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Abstract 

The most widely practiced strategy for constructing the deep learning (DL) prediction model for drug resistance 
of Mycobacterium tuberculosis (MTB) involves the adoption of ready-made and state-of-the-art architectures usually 
proposed for non-biological problems. However, the ultimate goal is to construct a customized model for predicting 
the drug resistance of MTB and eventually for the biological phenotypes based on genotypes. Here, we constructed 
a DL training framework to standardize and modularize each step during the training process using the latest 
tensorflow 2 API. A systematic and comprehensive evaluation of each module in the three currently representative 
models, including Convolutional Neural Network, Denoising Autoencoder, and Wide & Deep, which were adopted 
by CNNGWP, DeepAMR, and WDNN, respectively, was performed in this framework regarding module contribu-
tions in order to assemble a novel model with proper dedicated modules. Based on the whole-genome level muta-
tions, a de novo learning method was developed to overcome the intrinsic limitations of previous models that rely 
on known drug resistance-associated loci. A customized DL model with the multilayer perceptron architecture 
was constructed and achieved a competitive performance (the mean sensitivity and specificity were 0.90 and 0.87, 
respectively) compared to previous ones. The new model developed was applied in an end-to-end user-friendly 
graphical tool named TB-DROP (TuBerculosis Drug Resistance Optimal Prediction: https:// github. com/ nottwy/ TB- 
DROP), in which users only provide sequencing data and TB-DROP will complete analysis within several minutes 
for one sample. Our study contributes to both a new strategy of model construction and clinical application of deep 
learning-based drug-resistance prediction methods.
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Introduction
Tuberculosis, caused by Mycobacterium tuberculosis 
(MTB), is a serious public health problem worldwide. 
According to Global Tuberculosis Report 2022 [1], 6.4 
million patients were newly diagnosed with tuberculosis, 
among whom about 1.4 million HIV-negative patients 
and 187,000 HIV-positive patients died in 2021. Tubercu-
losis is also a high health burden in China [2]. The emer-
gence of drug-resistant MTB has posed a severe challenge 
to global tuberculosis prevention and treatment. Drug 
resistance is traditionally diagnosed using culture-
based antimicrobial susceptibility testing.  However, this 

*Correspondence:
Haoyang Cai
haoyang.cai@scu.edu.cn
Qun Sun
qunsun@scu.edu.cn
1 Key Laboratory of Bio-Resources and Eco-Environment of the Ministry 
of Education, College of Life Sciences, Sichuan University, 
Chengdu 610064, China
2 Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, 
Hangzhou, China
3 Center of Growth, Metabolism and Aging, Key Laboratory 
of Bio-Resources and Eco-Environment of the Ministry of Education, 
College of Life Sciences, Sichuan University, Chengdu 610064, China 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10066-y&domain=pdf
https://github.com/nottwy/TB-DROP
https://github.com/nottwy/TB-DROP


Page 2 of 14Wang et al. BMC Genomics          (2024) 25:167 

approach is relatively slow and expensive. Further, it has 
inherent inaccuracies and issues with reproducibility 
[3]. One critical challenge in tackling the global TB epi-
demic is timely diagnosis and correct treatment. Rapid 
molecular diagnostic tests can promote early detection 
and prompt treatment [4]. As drug resistance of MTB 
is mainly conferred by nucleotide variations in genes 
encoding drug targets or drug-converting enzymes [5], 
molecular detection of mutations can be used for quick 
detection and guiding treatment of drug resistant-MTB.

Currently, the sequencing technology is being used for 
predicting drug-susceptibility as it provides a wide range 
of information on mutations [6, 7]. These methods can 
be divided into two categories: 1) direct association (DA) 
method, which identifies known mutations related to 
drug resistance from whole genome sequencing (WGS) 
data, such as KvarQ [8], CASTB [9], MyKrobe Predic-
tor TB [10], PhyResSE [11], TGS-TB [12], TBProfiler [5], 
and SAM-TB [13]. These tools rely heavily on the library 
of identified resistance-related sites and have many limi-
tations. The missing nucleotide calls of these mutations 
or unknown association of mutations that affect drug 
resistance genes may directly lead to prediction failure. 
For four first-line anti-tuberculosis drugs, these prob-
lems would lead to no prediction of 4.7 − 10.2% isolates 
[14]. The unknown resistance mechanisms of most non-
first-line drugs would lead to low prediction accuracy 
[15]; DA cannot model gene–gene interactions, and 
with the increase in MDR (multi-drug resistant) rate, the 
prediction performance will decrease [16]; 2) machine 
learning, that is, using sequencing data and drug suscep-
tibility test (DST) data to establish a predictive model 
for biological phenotypes, including drug resistance. 
Various machine learning algorithms have been used for 
MTB drug resistance analysis, such as logistic regression 
[17], random forest [18], decision tree [19] and gradi-
ent boosting tree [20]. As a branch of machine learning, 
deep learning is now being widely applied for predict-
ing biological phenotypes based on genomic mutations. 
Waldmann et  al. [21] designed a convolutional neural 
network CNNGWP for genome-wide prediction. Bellot 
et  al. [22] evaluated the performance of convolutional 
neural network (CNN) and multilayer perceptron (MLP) 
for predicting five complex human phenotypes. Regard-
ing tuberculosis, Chen et al. [16] assessed the ability of 
a Wide & Deep model, which was designed for recom-
mender system on MTB drug resistance prediction with 
3,601 MTB strains and their 222 single nucleotide poly-
morphisms (SNPs). The Wide & Deep model outper-
formed existing approaches based on DA and previously 
reported machine learning models. Yang et al. proposed 
two DL-based models: denoising auto-encoder [23] and 
heterogeneous graph attention network [24]. Jiang et al. 

considered drug resistance prediction as a document 
classification problem and constructed a hierarchi-
cal attentive neural network model inspired by natural 
language processing [25]. Anna et  al. divided the drug 
resistance prediction into multi-drug resistance pre-
diction and single-drug resistance prediction and con-
structed two CNN-based models for each of them [26]. 
ML-based methods can establish the mapping relation-
ship between mutations and DST data through de novo 
learning without prior biological knowledge and adapt 
to ever-increasing biological data.

As depicted above, abundant of machine learning mod-
els were adopted to predict the MTB drug resistance. 
Therefore, researchers started to summarize methods 
[27] and consider how to apply them in clinical practice 
[28]. Here, we take this work with concrete codes and 
practice, the characteristics of WDNN, DeepAMR, and 
CNNGWP (the representative CNN model) models were 
depicted comprehensively and reimplemented for bench-
marking, which helped researchers evaluate the perfor-
mance of each model accurately and objectively to build a 
foundation for improving the existing models and design-
ing better models. The models we benchmarked were 
further customized and fine-tuned for developing a deep 
learning MTB drug resistance tool with whole genome 
mutations as input data. Hyperparameters and archi-
tectures of models were customized for whole genome 
mutations. genTB, the only available deep learning-
based tool, can be easily used by clinicians [29]. However, 
genTB was based on known drug resistance-associated 
loci and was not applicable for patients harboring novel 
loci. Therefore, a model utilizing whole genome muta-
tions was constructed and used in the TB-DROP (https:// 
github. com/ nottwy/ TB- DROP).

This study aims to construct a customized deep learn-
ing-based model for predicting the drug resistance of 
MTB using whole genome mutations and bring it to 
clinicians through a user-friendly tool, TB-DROP. The 
strategies we adopted to construct our model was dif-
ferent from the current most widely used strategy and it 
would contribute to construction of a model suitable for 
predicting the biological phenotypes based on genotypes. 
The whole genome mutations were used as the input of 
our model and supported our de novo learning strategy 
without relying on a known drug resistance mutations 
library.

Results
Training and evaluation of models on our dataset
Figure  1 summarizes the phenotypes of the 12,478 
MTB strains available for analysis. After variant call-
ing and filtering, 620,169 variants are retained for drug 
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resistance prediction. The size of the drug-sensitive 
samples of all types of drugs is lesser than those of the 
drug-resistant samples.

Ten-Fold (10X) cross validation with the MSSS sam-
ple split strategy was performed to measure the per-
formance of each model. Then the mean and variance 
(Table  1) of AUC, and sensitivity, specificity, preci-
sion, and negative predictive rate (NPV) of the results 
were calculated to measure the average performance 
and the stability of each model. The loss curves of 
each model were also presented to show the training 
conditions of each model (Fig.  2), which could reflect 
whether models were reliable and were an important 
metric of a model (separate loss curve of each model 
can be found in Additional file 2). All 10 loss curves of 
10X cross validation were checked for each model and 
found to be similar. Hence, the representative one was 
selected and presented here. The picture shows the 
loss curves of all models declined steadily and finally 
reached a plateau except DeepAMR. For DeepAMR, 

many hyperparameters were tried, but its validation 
loss curve was still U-shaped, indicative of overfitting.

Comparison of models’ performance
The MLP-based model was chosen as the representa-
tive one and compared to other three machine learn-
ing-based models: WDNN [16], DeepAMR [23] and 
GBT-CRM [20]. The metrics of each model were 
obtained from corresponding articles, while WDNN and 
DeepAMR provided information regarding only sensitiv-
ity, specificity and AUC. Before comparison, two impor-
tant factors that influence model metrics considerably 
should be introduced: the total sample size and the test 
size. The sample size of GBT-CRM was larger than that 
of ours, and fewer samples were used in the test size. 
Large sample sizes can train models better, and small 
test sample sizes would be less challenging for models. 
Although GBT-CRM benefited from these two factors, 
the difference in AUCs between it and our model was 
small (2.1%-5.0%) (Table  2). We expected that the dif-
ference between two models would continue to dimin-
ish when the amount of data was identical and the ratio 
between training and test was 1. The AUC values of all 
models were above 0.9 (Table  2), with the exception of 
WDNN’s 0.883 for PZA, which indicated that Deep-
AMR, GBT-CRM and TB-DROP had good and stable 
performance. According to metric AUC, the DeepAMR 
had the best performances. It is noteworthy that Deep-
AMR was based on the known mutations related to drug 
resistance and it can not work well when encountering 
novel mutations and unknown resistance mechanisms.

The values of the other metrics were influenced by 
the choice of thresholds distinguishing drug-resistant 
isolates and drug-susceptible isolates. They were com-
parable only to a certain extent. Our model paid more 
attention to the sensitivity of drug-resistant isolates and 
NPV of drug-susceptible isolates, as high sensitivity 
ensured that fewer drug-resistant isolates were predicted 
as drug-susceptible, while the high NPV ensured that 
antimicrobial drugs used to treat patients may work. For 
the drugs of RIF, EMB, and PZA, our models performed 
better than the GBT-CRM model in terms of metric sen-
sitivity and NPV (Table 2). Regarding metric sensitivity, 
the DeepAMR and our models were stable at over 85%, 
while the WDNN model only achieved 75% in the drug 
PZA (Table  2). All these results indicated that de novo 
drug resistance prediction based on deep learning model 
utilizing whole genome mutations was as competitive as 
previous models and could deliver a better drug resist-
ance predicting ability than the deep learning models 
based on the known drug resistance genes and machine 
learning models based on whole genome mutations.

Fig. 1 The representative architectures of four models, 
including the TB-DROP. The upper-left panel is the model 
architecture of WDNN, which comprises two parts: wide part 
and deep part. The model architecture implemented in TB-DROP 
(upper-right) is a deep neural network (DNN). The bottom-left panel 
is the model architecture of DeepAMR, which comprises encoder, 
decoder, and output layers. The model architecture of CNNGWP 
in the bottom-right panel is a classic convolutional neural network 
which consists of a convolutional layer and a pooling layer
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TB‑DROP: MTB Drug Resistance Optimal Predictor
The trained deep learning model and the variant call-
ing pipeline were used in a docker environment. The 
workflow and user interface of TB-DROP are shown 
in Figs.  3 and  4. In the TB-DROP interface, users 
only need to perform a simple two-step operation to 
obtain drug resistance status of MTB: “Uploading” the 
sequencing data in the fastq format and click “Start 
Analysis”. The whole analysis costs only < 20  min for 
each sample on a computer with an AMD Ryzen 5 2600 
Six-core Processor with 16G RAM. For samples that 
have been analyzed, the prediction result will be pre-
sented while users click the Sample_ID.

Discussion
Laboratory mislabeling of the drug resistance status of 
MTB should be excluded. A reliable standard for remov-
ing laboratory mislabeling involved removal of isolates 
phenotypes of which were discordant with the genotypes. 
For example, one isolate was recorded as susceptible but 
harbored high-level resistance mutations. One main aims 
of this study was to evaluate the potential of the neural 
network for predicting de novo drug resistance by uti-
lizing the whole genome mutations. Therefore, only 
first-line drugs with large sample size (more than that of 
second-line drugs) were evaluated in this study. It is rea-
sonable to infer that the performance of DL models is 

similar here for the second-line drugs when their sample 
sizes achieve similar levels.

The three models used in this study were not designed 
specifically for predicting phenotypes according to geno-
types. CNN, the architecture of which was inspired by the 
human visual system, was proposed by LeCun et al. [30] 
for recognizing handwritten zip code. WDNN [31] was 
developed for constructing the recommender system, the 
original inputs of which were user and contextual infor-
mation, and the desired output was relevant items that 
users might be interested in. The successful application 
of these models on biological phenotypes only reflected 
that there were similar relationships between inputs and 
outputs. An architecture designed specifically according 
to biological genotype–phenotype relationships was in 
demand [22]. The first step toward realization of this goal 
was to evaluate the performances of different architec-
tures objectively. Nevertheless, due to the complexity of 
deep learning neural architectures and MTB drug resist-
ance, a comprehensive benchmark of these models was 
not performed yet, which prevents researchers from the 
development of the most suitable model and enhance-
ment of prediction performance [32].

The relatively low PPV for predicting the EMB and 
PZA drug resistance (0.524 for EMB and 0.410 for PZA) 
largely came from the imbalanced dataset (Table  2), 
where the ratio of positive to negative samples was far 
from 1 (0.184 for EMB and 0.139 for PZA). When the 

Table 1 Metrics of modified four main neural network models

Abbreviations: AUC  The area under the receiver operating characteristic curve, Var variance of values of ten folds cross-validation, Positive samples are drug resistant 
MTB; Negative samples are drug susceptible MTB; tp: true positive, tn: true negative, fp: false positive, fn: false negative, sensitivity: tp/(tp + fn), specificity: tn/(tn + fp), 
precision: tp/(tp + fp), NPV: negative predictive value, tn/(tn + fn)

The bold values indicate the highest performance values among four models. The values presented here were average values of tenfold cross validation. The values in 
the parenthesis are the variance of values of tenfold cross validation

Model Drug AUC (Var) Sensitivity (Var) Specificity (Var) Precision (Var) NPV (Var)

wdnn_modified Ethambutol 0.93 (0.000021) 0.89 (0.000332) 0.86 (0.000133) 0.55 (0.000311) 0.98 (0.000014)

Isoniazid 0.94 (0.000020) 0.88 (0.000179) 0.92 (0.000133) 0.83 (0.000360) 0.95 (0.000029)

Pyrazinamide 0.91 (0.000025) 0.90 (0.000400) 0.83 (0.000415) 0.42 (0.000650) 0.98 (0.000009)

Rifampicin 0.95 (0.000015) 0.89 (0.000171) 0.94 (0.000146) 0.84 (0.000598) 0.96 (0.000018)

deepamr_modified Ethambutol 0.89 (0.000068) 0.72 (0.000144) 0.92 (0.000051) 0.62 (0.000305) 0.95 (0.000004)

Isoniazid 0.87 (0.000064) 0.75 (0.000215) 0.87 (0.000071) 0.72 (0.000125) 0.89 (0.000031)

Pyrazinamide 0.89 (0.000124) 0.70 (0.000624) 0.92 (0.000028) 0.56 (0.000190) 0.96 (0.000012)

Rifampicin 0.89 (0.000043) 0.74 (0.000314) 0.90 (0.000042) 0.74 (0.000190) 0.91 (0.000034)

cnngwp_modified Ethambutol 0.94 (0.000024) 0.88 (0.000282) 0.89 (0.000261) 0.61 (0.001026) 0.98 (0.000009)
Isoniazid 0.94 (0.000018) 0.87 (0.000079) 0.92 (0.000053) 0.83 (0.000144) 0.94 (0.000012)

Pyrazinamide 0.93 (0.000054) 0.89 (0.000345) 0.86 (0.000040) 0.47 (0.000192) 0.98 (0.000007)
Rifampicin 0.96 (0.000007) 0.90 (0.000112) 0.93 (0.000081) 0.83 (0.000285) 0.96 (0.000012)

MLP Ethambutol 0.93 (0.000033) 0.90 (0.000729) 0.85 (0.000242) 0.52 (0.000413) 0.98 (0.000027)

Isoniazid 0.95 (0.000031) 0.88 (0.000088) 0.90 (0.000665) 0.80 (0.001448) 0.95 (0.000014)
Pyrazinamide 0.91 (0.000091) 0.91 (0.000281) 0.81 (0.000787) 0.41 (0.001293) 0.98 (0.000007)
Rifampicin 0.95 (0.000041) 0.90 (0.000276) 0.91 (0.001085) 0.78 (0.002729) 0.96 (0.000030)
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ratio was 1, the PPV was around 0.85 (assuming the num-
bers of positive and negative samples were both 2,000, 
and the sensitivity and specificity did not change, the 
PPVs were 0.857 and 0.831, respectively). Therefore, the 
PPV does not influence the sensitivity, and most of the 
patients carrying drug resistant MTB, including EMB 

and PZA, should be detected correctly using our predica-
tion tool.

Several methods can be used to improve the perfor-
mance of deep learning models. First, collection of reli-
able data is critical. Currently, the input features were 
encoded as 0 and 1, where 0 represented no mutation 

Fig. 2 Summary of drug resistance status of all isolates
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and 1 represented a mutation, although there were other 
commonly used representation methods, such as “012”, 
where 0 represents no mutation, 1 represents heterozy-
gous genotype, and 2 represents homozygous alternative 
genotype and “one-hot encoding”. Further evaluation is 
required to evaluate the suitability. Each model evalu-
ated in this study had its specific preprocessing steps. 
However, we have not evaluated the performance of all 
these preprocessing methods. In addition, correct con-
clusion can only be obtained from the correct combi-
nation of all components, from input representation to 
model architecture and hyperparameters. Unsuitable 
combination may affect the function of components. A 
model architecture that was more suitable for genomic 
mutations and prediction of biological phenotypes can 
be designed referring to the following perspectives: 1) 
determining the functions of various types of mutations 
in the genome, including the relationship among muta-
tions and that between mutations and phenotypes [33], 

and then designing an architecture that can represent 
such relationships; 2) multi-task or single-task. The mul-
titask neural network updated the weights of the network 
according to the total loss of all tasks and the single-task 
neural network learned the weights for a specific drug. 
The multitask neural network can learn from all labels 
and hence had more samples. However, different labels 
may conflict with each other, and lead to wrong update 
of the weights of the neural network and finally perturb 
the metrics of the model. The bias of the final layer of the 
MLP model was updated weirdly, which might be caused 
by the multitask architecture; 3) the ideal solution for 
finding the best hyperparameters was to be able to trav-
erse all hyperparameter combinations and then consider 
the optimal hyperparameter combination. However, 
this will require considerable amount of computational 
resources and time. One main aims of this study was to 
evaluate each module of multiple representative models 
and to assemble a new model based on the contribution 

Table 2 The performance metrics of four machine learning models

The values that were not reported in the models’ articles are indicated as”/”;”tr + v:te”: train + validation: test; Sens: Sensitivity; Spe: Specificity; Acc: accuracy; NPV: 
Negative Predictive Value (tn/(tn + fn)); PPV: Positive Predictive Value (tp/(tp + fp))

Models tr + v:te Metric RIF INH EMB PZA

WDNN 3601:792 Sens 95.4% 90.3% 90.6% 75.2%

Spe 97.9% 96.4% 85.6% 91.2%

Acc / / / /

NPV / / / /

PPV / / / /

AUC 98.2% 95.9% 92.2% 88.3%

resis:sus / / / /

DeepAMR 7:3 Sens 94.2% 94.3% 91.5% 87.3%

Spe 95.8% 95.7% 93.4% 90.9%

Acc / / / /

NPV / / / /

PPV / / / /

AUC 98.2% 97.7% 96.8% 94.4%

resis:sus / / / /

GBT-CRM 8:2 Sens 88.8% 91.1% 82.8% 69.7%

Spe 98.9% 98.8% 94.2% 96.1%

Acc 96.2% 96.3% 92.1% 91.8%

NPV 96.0% 95.8% 96.1% 94.2%

PPV 96.8% 97.4% 75.6% 78.0%

AUC 97.9% 96.7% 95.8% 95.5%

resis:sus 4462/12045 5215/11207 2576/12254 1813/10155

TB-DROP 7:3 Sens 89.9% 88.3% 90.4% 90.7%

Spe 90.6% 90.0% 84.9% 81.5%

Acc 90.4% 89.5% 85.8% 82.6%

NPV 96.2% 94.5% 98.0% 98.4%

PPV 77.9% 80.0% 52.4% 41.0%

AUC 95.4% 94.6% 93.2% 90.5%

resis:sus 3266/9086 3770/8493 1869/10172 1367/9802
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of each module. In future, we will improve the hyperpa-
rameter tuning strategy; 4) in addition to the three rep-
resentative deep learning models used here, models of 
natural language processing can also be applied to deal 
with drug resistance prediction, if we consider the whole 
genome mutations as a document and the resistant and 
the susceptible phenotypes as two types of the document.

The modules and the learning processes of any exist-
ing models were proposed for their own aims. Therefore, 
we need to deepen our understanding of the mechanism 
of how genotypes determine phenotypes and reveal the 
mathematical functions and learning processes that can 
truly characterize the mechanism. In this way, we can 
change from simply borrowing modules from existing 
models to proposing really suitable modules and learning 
processes. As a tool positioned for use in clinical prac-
tice, TB-DROP also requires continuous accumulation of 
experience and update of models to deal with problems 
arising in practice.

Implementation
Phenotypic and sequencing data
The datasets were obtained from two previously pub-
lished studies and consist of 12,478 isolates with WGS 
data and phenotypic DST data [14, 34]. The SRA acces-
sion numbers of all raw datasets are listed in Additional 
file 3. The phenotype data included resistance status for 

four first-line drugs (rifampicin, isoniazid, pyrazinamide, 
and ethambutol). Phenotypic data were classified as 
resistant, susceptible, or unknown.

Variant calling
We used fastp 0.20.1 [35] to clean the raw sequencing 
data. The cleaned reads were mapped to the H37Rv ref-
erence genome using BWA-MEM 0.7.17 [36], and SNPs, 
insertions, and deletions (InDels) were called using 
GATK 4.1.7.0 [37]. Variant annotation was performed 
using ANNOVAR [38], and variants annotated as synon-
ymous mutations were not included in our analysis. SNPs 
and InDels in PE (Pro-Glu) or PPE (Pro-Pro-Glu) genes, 
mobile elements, and repeat regions were excluded using 
VCFtools 0.1.16 [39].

Building the predictor sets of features
The features used for prediction were classified into two 
groups. In one group, each mutation in the genome was 
used as the predictive feature. The presence of a mutation 
in the isolate was represented by a binary variable, with 
1 indicating the presence of the mutation and 0 indicat-
ing its absence. In the other group, to reduce the feature 
dimension, we used 100-bp windows to divide the entire 
genome into 44,116 regions, and the number of muta-
tions in each region was considered the predictor.

Fig. 3 Loss curve. A Loss curve of training process; B Loss curve of validation process. Deepamr_inh represents the loss curve of the drug, isoniazid 
(INH), ethambutol (EMB), rifampicin (RIF), and pyrazinamide (PZA)
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Designing and training the TB‑DROP model
Both designing the novel models and comprehensively 
comparing the existing methods are essential for devel-
oping an efficient neural network for MTB drug resist-
ance. Multiple neural networks have been used to predict 
biological phenotypes, including MTB drug resistance. 
To use the best neural network in our tool, four architec-
tures were summarized, reimplemented, optimized, and 
compared.

First, we summarized the features, advantages, and dis-
advantages of each model, with the intention of mainly 
targeting neural network designers. The comprehensive 
and in-depth summary may facilitate the construction of 
more suitable models. Next, we reimplemented WDNN, 
DeepAMR, and CNNGWP in the same framework 
according to their published source codes. The same 
framework guaranteed that each model can be depicted 
systematically. In this way, we could clearly determine the 
modules to be used for each model. In addition, it was 
convenient to append a module to a model at the right 

place. The reimplemented version of each model was 
evaluated with the datasets available with the source 
codes to prove that we did restore the model to a certain 
extent.

Each model was optimized to accommodate the con-
dition that the whole genome mutations were used as 
inputs, during which the advantages of each model were 
retained and the defects overcome. Our dataset was used 
as the input of each model, which was optimized accord-
ing to its training/validation loss curves and metrics on 
the validation dataset. The hyperparameters were tuned 
according to their functions and the depth up to which 
learning models gain satisfied generalization. For all 
models, the weight of the neural network with the lowest 
validation loss value during the training process was used 
in the final model.

Finally, the optimized models were evaluated on 
the test dataset, and the model with the best perfor-
mance was selected as the representative model and 
compared with other MTB drug resistance prediction 

Fig. 4 The workflow of TB-DROP
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methods. The best model was used in our tool, TB-
DROP. tensorflow-gpu (2.3.1) was used.

TB‑DROP graphical user interface
TB-DROP is based on Docker (https:// www. docker. 
com/) to enable a new and promising virtualization 
strategy that provides the advantage of being platform-
agnostic due to its configuration of containers. Con-
tainers can be consistently interchanged and used in 
different computing environments, irrespective of the 
differences in user hardware and/or operating systems. 
These features of the containers ensure replicability 
and reproducibility of data analyses across different 
facilities [40].

TB-DROP is an automated, easy-to-use, and web-
based GUI tool deposited at github (https:// github. 
com/ nottwy/ TB- DROP). During development, the bio-
informatics pipeline, trained deep learning model, and 
user-interface in a custom docker image were used, 
and the characteristics of the docker were utilized to 
develop tools compatible with the cross-platforms, 
including Windows, Linux, and MacOS. The resist-
ance results can be visualized on a browser directly. 

Users need to upload the sequencing data on the web-
page and initiate the analysis. The result of drug resist-
ance is usually returned in a few minutes.

Summarization of MTB‑related and phenotype‑related DL 
models
Each model has its own advantages and unique features, 
as well as limitations. Extensively learning advantages 
of each model, and then avoiding shortcomings in their 
designs will assist in designing better models. The char-
acteristics of each model are shown in Table 3. The wide 
and deep architecture enables WDNN to consider addi-
tive effects and interactions between mutations simulta-
neously [16, 31]. WDNN utilized an alpha value as the 
class weight to increase the weight of the class, the sam-
ple size of which was smaller.

where n1 was the number of drug-resistant MTB and n2 
was the number of drug-susceptible MTB. The number 
of MTB, the resistance status of which was missing, was 
not considered. The custom loss function was a class-
weight binary cross entropy:

α = 1−
n1

n1+ n2

loss =

i=n

i

j=m

j

−α×Prtrue,ij×log Prpred,ij −(1− α)× 1− Prtrue,ij ×log 1− Prpred,ij

Table 3 Summary of the four main neural network models

Abbreviations: MAF Minor Allele Frequency, CNN Convolutional Neural Network, KFold sklearn.model_selection.KFold, CV Cross Validation, MSSS python package, 
iterstrat.ml_stratifiers.MultilabelStratifiedShuffleSplit, tpr true positive rate, tnr true negative rate,
a Whether providing softwares that could be used

Model WDNN DeepAMR CNNGWP TB‑DROP

Features 1. Wide: Memorization
2. Deep: generalization
3. Custom loss and metrics 
functions
4. Remove rare variants

1. Denoising autoencoder
2. Cyclical learning rate

1. CNN
2. Normalization of input
3. MAF cleaning

Fully connected

Advantages 1. Allow missing labels
2. Batch Normalization

1. Non-linear dimension reduc-
tion
2. Quicker converge

1. Convolution: sparse interac-
tions, parameter sharing 
and equivariant representations
2. Pooling: approximately invari-
ant to small change of the input

Explore all interactions

Drawbacks Too many neurons Not allow missing labels Test datasets were also used 
as validation datasets

Too many neurons

Regularization 1. Multi-task learning
2. Dropout
3. Parameter norm penalty

1. Multi-task learning
2. Early stopping

1. Single-task learning
2. Model averaged ensemble 
predictions

Multi-task learning

Hyperparameter tuning Bayesian Optimization Grid search Bayesian Optimization Manual search

Speed  ~ 3 s/epoch Pretrain: ~ 76 s/epoch 
Train: ~ 110 s/epoch

 ~ 40 s/epoch  ~ 10 s/epoch

Threshold max(tpr + tnr) max(tpr-tnr) max(tpr + tnr) max(tpr + tnr)

CV strategy KFold MSSS MSSS MSSS

Softwarea No No No Yes

https://www.docker.com/
https://www.docker.com/
https://github.com/nottwy/TB-DROP
https://github.com/nottwy/TB-DROP
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where n was the total types of drugs, m represents the 
number of isolates with resistance status for each drug, 
 Prtrue,ij indicated the true probability for the i-th drug 
and j-th MTB being resistant (1.0 for resistant MTB and 
0.0 for susceptible MTB).  Prpred,ij indicated the predicted 
probability for the i-th drug and j-th MTB being resist-
ant. Since WDNN was a multi-task model that had only 
one loss for all drugs, ∑∑ was used to add up all class-
weight binary cross entropy of each sample.

In addition to predicting the resistance to individual 
drugs, DeepAMR also predicted the drug resistance of 
MDR-TB (multi-drug resistant Mycobacterium tubercu-
losis) and PANS-TB (MTB that is susceptible to all four 
first-line drugs, isoniazid (INH), rifampicin (RIF), etham-
butol (EMB), and pyrazinamide(PZA)). The further clas-
sification of drug resistance phenotypes remind us that 
the mechanism controlling drug resistance might change 
if MTB developed from single-drug resistance to multi-
drug resistance. Manzour et al. [41] reported that muta-
tions in katG315 appeared more frequently in MDR-TB 
and that mutations in the inhA promoter appeared more 
frequently in single-drug resistant MTB. Sintchenko 
et al. [42] observed that mutations in rpoB existed both 
in RIF-resistant MTB and RIF-susceptible MTB. Regard-
ing the model architecture, DeepAMR used the denois-
ing autoencoder, which rendered the model more robust 
when genotypes were missing and sequencing error was 
present. Furthermore, the dimension reduction achieved 
using the autoencoder can considerably reduce the 
amount of calculation.

Furthermore, a better sample splitting strategy, multila-
bel stratified shuffle split (MSSS) [43] was used by Deep-
AMR than WDNN’s naive KFold (provided in sklearn), 
which does not consider group information. The draw-
back of KFold was that random splitting of samples could 
lead to a split (train/test) where the train group or the 
test group did not contain all categories for one or more 
labels in a multi-label condition. This would lead to the 
failure of training if it happens in the training dataset, as 
some categories would be missing. So we performed it in 
the test dataset to assess the failure of calculating some 
metrics (i.e., missing positive samples would lead to the 
failure of calculation of sensitivity because sensitivity 
equals to “true positive / all positive samples”).

Using SNPs from the whole genome, Waldmann et al. 
[21] attempted to apply CNN to predict quantitative 
traits. CNN has many advantages in predicting pheno-
types using genomic mutations. The small convolutional 
kernels can capture local signals out of the whole genome 
that might be related to drug resistance and save compu-
tational resource at the same time. The pooling layer can 
make the model robust when there were little changes in 
the genome.

The MLP is a quintessential neural network model which 
was proposed long time ago. A typical MLP consists of an 
input layer, an output layer, and many hidden layers. These 
layers are fully connected with each other, because of which 
MLP requires many computational resources. The rea-
son for choosing this model was: (1) it is initially inspired 
by WDNN. If we modified the structure of the WDNN 
model and removed the wide part of it, the rest of the 
WDNN model was a DNN (or MLP) model; (2) it has the 
most basic architecture and we should evaluate its perfor-
mance before we try other more complex architectures; (3) 
many researchers have started to focus on MLP again and 
have proposed many excellent architectures to improve its 
performance [44]. The final result was that MLP had per-
formed best before we tried new advanced MLP models.

Reimplementation of deep learning models
Although all the models evaluated in this study were 
implemented with keras (with tensorflow as their back-
end engine), they were implemented with tensorflow 
1.X (WDNN, DeepAMR and CNNGWP) or R version 
(CNNGWP). Tensorflow 1.X is deprecated and the gram-
mar changed considerably in tensorflow 2.X. Models 
implemented using different languages (R and Python 
tensorflow) increased the difficulty of utilization and 
comparison. Therefore, reimplementation is necessary 
and all models were reimplemented with Python in the 
tensorflow 2.X environment. As we will utilize the good 
design of each published model and make an objective 
comparison to construct a better MTB drug resistance 
predicting model, and provide guidelines for optimizing 
the neural network-based phenotype predictors in the 
future, we implemented all models in the same standard 
framework and ensured that all modules and parameters 
were consistent with the original model. We first care-
fully inspected the source code of each model and imple-
mented each model in strict accordance with the source 
code. Next, these models were used in the same frame-
work to ensure that the modules used by each model 
were the same and that the execution order was the same. 
Finally, we tested the performance of our reimplemented 
versions and the original source code versions on the 
dataset accompanying each source code to measure the 
consistency between the reimplemented and the original 
models. The outputs of the source codes of each model 
were used as the standard answers.

The outputs of our implementation were compared with 
standard answers (Table 4) and the datasets used for each 
model were introduced below. WDNN’s author provided 
both the training and test datasets. The training datasets 
consisted of 3,601 isolates and 6,483 SNPs, and the test 
dataset consisted of 792 isolates and 222 SNPs. In the 
WDNN’s source codes, it predicted MTB drug resistance 
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of 11 drugs. Area under the ROC curve (AUC) and AUC 
precision-recall (PR) were chosen as the metrics. There-
fore, the difference of sum of AUC between our reimple-
mented version and the original version was chosen as the 
measurement of how well we reimplemented the model. 
The authors of DeepAMR provided a dataset consisting 
of 8,388 isolates and 5,823 SNPs. It only predicted MTB 
drug resistance of four drugs. Sensitivity, specificity, AUC, 
and F1 scores were selected as its metrics. Here, the dif-
ference of sum of AUC between our reimplemented 
version and the original version was also chosen as the 
measurement of how well we reimplemented the model. 
In the publication of CNNGWP, two datasets, a simulated 
and a real dataset, were used to evaluate the performance 
of the CNNGWP model. The real dataset is not acces-
sible. Therefore, only the performance on the simulated 
dataset was compared. Input introduction: 3,226 samples 
and 9,723 SNPs. The input representations of 0, 1, and 2 
indicated lower homozygote, heterozygote, and upper 
homozygote. The prediction target here was a continu-
ous quantitative trait, and the mean squared error (MSE) 
of the test dataset was used to evaluate the performance 
of CNNGWP. The sizes for training and testing datasets 
were 2,326 and 900. Using the best hyperparameters pro-
vided in the article, the MSE on the test dataset was 63.04 
in our implementation, which was almost similar to that 
reported in this study (62.34). The comparison is pre-
sented in Table 4, and we noticed that the performances 
of our reimplemented version and the original version 
were similar. Therefore, our reimplemented version repre-
sented the original one.

Construction of TB‑DROP deep learning models
As we switched to using whole-genome mutations as 
input, the amount of layer weights was large. Therefore, 
the model architecture and hyperparameter tuning strat-
egy adopted were intended consider the published models 
as the starting point and then further tune them according 
to the problems encountered. The representative architec-
tures and characteristics of the four models are presented 

in Fig.  5. Capturing the core features of each model and 
the essential differences between the models when putting 
them together was easier. More details regarding hyperpa-
rameter tuning are presented in Additional file 1.

The goal of the original design of WDNN was to enable 
the final classification layer to learn (1) directly from the 
input data (the wide part) and (2) the highly abstract fea-
tures after refining through multiple neural layers (the 
deep part) simultaneously (Fig.  5). However, when the 
input data changed from the mutations residing in the 
drug resistance-related genes to mutations in the whole 
genome, the number of mutations increased considerably. 
Most of the newly added mutations must not be related to 
drug resistance. Therefore, the model training faced more 
computational pressure, and at the same time, the final 
output layer found it challenging to learn the mapping 
relationship between whole genome mutations and the 
drug resistance phenotypes. DeepAMR consisted of two 
parts: (1) The model will train a denoising autoencoder 
first, the input and output of which were identical. (2) The 
highly compressed and dimension-reduced encoded fea-
tures obtained from part one would be fully connected 
to the output layer to predict the drug resistance of MTB 
(Fig.  5). The main features of CNN-based model were 
the convolution and pooling layers (Fig.  5). A convolu-
tion layer could learn the interaction between mutations 
and save more computation than a fully connected layer. 
A pooling layer can increase the model’s ability of resist-
ing noise and save computation. The model used in TB-
DROP, a MLP (Fig. 5), was constructed finally based on the 
observation and summarization during the adjustment of 
the three published models. As analyzed above, we found 
that the wide part in the original design of WDNN is no 
longer suitable for our scenario. Therefore, the wide part 
of WDNN was removed from the architecture of WDNN 
and the model became a traditional MLP model. The per-
formance of the model did not change, indicating the wide 
part that WDNN contributed negligibly.

Conclusion
The deep learning training framework developed in this 
study contributes substantially to the in-depth under-
standing of the characteristics of the models, as well as 
the standardization and optimization of the training pro-
cess. The three representative models were summarized 
and benchmarked systematically and comprehensively 
using this framework to discover the strengths and weak-
nesses of these modules, which provided a reliable basis 
for researchers who aim to develop more effiecient deep 
learning-based models. The de novo MTB drug resistance 
prediction tool TB-DROP developed to overcome the 

Table 4 The difference of metrics between the original models 
and the reimplementation version

The column ‘difference’ is calculated as (value of reimplementation – value of 
original) / value of original. AUC stands for “Area under the ROC Curve”; MSE 
stands for Mean Squared Error

Model Metrics Original Reimplementation Difference (%)

WDNN Sum of AUC 10.50 10.50 0

DeepAMR Sum of AUC 3.75 3.87 3.20

CNNGWP MSE 62.34 63.04 1.12
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previous limitations from novel mutations and second-
line drugs and the rarely reported drug-resistance genes. 
The small variance (the stable performance in 10 × cross 
validation) was a symbol of stability and convergent loss 
curve, which indicated a model was well-trained. These 
works guarantee the reliability of the model provided in 
TB-DROP. The development of TB-DROP cleared the 
barriers for clinicians in applying deep learning models, 
as well as laid the foundation for the application of highly 
efficient models in the clinic in the future.
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