms at a certain level to obtain clusters. The 
cut-off levels can be selected manually or by a statisti-
cal method [2–4]. If selected manually, the process usu-
ally involves matching a well-defined color patch in the 
heatmap to a well aligned sub-tree in the dendrogram 
and then determining the level at which the sub-tree 
resides. Multiple cut-offs are needed if the clusters are 
located at different levels. Several software packages have 
been developed to generate static cluster heatmaps [5–7], 
including the pheatmap in R and the Seaborn in Python 
[8, 9]. Both provide utility functions to cut dendrograms 
at a certain level to obtain clusters, but fall short of help-
ing identify the most appropriate cut, which makes man-
ual assignment difficult especially for large heatmaps 
with complex dendrograms.

To assign clusters statistically, pvclust is the most pop-
ular method [2]. It assigns p-values to clusters in den-
drograms through bootstrap resampling. It does not, 
however, visualizes the dendrograms along with a heat-
map and highlight the significant clusters in distinct col-
ors. This is where an interactive dendrogram can help. 
Moreover, it takes a very long time to run the statistical 
analysis on a large dendrogram, which can be impractical 
for an exploratory analysis with many trials.

Web-based tools have been developed to generate 
interactive cluster heatmaps [10–13]. However, they are 
mostly a duplication of the functions provided by existing 
packages and not scalable to large datasets because of the 
limited processing power of web browsers. Almost none 
offer the cluster-selection feature that helps match visu-
ally and computationally determined clusters. The only 
exception is InChlib [14], which allows selection of one 
cluster at a time in the row dendrogram. InChlib, how-
ever, does not provide clustering on the column dimen-
sion, does not allow creation of distinctly colored child 
clusters, and lacks the ability to extract text labels from 
selected clusters for functional analysis. To improve on 
existing tools, we developed DendroX, a web app that 
enables multiple-cluster selection at different levels in a 
dendrogram and extraction of text labels from selected 
leaf nodes. Designed as a downstream tool to the pheat-
map and Seaborn packages, it combines the processing 
power of offline packages with the interactive features of 
an online app.

The Library of Integrated Network-based Cellular Sig-
natures (LINCS) program aims to profile molecular sig-
natures of cell lines that are perturbed by chemical or 
genetic agents. The LINCS L1000 project specifically 
measures the gene expression changes of such cell lines 
using the L1000 technology and is a scaled-up version of 

the Connectivity Map project [15, 16]. The L1000 tech-
nology uses a reduced set of 978 genes to represent the 
whole transcriptome and employs a machine learning 
model to infer the expression of the rest transcriptome. 
It has produced over one million gene expression pro-
files of cell lines treated with tens of thousands of differ-
ent chemical or genetic agents. Some of these agents are 
naturally occurring compounds that have no well-defined 
targets and can potentially affect multiple pathways in 
a cell line, which makes it difficult to characterize their 
biomedical activities. The LINCS L1000 dataset offers a 
unique window to explore their aggregated biological 
effects on the transcriptomic level.

Method
Implementation
DendroX was developed as a front-end only app in which 
the submitted data are processed within the browser and 
not sent to a remote server. The React framework [17], 
a JavaScript library for building modularized user inter-
faces, was used to structure the app into two views: an 
input view to submit data and a visualization view to 
draw the dendrogram. The visualization was created 
using the D3 library [18], and the image editing function 
was borrowed and customized from the react-image-crop 
library. The D3 library is used to manipulate dynamic 
web graphics and the react-image-crop library provides 
a React module for editing static images. The react-icons 
package, which is a collection of customized HTML 
icons, was used to generate the iconized buttons in the 
app. Helper functions were provided in Python and R to 
extract linkage matrices from cluster heatmap objects 
and convert them into JSON files that serve as input to 
the app. The session saving function were implemented 
in two ways. One is to download the internal representa-
tion of the session as a JSON file and the other is to save 
it in the browser’s local storage using IndexedDB [19]. 
The DendroX Cluster program was developed using the 
Python Eel library, which takes advantage of the UI infra-
structure of JavaScript and the data analysis capability of 
Python to build standalone computer programs. A table 
of packages and libraries used in developing the DendroX 
app was provided in the supplementary (Table S1).

Case study
The LINCS L1000 gene expression data were downloaded 
from Gene Expression Omnibus. Differential expression 
signatures were calculated for each experiment using the 
characteristic direction method [20]. Average cosine dis-
tance (ACD) between the replicates of an experiment was 
used to represent its strength [21] The smaller the ACD, 
the larger the bioactivity of a chemical compound is. The 
distribution of ACDs is shown in supplementary Figure 
S1. A compound might be tested in multiple experiments 
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and its signature was calculated as the average of these 
experiments’ signatures. We only selected named com-
pounds that were tested in at least 10 experiments with 
an average ACD of less than 0.9. The 978-gene signature 
matrix of these compounds was z-score standardized 
along the column dimension and clustered using the 
average linkage function. The row distance metric was set 
to cosine and the column metric to correlation distance. 
The cluster heatmap image was created using the Python 
Seaborn library (Supplementary Figure S2, showing the 
row and column dendrograms of the cluster heatmap) 
with its object converted into a JSON file using the get_
json function provided by DendroX. The JSON file and 
the cluster heatmap image were submitted in DendroX to 
create an interactive cluster heatmap.

Results
Prepare input files
The required input to the app is a JSON file that stores 
the linkage matrix of a dendrogram. JSON denotes 

JavaScript Object Notation, a text file format consisting 
of arrays and key-value pairs. It is a flexible yet standard 
format to save data and easily processed in a web browser. 
An input JSON file can be created in two ways. First, it 
can be created programmatically using the R or Python 
function provided by us. These functions take the return 
value of the Python seaborn.clustermap or the R pheat-
map function as argument and outputs a JSON file. The 
links to the functions and their examples can be found in 
the help section of the input view. We have wrapped the 
functions into R and Python packages that can be easily 
installed in the users’ computing environment. The Den-
droX app also accepts a JPEG or PNG file as an optional 
input. It should be an image of the heatmap associated 
with the input dendrogram, usually the cluster heatmap 
figure generated by the seaborn.clustermap or pheatmap 
function.

Second, the JSON file can be created in a few clicks 
using the DendroX Cluster program (Fig. 1). The program 

Fig. 1  A screenshot of the user interface of the DendroX Cluster program
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is a standalone graphic user interface that run locally on 
users’ computers. It takes a data matrix as input, runs 
the cluster heatmap function and outputs input files for 
the DendroX app. The input matrix should have row and 
column labels and be stored in a delimited text file. The 
delimiter of the file is inferred automatically by the pro-
gram. After the input file is selected, the output folder 
is automatically set to the folder of the input file. Users 
can choose another folder by clicking on the folder selec-
tion button. The program provides several options to 
customize the cluster heatmap. The parameters of these 
options are the same as provided by the Python seaborn.
clustermap function. After configuring the parameters, 
click on the cluster button to run the cluster function. 
By default, the program generates three files in the out-
put folder with the name of the input file as prefix. Two 
are JSON files for the row and column dendrograms and 
one a PNG file of the cluster heatmap image. The image 
will also be displayed below the cluster button for quick 
review.

Input view
After a JSON file is submitted, a “Visualize” button and 
two radio buttons will appear (Fig.  2). The radio but-
tons allow switching between the horizontal and verti-
cal layouts. The dendrogram will be a row dendrogram 

if “Horizontal” is selected and a column one if “Vertical” 
is selected. Click on the “Visualize” button to navigate to 
the visualization view. If a JPEG or PNG image file is also 
submitted, it will be visualized besides the dendrogram in 
the visualization view.

Visualization view
In the visualization view (Fig. 3), the data in the JSON file 
are visualized as an interactive dendrogram. To highlight 
a cluster, an operator moves the cursor over a non-leaf 
node in the dendrogram. Information about the clus-
ter will be shown including the id, the name (if it exists) 
and the number of leaf nodes of that cluster. To select 
the cluster, the operator clicks on the non-leaf node. 
To unselect it, the operator clicks again. To unfocus a 
selected cluster, the operator clicks on any white space. 
The app will automatically assign a color to a selected 
cluster. To change the assigned color, the operator clicks 
on the color box. To create a child dendrogram from the 
cluster, the operator clicks on the scissor button. The text 
between the scissor and the color box is the id or name of 
the cluster.

The operator clicks on the view button to open a text 
box that lists the labels of the leaf nodes. These labels can 
be interpreted through external tools. Click on the exter-
nal tool button to open a panel of external tools. If the 

Fig. 2  A screenshot of the input view. It shows the input view with an example JSON file and image file loaded. The example data is adapted from [22]
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labels are gene symbols, press the Gene Symbol Enrich 
button to pass the labels to the Enrichr app [23] for gene-
set enrichment analysis. If the labels are drug/compound 
names, press the Drug Name Enrich button to pass the 
labels to the DrugEnrichr app [24] for drug name-set 
enrichment analysis. The DrugEnrichr app is a variant of 
the Enrichr app that uses drug name sets instead of gene 
sets for enrichment analysis run by the same algorithm. 
If users want to search the labels one by one in Google, 
press the Google Search button to open a tab for each 
searched label. Users have to choose “always allow pop-
ups from this site” to use this feature.

If provided, the heatmap image will be placed on the 
right-hand side of the dendrogram in a horizontal layout 
and underneath it in a vertical layout. A crop button is 
implemented to align the heatmap with the dendrogram 
on the matched dimension. Three input boxes are imple-
mented to adjust the widths and heights of the dendro-
gram and heatmap. Their sizes will always be the same on 
the matched dimension. As the heatmap is a static image, 
the app is scalable and has been tested on dendrograms 
with more than 10,000 leaf nodes.

Session saving
There are two ways to save a session. The first is to down-
load the session as a JSON file that can be shared with 
others to reconstruct the session in DendroX. If a heat-
map image is provided, the cropped image will be saved 
as a PNG file along with the JSON file. To load the saved 
session, simply submit the JSON and the PNG files in the 
input view as standard input files and click on the Load 
session button that will appear after they were submit-
ted. The second way to save a session is to click on the 
save session button on top of the cluster heatmap, which 

will save the session in the browser’s local storage. A ses-
sion link will be created in the input view that contains 
the name of the session and the time it was last saved. 
Click on the session link to load the session. Click on the 
“remove” button next to the link to delete the session. On 
the right of the session saving buttons is an editable text 
area displaying the session name. Click on this area to 
change the session name.

Case study
As a demonstration of the key functionalities of Den-
droX, we clustered and visualized the gene expression 
signatures of 297 bioactive chemical compounds in the 
LINCS L1000 dataset [15]. A gene expression signature 
is a vector of 978 components that represent how much 
each gene is perturbed from the control by a chemical 
agent in a given experimental setting. The gene expres-
sion signatures were calculated using the characteristic 
direction method [20, 25] that performs better than the 
commonly used z-score method [21, 26] in benchmark-
ing. The compounds are selected by the criteria that each 
must have a valid drug name, a significance score passing 
a predefined threshold and at least 10 expression signa-
tures. The final signature is the average of the expression 
signatures of a compound.

Figure 4A shows the cluster heatmap of the 297 bioac-
tive compounds visualized in DendroX. We identified 14 
major clusters based on the structure of the dendrogram 
and the expression patterns in the heatmap (Table 1). A 
child dendrogram was created for each cluster and drug 
name-set enrichment analysis was performed on the 
labels of their leaf nodes. Cluster 1, 3, 5, 9, 10, 11, 12, 
13 and 14 are clearly enriched in a distinct single class 
of targets that reveal their common MOAs (Fig. 4E and 

Fig. 3  A screenshot of the visualization view. It visualizes the data submitted in Fig. 2
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I as examples). In contrast, both cluster 11 and clus-
ter 12 are enriched in topoisomerase inhibitors. Google 
search on their compound names shows that chemicals 
in cluster 11 are also enriched in kinase inhibitors like 
dinaciclib, dorsomorphin, staurosporine, lestaurtinib and 

rebastinib while the majority of compounds in cluster 
12 are chemotherapy drugs classified as antimetabolites. 
So we labeled cluster 11 as TOP/kinase and cluster 12 as 
antimetabolite.

Cluster 2 (Fig.  4B) is enriched in a mixture of targets 
and comprises two branches. A child dendrogram was 
created for each branch and drug name-set enrichment 
analysis was performed on each sub-cluster. The results 
show that cluster 2.1 is enriched in protein synthesis 
inhibitors and cluster 2.2 in ATPase inhibitors (Fig.  4F 
and G). Similarly, we created child dendrograms for clus-
ter 6 and 8 (Fig. 4C and D) that are enriched in a mix of 
targets according to the structure of their dendrograms. 
While drug name-set enrichment analysis suggested 
cluster 6.1 is enriched in HMGCR inhibitor (Fig.  4H) 
and cluster 8.2 in proteasome inhibitor, it did not provide 
clear indications on what targets the other child clusters 
are enriched in. We examined the drug names of these 
child clusters in Google and found that cluster 6.2 is 
enriched in psychiatric drugs and cluster 8.1 in naturally 
occurring compounds.

Cluster 8.1 consists of a diverse set of naturally occur-
ring compounds with different known MOAs. It is inter-
esting to see their expression patterns converged and 

Table 1  The 17 clusters and the number of compounds in them
Cluster Label Count
C1 TUBB 17
C2.1 Protein synthesis 7
C2.2 ATPase 14
C3 VD 5
C4 Corticoid 11
C5 MAPK 26
C6.1 HMGCR 6
C6.2 Psychiatric 13
C7 Antibiotics 16
C8.1 Naturally occurring 15
C8.2 Proteasome 13
C9 HSP 5
C10 HDAC 14
C11 TOP/Kinase 18
C12 Antimetabolite 15
C13 Aurora 5
C14 PI3K/mTOR 8

Fig. 4  A: cluster heatmap of the 297 LINCS L1000 compound signatures. The 14 major clusters are colored and labeled. B-D: sub-clusters of cluster 2, 6 
and 8. E-I: drug name-set enrichment analysis results of cluster 1, cluster 2.1, cluster 2.2, cluster 6.1 and cluster 10
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clustered together in the dendrogram. We searched these 
compounds in literature and found that despite their 
diversity they share the same anticancer and anti-inflam-
matory biological effects and are related to oxidative 
stress (Table  2). Their similar gene expression patterns 
may be a reflection of these shared effects. Among them, 
guggulsterone, brazilin, parthenolide, butein, isoliquiriti-
genin and celastrol are active gradients of herb-based 
therapies that have been used in traditional medicine for 
hundreds of years [27–32]. Some in the cluster like bra-
zilin and butein are classified as antioxidants while oth-
ers like parthenolide and piperlongumine are classified 
as oxidative stress inducers. This contradiction may be 
explained by the findings in fenretinide that the com-
pound exerts antioxidant effects at low concentration and 
promotes ROS accumulation at high concentration in a 
context dependent manner [33]. Two compounds in this 
list are synthetic chemicals with BNTX being a standard 
delta opioid receptor antagonist and Elesclomol a copper 
ionophore and first-in-class HSP70 inducer [34]. BNTX 
was found to suppress immune functions and sensi-
tize cancer cells to apoptosis [35, 36] and Elesclomol to 
induce oxidative stress and cuproptosis [37]. Our results 
suggest both drugs have potentially multiple targets and 
could be further explored for their anti-inflammatory 
abilities.

Cluster 4 and 7 were not enriched into any target class 
and dividing them into child dendrograms did not help. 
We then searched their compound names in Google and 
found cluster 4 is enriched in corticoids and cluster 7 in 
antibiotics. In total, we identified 17 clusters with dis-
tinct expression patterns and listed them in Table 1. The 
detailed table that includes the compound names in each 
cluster can be found in supplementary Table S2. Users 
can review this case study by clicking the L1000 example 
button in the input view.

Besides the LINCS L1000 case study, we also con-
ducted another case study on gene expression data in the 
supplementary. It demonstrates how to visualize hierar-
chically clustered gene expression matrices in DendroX 
and perform gene-set enrichment analysis on the clus-
tered genes.

Discussion
Previous work has visualized LINCS L1000 chemical sig-
natures in a t-SNE plot [15], in a UMAP projection [55] 
or in a firework display [26]. Such visualization methods 
represent each signature as a dot and use the distance 
between the dots to represent their similarity. A cluster 
heatmap on the other hand enables the direct compari-
son of the gene expression patterns on the single gene 
level. It can reveal more mechanistically complex clus-
ters like cluster 8.1 that are not previously reported based 
on the structure of the dendrogram and the expression 
patterns in the heatmap. The compounds in cluster 8.1 
should also be in proximal positions in a t-SNE or UMAP 
plot. But when researchers checked their MOAs, no 
common biology was found and they probably refrained 
from defining them as a valid cluster. In contrast, in an 
interactive cluster heatmap like DendroX, we can clearly 
see that the expression pattern of cluster 8.1 is different 
from other clusters and have more confidence in defining 
it as a biologically meaningful cluster.

Cluster 8.1 is closely located to cluster 8.2 which is a 
cluster of proteasome inhibitors. Literature search sug-
gests that some of the naturally occurring compounds in 
cluster 8.1 are proteasome inhibitors including celastrol 
[56], thiostrepton [57] and xanthohumol [58]. The cluster 
also includes parthenolide that inhibits ubiquitin-specific 
peptidase 7 (USP7) [59] and capsaicin that induces pro-
teasome system dysfunction [60]. These evidence suggest 
that the shared bioactivities of the compounds in cluster 

Table 2  The 15 compounds in cluster 8.1 and their known biological effects in literature
Compound Name Biological Effects Reference
Guggulsterone Anticancer, anti-inflammatory [38]
Capsazepine Anticancer, anti-inflammatory, ROS pathway [39]
Piceatannol Anticancer, anti-inflammatory, antioxidant [40]
Fenretinide Anticancer, anti-inflammatory, antioxidant or oxidative stress inducer [33, 41, 42]
Xanthohumol Anticancer, anti-inflammatory [43]
Elesclomol Anticancer, oxidative stress inducer [37]
Brazilin Anticancer, anti-inflammatory, antioxidant [44, 45]
Cerulenin Anti-inflammatory [46]
Parthenolide Anticancer, anti-inflammatory, oxidative stress inducer [47, 48]
Butein Anticancer, anti-inflammatory, antioxidant [30]
Isoliquiritigenin Anticancer, anti-inflammatory, antioxidant [49–51]
Piperlongumine Anticancer, anti-inflammatory, oxidative stress inducer [52]
Thiostrepton Anticancer, oxidative stress inducer [53, 54]
BNTX (7-benzylidene naltrexone) Immunosuppressive, apoptosis sensitizer [35, 36]
Celastrol Anticancer, anti-inflammatory, antioxidant [32]
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8.1 may be related to their actions on the proteasome 
pathway. However, the gene expression pattern of cluster 
8.1 is also quite distinct from that of cluster 8.2. Other 
pathways should be involved in producing this unique 
pattern due to the multi-target nature of the natural 
compounds.

Conclusions
The DendroX app is developed to solve the problem of 
matching visually and computationally determined clus-
ters in cluster heatmaps. It implements multi-level multi-
cluster selection to enable direct comparison of multiple 
clusters in one place. As a case study, we identified a clus-
ter of naturally occurring compounds with similar gene 
expression patterns and shared biomedical activities in 
DendroX. It demonstrates the utility of our app in aiding 
biological discoveries.
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