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Multi-Omics integration can be used 
to rescue metabolic information for some 
of the dark region of the Pseudomonas putida 
proteome
Steven Tavis1,2 and Robert L. Hettich2* 

Abstract 

In every omics experiment, genes or their products are identified for which even state of the art tools are unable 
to assign a function. In the biotechnology chassis organism Pseudomonas putida, these proteins of unknown function 
make up 14% of the proteome. This missing information can bias analyses since these proteins can carry out functions 
which impact the engineering of organisms. As a consequence of predicting protein function across all organisms, 
function prediction tools generally fail to use all of the types of data available for any specific organism, including pro-
tein and transcript expression information. Additionally, the release of Alphafold predictions for all Uniprot proteins 
provides a novel opportunity for leveraging structural information. We constructed a bespoke machine learning 
model to predict the function of recalcitrant proteins of unknown function in Pseudomonas putida based on these 
sources of data, which annotated 1079 terms to 213 proteins. Among the predicted functions supplied by the model, 
we found evidence for a significant overrepresentation of nitrogen metabolism and macromolecule processing 
proteins. These findings were corroborated by manual analyses of selected proteins which identified, among others, 
a functionally unannotated operon that likely encodes a branch of the shikimate pathway.

Keywords Multi-omics integration, Proteins of unknown function, Machine learning, Gene ontology, Pseudomonas 
putida, Function prediction

Introduction
Pseudomonas putida is a promising chassis bacterium 
that is being customized and deployed for a range of 
biotechnology applications [1], including lignin valori-
zation [2, 3] and the production of biofuels [3]. These 
applications necessarily involve engineering the genome 
of P. putida in order to produce novel metabolites and 

optimize the synthesis of natural products. Critical to 
bioengineering projects of this nature is a complete 
understanding of the enzymes, transporters, and regu-
latory systems involved in a pathway of interest. Prot-
eomics measurements of P. putida routinely identify the 
differential expression of not only numerous annotated 
proteins but also proteins of unknown function (PUFs), 
including in conditions highly relevant to biotechnologi-
cal applications. It is probable that some, and possible 
that many of these proteins, are nonfunctional or unex-
pressed pseudogenes. However, pseudogenes rarely make 
up more than 5% of bacterial genomes [4] and are likely 
to be under negative selection [5] so it is likely that most 
PUFs are functionally relevant. This terra incognita of the 
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proteome is by necessity routinely ignored in proteom-
ics analysis but represents a dangerous blind spot in our 
understanding and control of the functional genetics of P. 
putida.

There is a remarkable diversity of functions carried 
out by proteins, which has led to the creation of multiple 
standardized systems for describing protein function in 
a computationally approachable manner [6, 7], of which 
the most popular is the Gene Ontology [8, 9]. Such stand-
ardized and structured function labels are necessary for 
the omics-scale analysis of expression data, as it brings 
prior knowledge to bear on such analyses, reduces their 
severe multiplicity, and facilitates cross-species compari-
sons [10].

Current approaches to function annotation largely 
rely on inferences based on sequence similarity between 
genes in different organisms [11]. Traditional approaches 
were based on the simple transfer of annotations from 
high scoring BLAST hits [12]. Subsequent methods 
used hidden Markov models and other sequence pattern 
identification tools to identify domains and higher order 
family relationships [13]. There have been numerous suc-
cessful efforts to integrate other sources of information, 
including evolutionary relationships [14, 15], protein–
protein interaction networks [16], co-expression data 
[17, 18], and text mining [16, 19]. In the most recently 
published Critical Assessment of Function Annotation 
(CAFA3) challenge [20], most models incorporated some 
amount of non-sequence similarity information in their 
predictions, typically evolutionary relationships. The 
challenge highlighted the usefulness of incorporating this 
information and in particular identified NetGO [16] as a 
high-quality model that takes advantage of the STRING 
database of multidimensional protein–protein similarity 
information [21].

The best performing model in CAFA3 was overall bet-
ter than CAFA2 but the improvements were neither large 
nor consistent across sub-tasks [20]. It may be the case 
that current tools are reaching the limits of what infer-
ring function primarily from sequence similarity is capa-
ble of and that greater integration of diverse sources of 
information is necessary. A critical weakness of general-
purpose function prediction approaches is that they, by 
necessity, are not tailored to the information available for 
a specific organism. NetGO uses the STRING database 
to combat this issue, which allows the tool to take advan-
tage of a collection of databases of targeted experiments. 
However, for many organisms, P. putida included, these 
databases have very limited information.

Unfortunately, there is no organism for which the 
functional annotation of its genome is complete [22]. 
The presence of PUFs in differential expression experi-
ments, especially differentially abundant PUFs, brings 

a risk of bias in subsequent gene ontology enrichment 
analyses; this is because the differential abundance 
associated with a GO term is compared against the 
background rate of expression for that term. If PUFs 
are present in the dataset, they can bias the estimates 
of GO frequencies in either the background or differen-
tially abundant protein sets. The presence of PUFs also 
drive a spotlight effect wherein analyses focus on the 
functions which are known to be present and the func-
tions of PUFs are ignored.

A previous work on predicting the function of recal-
citrant PUFs focused on a minimal bacterial genome 
[23]. It was found that recalcitrant PUFs were strongly 
enriched in transporters, which was interpreted as a 
result of the nutrient rich environmental niche of the 
organism driving the need for an unusual diversity of 
transporters. We took a different line of thought in that 
we expected that proteins which are more difficult to 
purify and thus more difficult to biochemically assay 
would be systematically under–annotated regardless of 
organism, meaning that PUFs, at least in comparatively 
common laboratory bacteria such as Pseudomonas spe-
cies, should generally be enriched in membrane and 
structural proteins. However, our untargeted analysis 
of protein function found that PUFs in P. putida are in 
fact depleted in these functions.

We focus our analysis on the proteins which completely 
lack annotation because, compared to partially annotated 
proteins, they present a greater risk of bias in GO enrich-
ment analyses and they provide no starting point for 
hypothesis driven experimental assessment of function. 
Even partial or shallow information is valuable in these 
cases. We are particularly concerned with the general 
categories of functions that are enriched in recalcitrant 
PUFs, as this allows us to assess the importance of this 
class of proteins for biotechnologists.

This work seeks to extend the state-of-the-art auto-
matic GO annotations of P. putida by constructing a 
bespoke predictive model that is tailored to the datasets 
available for the organism. To interrogate the function of 
recalcitrant PUFs while maintaining control of the false 
discovery rate (FDR) of annotations, we integrate popu-
larly used lines of evidence. These include evolution-
ary analysis, online databases, sequence and structural 
similarities, and co-expression data. Different lines of 
evidence can be used to assess intra- and inter-species 
protein similarity, so a two-part model is built with one 
arm using within species proteome-scale data and the 
other leveraging Alphafold [24, 25] structural predictions 
to identify cross-species structural similarities. We find 
that PUFs carry out a quantitatively distinct distribution 
of functions and are enriched in both nitrogen metabo-
lism and metabolite binding.
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Materials and methods
Genome data
Unless otherwise specified, all analyses used the genome 
downloaded as a.faa file from the Pseudomonas Genome 
Database for strain KT2440_110. All Uniprot and Alpha-
fold data are for NCBI:txid160488.

Initial function annotations
Gene Ontology (GO) functional annotations were down-
loaded from Biocyc [26], The Pseudomonas Genome 
Database [27], and Uniprot [28] on Oct. 22, 2020. All 
annotation files were for the KT2440 strain. Evidence 
code summaries are listed in Table S1 for Biocyc, Table S2 
for the Pseudomonas Genome Database, and Table S3 for 
Uniprot; all are found in Additional file 3. Further anno-
tations were obtained using the online tool NetGO2.0. 
NetGO annotations were filtered to have a quality score 
greater than 0.9, which appeared to be an inflection point 
in the cumulative score distribution and was thus consid-
ered the likely limit of high confidence predictions. Pro-
teins were considered to be PUFs if they were annotated 
to a depth of less than two, meaning no annotation or 
only annotated with an uninformative ontology root.

Similarity of sequence motifs
InterProScan 5 [13] was run locally on all proteins using 
default settings. SignalP 5.0 [29] was also run on these 
proteins with default settings. A binary presence-absence 
vector was made for each protein to represent the 
sequence features assigned to it. The Shannon informa-
tion content of each feature in the dataset was calculated 
and used as a weight for that feature. For all pairwise 
comparisons of proteins, the weighted Jaccard distance 
of their feature vectors was calculated and used as a 
predictor.

Sequence similarity
Diamond [30] was used to assess the sequence similar-
ity of P. putida proteins. All PUFs were searched against 
the entire P. putida genome database with ultra-sensitive 
mode enabled. The bitscore of the alignments were used 
as the similarity measure.

Operon co‑membership
Transcriptomics data were downloaded from the JGI 
genome portal for JGI project ID 1137772. Rockhopper 
[31] was then used to identify operons by mapping tran-
scripts to the genome using default settings. Co-member-
ship was included in the within species protein–protein 
similarity model (Fig. 1B) as a binary predictor variable.

Evolutionary correlations
The amino acid sequences for 612 complete genomes 
hosted by the Pseudomonas Genome Database were 
downloaded as fasta files and associated gff3 on Mar. 
9, 2021. Groups of orthologs were identified with pro-
teinortho [32] using default parameters and the addi-
tional synteny parameter. The size of the intersection 
of species sets in these orthogroups was calculated for 
all pairwise comparisons of P. putida proteins. Multise-
quence alignments of orthogroups containing P. putida 
genes were generated using MAFFT [33] with automatic 
parameters. Phylogenetic trees for each orthogroup were 
estimated using RAxML-ng [34] with default parame-
ters. A species tree was estimated from these gene trees 
using Astral-III [35] with default parameters. Gene tree 
branch lengths were then re-estimated using RAxML-ng 
with default parameters. Robinson-Foulds weighted clus-
ter metric was calculated for all pairwise comparisons 
of trees using TreeCMP [36] with parameters to prune 
unmatched species and allow for 0 length branches. 
Both the orthogroup intersection size and the Robinson-
Foulds weighted cluster metric were then used as pre-
dictors in the within species protein–protein similarity 
model (Fig. 1B).

Proteomic co‑expression
ProteomeXchange [37] was searched for bottom up 
proteomics datasets containing only P. putida proteins. 
Datasets were restricted to label free DDA data with at 
least five conditions to enable combined processing and 
to ensure that correlations were stable within each data-
set. Datasets were also excluded if files could not be 
mapped to samples due to poor metadata. Raw files for 
three proteomics datasets (ProteomeXchange identifiers: 
PXD013011, PXD016028, and PXD016114) passed these 

(See figure on next page.)
Fig. 1 A-C Within species guilt-by-association predictive model. D-G Between species structural similarity predictive model. A 20 measures 
of protein similarity are calculated for all pairs of P. putida proteins. B The depth of deepest shared GO term is predicted for each pair of proteins 
based on the 20 measures of similarity. Hits are considered to have a depth > 6. C The matching of a term to a protein is predicted from summary 
statistics of hits that contain the term. D Alphafold structure predictions are downloaded from the Alphafold database. E PUF structures 
and a matching number of PKF structures are searched against the PDB using RUPEE. F Predictors are calculated from RUPEE structure alignments 
and NWalign sequence alignments. G Annotation matches are predicted as in (C) from hits annotated with each term. Final annotations are 
the union of the output of the two models
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Fig. 1 (See legend on previous page.)
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requirements with 8, 18, and 12 conditions respectively. 
Throughout the process, each experiment was processed 
separately with identical parameters. Our data processing 
pipeline was inspired by the results in [38]. Raw files were 
converted to mzML and MGF files with MSconvert [39] 
using ThermoFisher’s peak picking algorithm for cen-
troiding profile mode data and otherwise default param-
eters. Within the Philosopher pipeline [40], runs were 
searched with both Comet and MSfragger with a parent 
ion tolerance of 10 ppm, a fragment ion tolerance of 0.02 
Da and trypsin as the enzyme; all other parameters were 
left default. Search outputs were filtered using Peptide-
Prophet with the accmass, decoy, and nonparam flags set 
and trypsin as the enzyme. iProphet was used to com-
bine the outputs of the searches with default parameters. 
A spectral library was constructed from the combined 
search results using SpectraST with the cIHCD, cAC, 
cu, c_DIS, c_BDU, and c_BDT flags set. The mouse spec-
tral library was downloaded from NIST and processed 
using the cAC, c_DIS!, c_BDU, and c_BDT flags set 
and “DECOY_” added to each entry. These two spectral 
libraries were then concatenated. MGF files were then 
searched using Ann-SoLo [41] with a precursor tolerance 
of 20 ppm, a precursor open mass tolerance of 500 Da, a 
fragment mass tolerance of 0.02 Da, peak shifts allowed, 
and the concatenated spectral library as the database. 
In a custom script, the Ann-SoLo output was FDR con-
trolled at 1% using the mouse spectra as decoys. Peaks in 
the delta mass histogram with an error greater than 5 Da 
were treated as potential modifications. Potential modi-
fications were filtered to identify plausible chemical arti-
facts; biological PTMs and PSMs in the delta mass peaks 
that survived this filter were annotated with the corre-
sponding modification. Proteins were quantified using 
FlashLFQ [42] with both match between runs and shared 
peptide quantification enabled and otherwise default 
parameters. Nonzero intensities were averaged per con-
dition and missing values at the condition level were zero 
imputed. The Spearman correlation coefficient was cal-
culated for all pairwise comparisons of proteins on a per 
experiment basis, with missing proteins being given zero 
correlations, and the correlations were averaged across 
experiments. The Jaccard distance was calculated on the 
presence/absence vector of all conditions in all experi-
ments. Both the mean Spearman correlation coefficient 
and Jaccard distance were used as predictors.

Structural similarity
P. putida protein structure predictions were downloaded 
from the Alphafold database [24, 25]. For each predic-
tion, residues were trimmed starting at both termini until 
the first residue with a pLDDT, a confidence score pre-
dicted by Alphafold based on the work in [43, 44], greater 

than 70 was reached. If the untrimmed region was longer 
than 30 amino acids the structure was kept for down-
stream analysis. 3131 structures remained after this pro-
cess. TM align [45] was used to calculate TM-scores, a 
global structure alignment quality score [46], and root 
mean squared deviation (RMSDs) for all pairs of proteins. 
Two TM-scores were calculated for each pair by normal-
izing against the length of each protein. The maximum of 
the two scores was used, along with RMSD, as similarity 
measures.

STRINGdb data
The full list of protein–protein similarity scores for P. 
putida, including sub scores, was downloaded from 
STRINGdb [21]. The combined score and all sub scores 
were used with the exception of co-expression and exper-
iments (although co-expression transferred and experi-
ments transferred were both used) these sub scores were 
excluded on the basis of the extremely low number of 
links they contained.

Guilt‑by‑association model
The protein–protein similarity scores described above 
were used to predict the functional similarity of pairs 
of proteins (Fig. 1B). To define similarity for all possible 
pairs of proteins, we took the set of GO terms annotated 
to both and found the deepest shared term, meaning 
the term with the most steps in the longest path from 
the ontology root to the term. This number of steps was 
used as the measure of protein similarity. We treated GO 
terms from each of the three ontologies equivalently, as 
we found that each ontology had a qualitatively similar 
relationship between term depth and functional infor-
mativeness. Ten percent of annotated proteins were held 
out as a test dataset for all machine learning steps in 
the model (Figs. 1B and C). A random forest regression 
model was trained to predict similarity (Fig. 1B). The vec-
tor of predictors for this model is listed in Table S4. To 
account for unbalance in the training data, protein pairs 
with a shared term depth greater than six were oversam-
pled twofold and those with a depth greater than eight 
were oversampled fourfold. The protein pairs with a pre-
dicted shared term depth greater than six were consid-
ered similar and used as inputs for the annotation model. 
The cutoff depth of six was chosen in order to balance 
the number of annotated proteins that could contribute 
information with the specificity of the information con-
tributed to each query protein.

For the annotation model (Fig.  1C), a semi-super-
vised random forest classifier was trained to predict, on 
a term-by-term basis, whether a GO term is associated 
with a query protein. The predictors for this model were 
derived from the set of proteins identified as similar to 
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the query by the first model, which were also annotated 
with the GO term being tested. Each predictor was a 
summary statistic describing the collection of values for 
one similarity measure among hit proteins. So, for a par-
ticular GO term-protein pair that we wish to test with 
the model, we find all of the predicted similar proteins 
that are annotated with that term and then summarize 
the similarity scores between those proteins and the 
query protein. For example, the sum and the maximum 
are used to summarize TM-scores and both values are 
included in the vector of predictors. The specific similar-
ity measures and the summary statistics which form the 
predictive features for the model are listed in Table  S5. 
The association of a GO term with a protein was only 
assessed if the term appeared among the annotations for 
similar proteins. Term-protein pairs were left unlabeled 
if the protein was in the test set, if the protein was a PUF, 
or if the term was deeper than the deepest term in the 
proteins known annotation. Preliminary testing showed 
that the FDR control procedure overfit when run on the 
training data, so an additional random 10% of the term-
protein pairs from the training dataset were treated as 
unlabeled for use by the FDR control procedure. The 
model produces a continuous confidence score for each 
term-protein pair; a threshold was set on this score for 
annotating a protein with a term that resulted in a 1% 
FDR in the set left unlabeled for this purpose. A term 
passing this threshold, along with all its parent terms that 
were necessitated by the structure of the ontology, were 
predicted to be annotated to the query protein. The func-
tion predictions made by the model are available in Addi-
tional file 1.

Network modularity analysis
In addition to their use in the annotation model (Fig. 1C), 
the identified protein pairs from the protein–protein 
similarity model (Fig. 1B) were treated as a network. We 
assessed binary partitions of this network, meaning dis-
joint sets of nodes, i.e. PUFs vs PKFs, random sets, or 
proteins sharing a GO term vs those not annotated with 
the term. The modularity score of these partitions was 
calculated using the modularity function provided by the 
NetworkX package in python [47]. The resolution value, 
a tunable parameter related to the characteristic size of 
communities within a network, was set at 0.81 using the 
procedure published in [48]. Random partitions were 
generated to be the same size as PUFs and GO terms 
were selected to produce partitions if they were anno-
tated to more than 400 proteins.

Protein structure database
Alphafold structure predictions for all proteins in Swis-
sprot were downloaded from the Alphafold protein 

structure database on Aug. 2, 2022. These proteins were 
trimmed and filtered in the same manner as the P. putida 
structures (Fig. 1D).

RUPEE structural similarity search
A RUPEE [49] was used to identify structurally similar 
proteins in the PDB database [50, 51] for all P. putida pro-
teins with cleaned structure predictions. Search type was 
set to full length and search mode was set to all aligned. 
Hits with a TM-score greater than 0.3 were retained for 
downstream analysis (Fig. 1E).

Sequence analysis of RUPEE hits
Amino acid sequences for each P. putida query protein 
were compared to each of its Swissprot hits using NWa-
lign to generate additional predictors for the structural 
similarity model. From the outputs percent sequence 
identity and percent non-gap were used as predictors. 
Additionally, the rank order of the most specific shared 
taxonomic level was used as a crude measure of phylo-
genetic similarity i.e., genus = 1, family = 2, etc. (Fig. 1F).

Structural similarity model
The design of the semi-supervised random forest clas-
sifier that predicts GO annotations for PUFs based on 
structural similarity hits (Fig. 1G) is similar to its coun-
terpart in the guilt-by-association model (Fig.  1C). In 
this case, the hit proteins come from the RUPEE struc-
tural similarity searches and the predictors are summary 
statistics of the NWalign results and the TM-score and 
RMSD reported by RUPEE. The specific summary statis-
tics used for each similarity score to construct the feature 
vector are listed in Table  S6. Training data were again 
considered unlabeled if the term was deeper than the 
deepest annotation for the training protein, if the term-
protein pair was a member of the random 10% used for 
FDR control, if the protein was a PUF, or if the protein 
was a member of the test set. Final predicted annotations 
were the union of predictions from both the guilt-by-
association and structural similarity arms. The function 
predictions made by the model are available in Addi-
tional file 2.

Analysis methods
Bayesian statistical models were written in Stan [52]. 
Bootstrap models were made in Python using Numpy 
[53]. All in house scripts used in the analysis are available 
on GitHub at https:// github. com/ stavi s1/ Pputi da_ PUF_ 
predi ctions_ paper (https:// doi. org/https:// doi. org/ 10. 
5281/ zenodo. 10493 789).

https://github.com/stavis1/Pputida_PUF_predictions_paper
https://github.com/stavis1/Pputida_PUF_predictions_paper
https://doi.org/
https://doi.org/10.5281/zenodo.10493789
https://doi.org/10.5281/zenodo.10493789
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Results
State of the art functional annotations for the P. putida 
genome are incomplete and inconsistent between 
sources. Approximately 14% of the P. putida proteome 
are PUFs and 50% of proteins are annotated to a GO 
depth of less than 6 (Fig.  2B). Over 75% of these anno-
tated terms are observed in only one of the four sources 
of annotations, with the majority of these singletons 
coming from NetGO2.0. Only 2% of annotations were 
observed in all four datasets, although the intersection 
would be 24% in the absence of NetGO2.0 predictions 
(Fig. 2A). Among the annotations in the global intersec-
tion, 25% of them were ’DNA-binding transcription fac-
tor activity’ or ’DNA binding’. 62% of annotated terms 

were from the biological process ontology, while 34% 
were from molecular function and 4% were from cellular 
component.

PUFs have distinct distributions of properties and are 
on average shorter proteins, with a median length of 
118 amino acids compared to 301 for proteins of known 
function (PKFs) (Additional file 3 Figure S1). The median 
number of orthologs identified for PUFs across 612 pub-
lished Pseudomonas genomes was 70 genes, whereas the 
median number of orthologs attributed to a PKF was 
474 (Additional file 3 Figure S1). The median pLDDT, a 
per-residue measure of prediction confidence, was 84 for 
PUF structure predictions from Alphafold compared to 
90 for PKFs. This is likely due to the lower evolutionary 

Fig. 2 A Distribution of GO term depths in the initial set of annotations. B The number of GO terms contributed to the initial annotations by each 
source
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conservation of PUFs, as Alphafold uses residue level 
evolutionary correlations to predict protein structure 
[24]. To assess the statistical significance of these obser-
vations against a null model of equal distributions, 500 
bootstrap resamples of the quantile–quantile plots for 
each of these metrics were calculated and in all cases the 
y = x line, representing the null, lay entirely outside of the 
confidence interval (Additional file 3 Figure S1).

A random forest model (Fig.  1B) was constructed 
to predict the depth of the deepest shared GO term 
between pairs of proteins. These predictions were based 
on 20 similarity measures derived from proteomic co-
expression data, structure and sequence alignments, 
STRINGdb, evolutionary correlations, operon member-
ship and InterProScan features; see methods for details 
(Fig.  1A). Those protein pairs with a predicted shared 
depth of more than 6 were considered hits, which means 
that their similarity scores are used by the subsequent 
term transfer model (Fig. 1C). The area under the curve 
of the receiver operating characteristic (AUC-ROC) for 
the model is 0.77 (Additional file 3 Figure S2).

Within the network of proteins made by linking the hits 
identified above, PUFs had a modularity score of 0.19. 
This number is difficult to directly interpret, so we sought 
to construct a conceptual scale with a model of partition-
ing due to chance on one end and models of partition-
ing due to shared function on the other. To compare this 

against null expectations, 1000 random partitions of the 
network were generated of the same size as PUFs. These 
partitions had uniformly lower modularity scores than 
PUFs, with a range of 0.14 to 0.15 (Fig.  3). By contrast 
the modularity of proteins sharing common GO terms 
ranged from 0.17 to 0.51 (Fig.  3 and Additional file  3 
table S1). Of particular interest, ’oxidoreductase activity’, 
’intrinsic component of membrane’, and ’cation binding’ 
all had lower modularity scores than PUFs.

Within species, protein similarities are able to extend 
state of the art annotations. The predicted functional 
similarity hits from the previously mentioned model pro-
vided the starting point for predicting GO term anno-
tations. For each GO term found among the functional 
similarity hits for a PUF, we computed summary statistics 
of the source similarity measures of the set of hits anno-
tated with that term (Fig. 1B, C). We predicted whether 
a GO term should be applied to a protein based on this 
vector of summary statistics. Despite the source model’s 
AUC-ROC of 0.77 (Additional file 3, Figure S2), the GBA 
model achieved an AUC-ROC of 0.92 (Fig. 4A). The score 
cutoff was determined by finding the cutoff which con-
trolled the training set false discovery rate at 1%, which 
in the test set resulted in a realized false discovery rate of 
8.5% which corresponds to a precision of 91.5%. At this 
cutoff, the recall in the test set is 50%. In total, 77 GO 
terms were able to be annotated across 17 PUFs (Fig. 4C). 

Fig. 3 The modularity of PUFs as a partition of the protein functional similarity network compared to two models of functional coherence. The null 
model consists of random sets of proteins of the same size as PUFs. The shared function model consists of proteins sharing a GO term annotation, 
for all GO terms annotated to more than 400 proteins



Page 9 of 15Tavis and Hettich  BMC Genomics          (2024) 25:267  

The full results from this model are found in Additional 
file 1.

The structural similarity model separately extended 
state of the art annotations for PUFs based on between 
species information transfer. This model’s construction 
follows the same pattern of first identifying a set of simi-
lar proteins that could provide functional information 
and then deciding if an annotation applied to one or more 
of those proteins should be transferred to the query pro-
tein based on the summary statistics of similarity scores 
(Fig. 1 D-G). Similar proteins here were identified using 
RUPEE structural similarity searching (Fig.  1E). Several 
similarity scores were calculated for identified pairs of 
proteins on the basis of sequence and structural analy-
sis (Fig. 1F) and GO terms were transferred using a semi 
supervised random forest classifier (Fig. 1G). The model 
achieved a test set AUC-ROC of 0.99 with a recall of 86% 
at the 1% FDR controlled cutoff. The realized FDR at this 
cutoff was 6.4%, which means the precision was 93.6%. 
This resulted in the annotation of 1002 terms to 203 pro-
teins (Fig. 4B and C). The full results from this model are 
found in Additional file 2.

The combined results of our two models were able to 
assign 1079 GO terms to 213 PUFs; the combined results 
are listed in Additional file 5. Using these annotations, we 
assessed PUFs to be enriched in metabolite binding and 
nitrogen metabolism. A GO overrepresentation analysis 
was conducted for all terms with at least four observa-
tions in both PUFs and PKFs (Fig. 5). The analysis used 
a Bayesian hierarchical model that accounted for the 
depths of predicted terms. Both strong over- and under-
representations of terms were identified among the pre-
dictions, indicating that PUFs represent a quantitatively 
different distribution of functions than PKFs. Among the 
topmost overrepresented terms were numerous meta-
bolic process terms, many of which related to nitrogen 
metabolism. Additionally multiple metabolite binding 
terms were confidently overrepresented. The three most 
underrepresented terms were ‘localization’, ‘biological 
regulation’, and ‘transporter activity’. Notably ‘membrane’ 
and ‘intrinsic component of membrane’ were both con-
fidently underrepresented despite their wide posterior 
distributions. The most overrepresented term was ‘outer 
membrane’; however, this was only annotated to six 
PUFs. This underscores the limitation of a relative analy-
sis for understanding the absolute functional distribution 

Fig. 4 A ROC curve for the GBA model. Area under the curve 
is 0.92 and recall at the 1% FDR controlled cutoff is 0.50. B Receiver 
operating characteristic (ROC) curve for the structural similarity 
model. The area under the curve is 0.99 and the recall at the 1% 
FDR controlled cutoff is 0.86. C The number and depths of GO term 
annotations predicted by each model
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of PUFs. To understand what these results mean on an 
absolute scale, a second analysis was conducted to pre-
dict the total number of PUFs that should be annotated 
with each term if the annotations for PUFs were as com-
plete as the annotations for PKFs. This analysis assumes 
that predicted annotations are an unbiased sample of true 
PUF annotations. A second hierarchical Bayesian model 
was written which takes term frequencies among PKFs as 
the prior and gives the expected number of PUFs based 
on the term frequencies among predictions (Fig. 6). The 
expected most common term that is functionally inform-
ative was ‘binding’ and again several metabolic process 
terms showed up high on the list, including ‘macromol-
ecule metabolic process’ and ‘nitrogen compound meta-
bolic process’. Consonant with the enrichment analysis 
membrane terms relating to localization, regulation, and 
transporters were all expected to be infrequent among 
PUFs.

Manual analysis of structural similarity hits can provide 
specific function predictions. A non-representative sub-
set of 35 PUFs with structure predictions were selected 
for manual analysis based on the number of predicted 
terms, the quality of structure hits, and suspects from 
other experiments. These more detailed analyses pro-
vided more specific functional predictions than could be 
generated by the automatic models for 26 PUFs (Table S1, 
Additional file 3). Of particular note was an unannotated 
operon that was identified as differentially expressed in a 

metabolic engineering project [54, 55] (publication pend-
ing for proteomics data). Manual analysis of the collected 
data indicated that this operon encodes a branch of the 
shikimate pathway [56] which includes a chorismatase 
and an acetylation step.

Among the manually reanalyzed proteins are four pro-
teins putatively involved in biofilm formation, including 
the pilin PP_3800, the porin PP_0576 with structural 
similarity to other biofilm related porins, the chaperone-
usher fimbria (CsuE) like protein PP_2363, and the FapF 
like amyloid exporter PP_2853. The only one of these 
three proteins with any significant amount of infor-
mation about it in the databases used in this study was 
PP_2363, which was referred to as a CsuE like protein by 
the Pseudomonas Genome Database [27]. Despite this 
known information, no GO annotations were obtained 
for this protein from any of the starting sources.

Discussion
Proteins of unknown function, ever present in genome 
scale analyses, are a significant source of missing infor-
mation and confounding factors in attempts to under-
stand or control biological systems. To assess the sorts of 
functions hidden within P. putida PUFs, we constructed 
a two-pronged model to predict their distribution of GO 
terms. The first prong is a guilt-by-association model 
that takes advantage of within-species protein similar-
ity measures to first predict functionally similar pairs of 

Fig. 5 Posterior distributions of GO term enrichments quantified by PUF to PKF odds ratios. Black dots represent the medians, and lines represent 
0.1–0.9 quantiles of the posterior. Color indicates posterior sample density. On the right are plotted the number of proteins annotated with each GO 
term
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proteins, and then from these pairs, predict GO annota-
tions. This produces both the predicted annotations as 
well as a protein functional similarity network, which 
is independently useful for assessing the distribution of 
PUF functions. The second prong leverages Alphafold 
structure predictions of PUFs to perform a structural 
analog to BLAST-based protein annotation by searching 
predicted structures against the PDB database of solved 
structures. These two prongs provide independent FDR-
controlled function predictions, all of which are used for 
further analysis as the low overlap in outputs precluded 
the use of a more complicated consensus mechanism.

Based on a comparison of the two models used in this 
work, structural information proved to be more sensi-
tive than sequence similarity at identifying functional 
similarity between proteins. Two explanations for this 
observation immediately present themselves: First, pro-
tein structure evolves slower than either nucleotide or 
amino acid sequence, which allows a structure-based 
search to identify more distant homologs [57]. Second, 
tertiary structure is a more direct driver of protein func-
tion than primary sequence, which means that structural 
analogs, regardless of whether they are true homologs 
or the result of convergent evolution, are most likely 
functionally informative. Structural information is also 
more discriminative, as proteins sharing sequence simi-
larity but which have structural divergence, are far less 
likely to actually share function. The predictive power 
of structural analogs does have limits, as seen in the 

manual reanalysis of select proteins. In no example were 
we able to identify both the exact substrate and reaction 
catalyzed by an enzyme with confidence. In a particu-
larly salient example, PP_1372 exhibited high structural 
similarity to a hexameric transmembrane pore involved 
in conjugation, a monomeric motor protein involved in 
DNA trafficking, and a hexameric ring DNA translocase. 
All of these share a degree of functional overlap but are 
nevertheless quite distinct. This underscores the need for 
a stringent quality control filter for computational func-
tion annotations, even from a source as informative as 
structural analogs.

The within species guilt-by-association analysis yielded 
far fewer confident functional predictions than the cross-
species structural information. The shallow and incom-
plete nature of the initial annotations likely limited the 
amount of available information that could be used to 
identify protein function. This approach may be better 
suited to eukaryotic genomes, which are larger and more 
redundant so more information can be drawn upon. 
Nevertheless, the network of functional similarity hits 
was consonant with ground truth biological data in that 
groups of proteins all annotated with the same term gen-
erally exhibited high modularity scores. The downstream 
function prediction model also improved on the AUC-
ROC of the similarity hit model, presumably by averaging 
information over multiple hits.

Both models assess the confidence with which an anno-
tation can be applied to a query protein with a score on 

Fig. 6 Posterior expectations for the number of PUFs annotated with a GO term if PUFs were annotated to the same completeness as PKFs. Red 
dots represent the number of times a term was predicted by the models. White dots represent the median, and lines represent the 0.1–0.9 quantiles 
of the posterior
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an arbitrary scale. A threshold needs to be set on this 
score in order to arrive at a final list of GO annotations 
for a protein. Here we set the threshold to control the 
false discovery rate in a holdout set of proteins. This pro-
cedure is unlikely to reliably control the false discovery 
rate in recalcitrant PUFs because they have a different 
distribution of properties. However, the realized false 
discovery rate in the final validation set, while higher, was 
still at an acceptable level for our analyses, indicating that 
the predicted annotations should be reliable enough to 
assess functional enrichment.

The results clearly indicate that the spectrum of func-
tions performed by PUFs is meaningfully different than 
the functional spectrum carried out by proteins of known 
function. When protein–protein functional similarity 
predictions were treated as a network, PUFs displayed a 
modularity greater than expected based on their distribu-
tion of connection counts. From this observation we can 
reasonably assert that modularity of PUFs does represent 
a meaningful signal of similarity. When compared against 
the modularity scores calculated for sets of proteins all 
annotated with the same GO term, PUFs had a much 
lower modularity than most sets. However, ’oxidoreduc-
tase activity’, ’intrinsic component of membrane’, and 
’cation binding’ had lower modularity scores than PUFs. 
We take this to mean that while PUFs are certainly not 
a coherent functional group, they do share a noticeable 
degree of functional similarity, presumably due to sys-
tematic under-annotation of some functions.

The systematic difference in PUF functions compared 
to PKFs matters because gene ontology enrichment anal-
yses rely on comparing function enrichments against a 
background. In order for this process to give unbiased 
estimates of the true enrichments in the face of missing 
annotations, those missing annotations must have the 
same distribution of frequencies as the known annota-
tions. Unequal distributions can result in consistently 
over or underestimating the magnitude of enrichment for 
specific GO terms.

The hypothesis at the beginning of the project was 
that PUFs would be enriched in structural proteins and 
transporters as these classes of protein are more difficult 
to purify and/or assay in vitro than other classes of pro-
tein and are therefore expected to be less well annotated. 
However, both membrane localization terms and trans-
porter related terms were either depleted or expected 
to be infrequent among PUFs (Figs. 5 and 6). GO terms 
related to structural functions were absent from our 
predictions. To our surprise, we instead identified an 
excess of proteins involved in metabolite binding, nitro-
gen metabolism, and macromolecule processing (Fig. 5). 
As with previous work on characterizing recalcitrant 
PUFs [23], this could be interpreted as the result of the 

environmental niche P. putida occupies. It has an unu-
sually diverse capacity for catabolism, which requires 
an unusual number of enzymes and ancillary metabolic 
proteins. A diversity of proteins also means that there 
will be more unusual examples of proteins carrying out a 
specific function, which are less likely to be annotated by 
traditional functional annotation approaches.

The overrepresentation of macromolecule processing 
functions (Fig.  5) is intriguing in the context of P. puti-
da’s potential utility for bioprocessing of lignocellulosic 
biomass. The process of lignin catabolism by P. putida is 
incompletely understood and these results point to the 
involvement of a significant number of PUFs. Corrobo-
rating this, 38 PUFs were found to be significantly upreg-
ulated in response to the addition of lignin feedstocks 
to growth media (Additional file  4). Manual analysis of 
these proteins identified four that are plausibly involved 
in biofilm formation (Additional file 3 Table S7). As there 
are currently only five proteins in the P. putida proteome 
that are annotated with “GO:0042710 Biofilm Forma-
tion” in the starting annotations, ignoring these PUFs 
changes the enrichment of this term by up to twofold. It 
is, of course, not the case that the community of P. putida 
researchers is only aware of five proteins involved in bio-
film formation; however, automatic annotation tools, 
even state of the art ones, are incapable of leveraging all 
scientific information available for a given protein. In the 
context of GO enrichment analysis this sort of limited 
information will drive biased interpretations of omics 
data.

Of particular interest among the predicted annota-
tions is the term “primary metabolic process.” With a 
median posterior odds ratio of 1.6, the term was only 
mildly enriched relative to its background frequency 
(Fig.  5); however, it is expected that approximately 75 
PUFs would be annotated with this term were they to be 
annotated to the same degree of completeness as PKFs 
(Fig. 6). Although the term is functionally vague, it means 
that there are many PUFs likely involved in the metabolic 
processes that are continuously active. This demonstrates 
that understanding proteins of unknown function is criti-
cally important for metabolic engineering projects and is 
especially the case for projects that intersect with nitro-
gen metabolism, given its observed overrepresentation in 
PUFs.

A set of PUFs were re-analyzed by hand to produce 
more specific functional annotations. The limited size of 
this sample does not permit a stringent test of the infer-
ences from the whole set of computational predictions; 
however, it does provide some corroborating evidence. 
Specifically, the majority of manually assessed genes were 
found to be enzymes, with half of them as enzymes acting 
on small molecule metabolites. We interpret this to mean 



Page 13 of 15Tavis and Hettich  BMC Genomics          (2024) 25:267  

that there is a significant unknown metabolic potential 
in the recalcitrant PUFs of P. putida that cannot be safely 
ignored for bioengineering or genome scale informat-
ics. Novel pathways, alternative routes through known 
pathways, and the capacity to produce or consume unex-
plored metabolites could all reasonably exist among these 
proteins. For synthetic biologists this is both a challenge 
and an opportunity as PUFs represent both a resource to 
exploit and an unpredictable source of confounding fac-
tors in pathway design.

Conclusions
Bespoke predictive modeling is able to extend state of the 
art function predictions for proteins of unknown func-
tion by leveraging information unique to an organism. 
Of particular utility in this task is the similarity of protein 
structures predicted by Alphafold. We predicted 1079 
gene ontology terms for 213 proteins of unknown func-
tions and analysis of these predicted functions indicates 
that there is a significant degree of metabolic potential 
among recalcitrant PUFs, especially in the areas of nitro-
gen metabolism and macromolecule processing.
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