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Phenotypic divergence between broiler
and layer chicken lines is regulated at the
molecular level during development
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Abstract

Background Understanding the molecular underpinnings of phenotypic variations is critical for enhancing poultry
breeding programs. The Brazilian broiler (TT) and laying hen (CC) lines exhibit striking differences in body weight,
growth potential, and muscle mass. Our work aimed to compare the global transcriptome of wing and pectoral
tissues during the early development (days 2.5 to 3.5) of these chicken lines, unveiling disparities in gene expression
and regulation.

Results Different and bona-fide transcriptomic profiles were identified for the compared lines. A similar number

of up- and downregulated differentially expressed genes (DEGs) were identified, considering the broiler line as a
reference. Upregulated DEGs displayed an enrichment of protease-encoding genes, whereas downregulated DEGs
exhibited a prevalence of receptors and ligands. Gene Ontology analysis revealed that upregulated DEGs were mainly
associated with hormone response, mitotic cell cycle, and different metabolic and biosynthetic processes. In contrast,
downregulated DEGs were primarily linked to communication, signal transduction, cell differentiation, and nervous
system development. Regulatory networks were constructed for the mitotic cell cycle and cell differentiation biological
processes, as their contrasting roles may impact the development of distinct postnatal traits. Within the mitotic cell
cycle network, key upregulated DEGs included CCND1T and HSP90, with central regulators being NF-kB subunits (RELA
and REL) and NFATC2. The cell differentiation network comprises numerous DEGs encoding transcription factors (e.g.,
HOX genes), receptors, ligands, and histones, while the main regulatory hubs are CREB, AR and epigenetic modifiers.
Clustering analyses highlighted PIK3CD as a central player within the differentiation network.

Conclusions Our study revealed distinct developmental transcriptomes between Brazilian broiler and layer lines. The
gene expression profile of broiler embryos seems to favour increased cell proliferation and delayed differentiation,
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which may contribute to the subsequent enlargement of pectoral tissues during foetal and postnatal development.
Our findings pave the way for future functional studies and improvement of targeted traits of economic interest in

poultry.

Keywords RNA-Seq, Transcriptome, Broiler and layer chicken lines, Differentially expressed genes, Gene ontology,

Regulatory network, Breeding programs

Background
The domestic chicken Gallus gallus domesticus is omni-
present in human societies and is currently the world’s
most common livestock species [1, 2]. Every year billions
of chickens are raised to meet the demand for 120 mil-
lion tons of chicken meat and 1.2 trillion eggs per year
[3]. This demand is expected to rise as human popula-
tions increase, become more urban, and gain access to
improved living standards. It is estimated that by 2050
the demand for livestock products will double [4].

Poultry breeding programs have contributed to the
poultry industry, optimising broiler chickens’ produc-
tion traits and layer hens’ reproductive attributes. Inten-
sive directional genetic selection is the primary strategy
in breeding programs to generate chicken strains with
desired features. For this purpose, chickens with par-
ticular traits are systematically selected, and breeding
is performed over several generations [5]. Due to this
directional selection, broilers’ body weight and muscle
yield have significantly increased, and feed conversion
rate improved over the last 50 years [6]. Notably, broiler
chickens weigh approximately five times as much as layer
hens at 42 days of age [7]. Regarding layer hens, most
commercial strains lay approximately 300 eggs annually,
while female broiler strains from a purebred line lay an
average of 132.4 eggs in the same period [8]. Therefore,
the genomes of broilers and laying hens have been driven
toward selecting alleles of genes related to body weight
and increased egg production, respectively [5].

Understanding the molecular basis underlying pheno-
typic variations in chickens is essential to comprehend
how distinct features arise among different lines and has
significant applications for breeding improvement pro-
grammes. Hence, studies focused on analysing develop-
mental differences are crucial, given that changes in early
development establish the conditions that give rise to dis-
tinct phenotypes displayed by juvenile and adult birds [9].
Since thousands of genes are expressed in the embryo’s
body to regulate multiple developmental processes [10],
mRNA sequencing methodologies have become power-
ful tools for comparing vast gene repertoires between
conditions and identifying differentially expressed repre-
sentatives potentially involved in morphological diversifi-
cation in chickens.

The Brazilian broiler (TT) and laying hen (CC) lines
show remarkable phenotypic differences concerning
body weight, growth potential and muscle mass. For

example, broilers’ breast muscle weight is more than
four times higher than that of layer lines [6]. Therefore,
this work aimed to identify key differentially expressed
genes (DEGs) during early development (days 2.5 to 3.5)
between these lines, which may contribute to distinct
postnatal body traits in these chickens. For that, a global
transcriptome analysis was performed using embryonic
tissues of the broiler and layer chicken lines to identify
DEGs. A flow of bioinformatics analysis was initially con-
ducted with the broilers up- and downregulated DEGs.
Further analyses were conducted on the mitotic cell cycle
and cell differentiation biological processes, given that
these processes may impact postnatal body structure
development.

Results

Summary of sequencing data

The present study employed RNA sequencing to investi-
gate gene expression profiles in embryonic tissues from a
Brazilian broiler (TT) and a layer (CC) chicken lines. The
sequencing yielded an average of 13,426,155 raw paired-
end reads of 100 bp per sample. Following quality con-
trol, a mean of 12,604,966 reads per sample was retained,
with 93.8% of these uniquely mapped to the chicken ref-
erence genome (GRCgb6a). In total, 16,455 transcripts
were expressed in at least half of the samples, as outlined
in Table S1. Principal component analysis (PCA) indi-
cated that sex and developmental stage variables contrib-
uted to data bias, as depicted in Fig. S1. Consequently, we
accounted for these variables as fixed effects during the
differential gene expression analysis to ensure an accurate
interpretation of the results.

Data analysis outline
Our study aimed to identify DEGs during the develop-
ment of the Brazilian broiler (TT) and layer (CC) chicken
lines, which may contribute to their distinct postnatal
body traits. RNA-sequencing data were generated from
tissue samples from embryos of these strains. We catego-
rised DEGs as up- and downregulated in TT compared
to CC and conducted protein function and Gene Ontol-
ogy (GO) term enrichment analyses to detect potential
biological processes and pathways associated with these
genes.

Further analyses were focused on the mitotic cell cycle
and cell differentiation biological processes, which were
enriched in the up- and downregulated broiler gene sets
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and are likely to impact postnatal body structure devel-
opment. We constructed regulatory networks to iden-
tify primary regulators, their target genes, and possible
genetic interactions driving the expression of specific
DEGs. We also built a STRING protein—protein inter-
action network and applied MCL clustering analysis to
reduce network complexity and extract functional mod-
ules. Critical genes for network functionality were iden-
tified based on the connectors of different clusters and
their first interactors. A flowchart of our analyses is pre-
sented in Fig. 1B.

RNA-seq data

HH19
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Differentially expressed genes between the TT and CC lines
Our study identified 2,421 DEGs between embryonic tis-
sues of the Brazilian broiler (TT) and layer (CC) chicken
lines based on FDR of <0.05. A heatmap analysis of the
top 50 up- and downregulated DEGs confirmed distinct
expression patterns between the TT and CC lines and
consistent gene expression profiles within each strain
(Fig. 2A). Table S2 provides detailed information about
the identified DEGs, including gene name, ID, descrip-
tion, and position in chicken chromosomes.

The differential expression between the TT and CC
chicken lines ranged from a 5.46 to -3.83 log2-fold
change, as pictured in a volcano plot (Fig. 2B), with a sim-
ilar number of upregulated (1,199) and downregulated

HH21
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Fig. 1 Overview of sample collection and RNA-seq data analysis. (A) This picture shows chicken embryos at developmental stages HH17, 19 and 21. The
precursor region of chicken wings and breast, which was collected for RNA-seq analysis, is indicated by the dotted rectangle. A cross-section of the em-
bryo body is also provided to better understand the structures developing at this axial level. (NT) neural tube, (NO) notochord, (G) midgut, (LB) limb bud,
(SO) somite and (DR) dorsal root ganglion. (B) The flowchart illustrates the key steps involved in RNA-seq data analysis. Boxes in the flowchart represent
specific analysis stages, while arrows depict the flow of data between them
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Fig. 2 Differential gene expression profiles between embryonic tissues of the Brazilian broiler (TT) and layer (CC) lines. (A) Heatmap built based on the
50 most significantly up- and downregulated DEGs between broilers and layers. Genes and samples were clustered into rows and columns, respectively.
Upregulated DEGs (red); downregulated DEGs (blue). (B) Volcano plot generated from the set of expressed genes (16.436 genes). The X-axis displays the

relative expression as log2-fold change, and the Y-axis shows the log10 FDR corrected p-value. DEGs are denoted as red dots

(1,222) DEGs identified in TT compared to CC. More-
over, the distribution of DEGs in the chicken genome
analysis revealed that chromosome 1 had the highest
number of upregulated DEGs (133 DEGs), while chromo-
somes 2 to 5 had between 79 and 63 upregulated DEGs
each. Chromosome 1 also had the most downregulated
DEGs (159 genes), followed by chromosome 2 (111
genes), and chromosomes 3, 4, and 5, with 88, 80, and 60
downregulated DEGs, respectively.

Finally, our analysis revealed that approximately 16%
of the upregulated DEGs in the broiler line and approxi-
mately 4% of the downregulated DEGs have LOC IDs.
This means that so far there is limited information about
the annotation of these DEGs.

Protein function and Gene Ontology (GO) enrichment
analysis

To characterise the subsets of up- and downregulated
DEGs, we performed an overrepresentation analysis of
protein function and biological processes using the Meta-
core™ and GeneGO databases. To ensure the reliability of
the results, we excluded the DEGs with LOC IDs, given
the lack of information about them. The main findings of
the analysis are summarised in Table S3.

Table 1 Enrichment of functional annotation in up- and
downregulated DEGs in broiler embryonic tissues

Protein classes Up-regulated Down-
p-value regulated
p-value
Kinases 2.21e-15 244.e-10
Receptors - 5.86.e-15
Enzymes 2.99.e-45 1.24.e-22
Ligands - 7.10.e-5
Transcription factors 1.89.e-11 8.23.e-8
Proteases 445.e-5 -

- Statistically nonsignificant

Regarding protein function, a summary of enriched
protein classes in broiler up- and downregulated DEGs is
presented in Table 1. Upregulated DEGs were enriched in
proteases, while downregulated DEGs were enriched in
receptors and ligands. In addition, kinases, enzymes, and
transcription factors were enriched in both DEG subsets.

The GO analysis revealed that upregulated DEGs
were significantly enriched in various biological pro-
cesses, including the response to hormones, the mitotic
cell cycle, and different types of metabolic and biosyn-
thetic processes (Fig. 3A). In contrast, downregulated
DEGs were enriched in cell communication, signal
transduction, and cell differentiation (Fig. 3B). Notably,
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Fig. 3 Enriched GO terms in up- and downregulated gene sets of the TT broiler embryonic tissues. (A) Upregulated DEGs; (B) Downregulated DEGs.
Significantly enriched GO terms were selected based on a False Discovery Rate (FDR) of less than 0.05

the downregulated DEGs were also enriched in a range
of biological processes associated with nervous system
development, such as neuron development, neurogene-
sis, and neuron differentiation, as well as with the regula-
tion and establishment of localization (Fig. 3B).

Integrated analysis of regulatory networks, protein—-
protein interactions, and clustering to identify key genes in
broiler development

In broilers, the DEGs were significantly enriched in the
mitotic cell cycle (upregulated DEGs, p-value 2.79 e-12)
and cell differentiation (downregulated DEGs, p-value

2.058e-13) biological processes. Given that the inter-
play between cell proliferation and differentiation during
development plays a crucial role in determining postna-
tal growth potential, we investigated the regulatory net-
works associated with these processes. This decision was
founded on the idea that gene regulation is the basis for
genetic information manifesting as morphological attri-
butes [11, 12].

The mitotic cell cycle regulatory network constructed
using broilers’ upregulated DEGs is shown in Fig. 4.
Among the DEGs, those with the highest expression
levels were HSP90AAI (log2FC 0.83), INSC (log2FC
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Fig. 4 Mitotic cell cycle regulatory network generated from broilers' upregulated DEGs. A gradient of red was used to indicate upregulated DEGs; darker
red indicates higher expression levels. Transcription factors are represented as bold octagons. Arrows indicate the interaction between the regulator and

the target gene. White geometric shapes denote genes that are not DEGs

0.76), MAK (log2FC 0.69), HSPA8 (log2FC 0.59), SMC2
(log2FC 0.48), and BCAT1 (1og2FC 0.43). The regulatory
hubs that Metacore™ identified as potential regulators of
these DEGs include the transcription factors NFATC2,
RELA, REL, STAT3, p63, HIFIA, and FOXP3, although
they were not differentially expressed themselves. In this
network, the outer-located DEGs are regulated by a sin-
gle transcription factor, while the others are coregulated.
CCNDI, PLK1, and MUMI1 are the most regulated genes
in this network (Fig. 4). Table S4 summarises the mecha-
nisms and interaction effects among transcription factors
and DEGs of the generated network.

The cell differentiation regulatory network generated
from broilers’ downregulated DEGs is presented in Fig. 5.
Among the genes with the most significant reduction in
expression levels are the transcription factors HOXD11
(log2FC -2.78), HOXA1l (log2FC -2.6), GSC (log2FC
-2.21), HOXA10 (log2FC -1.93), and the receptor CD44

(log2FC -1.49). HOX genes and the homeobox Goosec-
oid (GSC) are pivotal components of the developmental
genetic toolkit [13, 14], and they were all downregulated
in the TT compared to the CC line. In addition, many
other transcription factors, receptors, and ligands were
downregulated in the cell differentiation network. Nota-
bly, genes encoding histones HIST1H4I (log2FC -0.92)
and HIST2H3D (log2FC -0.52) were also among the
downregulated DEGs.

Regarding the regulators of the cell differentiation
network, CREB (non DEG, 114 connections) and AR
(log2FC -0.44, 62 connections) are the main hubs, fol-
lowed by the transcription factors SMAD3, ATF2 and
COUPTFII. Additionally, genes encoding epigenetic
modifiers such as CBP, HDAC2, and p300 are putative
regulators of the network, despite not being DEGs them-
selves (Fig. 5). Notably, the DEGs in the network were
found to interact primarily with either CREB or AR (see
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Fig.5 Celldifferentiation regulatory network generated from broilers'downregulated DEGs. A gradient of blue was used to indicate downregulated DEGs;
darker blue indicates lower expression levels. DEGs representing ligands, receptors, and transcription factors are represented as parallelograms, round
rectangles, and octagons, respectively. DEGs encoding other protein classes are shown as ellipses. Regulatory genes are represented either as bold octa-
gons (transcription factors) or diamonds (proteins involved in epigenetic modifications). Arrows indicate the interaction between the regulator and the

target gene. White geometric shapes denote genes that are not DEGs

outer-located DEGs, Fig. 5). However, genes encoding
histones HIST1H41, HIST2H3D, and BMP?7 are linked to
several putative regulators, most of which are chromatin-
modifying enzymes (Fig. 5). Table S5 summarises the
mechanisms and interaction effects among transcription
factors and DEGs of the cell differentiation network.
After regulatory analysis, the genes related to cell dif-
ferentiation and their regulators were employed to create
a protein—protein interaction (PPI) network, followed by
MCL clustering analysis. Clustering analysis helps the
interpretation of complex networks. This approach was

used to identify highly connected genes and genes that
bridge different clusters, which are particularly relevant
since they can profoundly affect gene expression and
specific biological processes during development. These
molecules were subsequently highlighted as pertinent to
broiler (TT) development control.

The PPI network built by STRING was highly signifi-
cant (p-value of 7.7e-14) and was enriched in nervous,
skeletal, and immune system development (GO:0007399,
GO0:0001501, GO:0002376). In addition, it was
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significantly enriched in the TGF-beta (gga04350) and
Notch (gga04330) KEGG signalling pathways.

MCL clustering analysis (Fig. 6) revealed two main
protein clusters in the cell differentiation PPI network.
The MCL algorithm employs a Markov chain to simulate
random walks on the network, with clusters determined
by the steady-state probabilities of these walks. These
resulting clusters reflect sets of proteins that exhibit
strong interconnectivity and likely possess functional rel-
evance [15]. To assess the biological significance of these
clusters, we subjected them to further analysis using
established tools for gene ontology (GO) and pathway
enrichment analysis. The first cluster, which contained
32 proteins (clustering coefficient 0.512), was enriched
in the GO term “Regulation of Transcription, DNA-
templated” (GO:0006355), with 24 proteins involved in
this biological process. Transcription factors and chro-
matin modification proteins constitute most of this clus-
ter. Therefore, it is a cluster involved in the modulation
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of gene expression at different levels. The second larger
cluster comprised 11 proteins (clustering coefficient
0.545) and was associated with biological processes such
as “Regulation of anatomical structure morphogenesis”
(G0O:0022603), with 8 proteins. This cluster mainly com-
prises proteins related to morphogenesis, cell adhesion
and migration, which are located in the cell plasma mem-
brane; thus it is a cluster of proteins involved in signal
transduction.

Cytoscape software was used for better visualisation of
clusters after the PPI network and MCL analyses from
the cell differentiation regulatory network (Fig. 6). The
green cluster represents “regulation of transcription,
DNA-templated’;, and the purple cluster represents “reg-
ulation of anatomical structure morphogenesis” Con-
necting these two clusters is the PIK3CD lipid kinase (FC
-0.34), which has as its first partners ACTN2 (FC -0.56),
CREBI (regulator) and AR (FC -0.44) in the first cluster,
while in the second cluster, it connects with TIAM1 (FC

Fig. 6 MCL clustering analysis in STRING reveals different functional clusters in the protein—protein interaction network generated from cell differentia-
tion downregulated DEGs and their putative regulators. Cytoscape software was used for better visualization of this network. The nodes represent genes
and the line thickness denotes the degree of confidence prediction of node interaction. Each colour represents a different cluster. Green and purple
clusters were considered “main clusters”as they contain most of the genes. Interaction score >0.4
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-0.28) and IFNGRI (FC -0.47). The MCL clustering anal-
ysis is summarised in Table S6.

Discussion

The postnatal characteristics of chickens are significantly
influenced by events occurring during embryonic devel-
opment. The Brazilian chicken lines TT (broiler) and CC
(layer) exhibit notable differences in their morphological
and growth performance traits [16]. Our study compared
the transcriptomes of wings and breast-level tissues in
TT and CC embryos during early development to better
understand the genetic mechanisms underlying the phe-
notypic variations between these lines. Specifically, we
aimed to identify dissimilarities in gene expression, regu-
lation, enriched biological processes, and pathways that
may contribute to the observed phenotypic differences.

Comparing the developmental transcriptomes of TT
and CC lines revealed that chromosomes (Chr) 1 and 2
have the highest number of differentially expressed genes
(DEGs), followed by Chr3 to 5. Importantly, among the
chromosomes with the highest number of DEGs, Chrl
and 4, along with Chr27, have been associated with
quantitative trait genes (QTGs) or quantitative trait loci
(QTLs) that have the strongest influence on chicken
growth [17, 18]. Therefore, some DEGs identified in our
work may be within these QTGs or QTLs regions. To
confirm that, future investigations could be conducted
addressing the overlap between the DEGs identified in
our study to the distribution of known QTLs on chromo-
somes 1 and 4.

Another important finding of our RNA-seq data
analysis is that many DEGs are named LOCs, which
infers that their orthologues are currently unknown.
Among the LOCs are the top upregulated genes in broil-
ers - LOC107049387 (log2FC 5.45) and LOC107052718
(log2FC 4.01) - predicted to encode a coiled-coil domain-
containing protein 81-like and endogenous retrovirus
group K member 11 Pol protein, respectively. To fully
understand the roles of these genes during development
and their potential in genetics and poultry breeding pro-
grams, it will be essential to characterise their expression
patterns and perform functional studies.

In the functional enrichment analysis of proteins
encoded by DEGs, the upregulated DEGs showed enrich-
ment only in proteases. Proteases play a critical role in
breaking complex proteins into amino acids present
in egg white or yolk. Therefore, genetic selection may
have contributed to the increased or advanced expres-
sion of these proteins during breeding [19, 20]. On the
other hand, receptors and ligands were enriched among
the downregulated DEGs in broilers. This enrichment
implies a potential reduction in signal transduction
within molecular signalling pathways, considering the

Page 9 of 13

crucial role of these protein classes in activating molecu-
lar pathways.

The enrichment analysis of DEGs revealed that the
subset of broilers’ upregulated DEGs was significantly
enriched in biosynthetic and metabolic biological pro-
cesses, which is consistent with the enrichment of pro-
teases in this gene set. This finding suggests that these
metabolic alterations are intrinsic to the TT broiler line
and may be related to increased nutrient uptake by the
embryos during development, providing higher energy
levels necessary to sustain a higher growth rate in this
line compared to the CC line. Other studies have also
indicated that broiler embryos have higher growth capac-
ity than layer embryos, likely due to their enhanced nutri-
ent uptake [21-23]. This difference could promote better
utilisation of nutrients from the egg in broiler embryos.
Furthermore, the subset of downregulated DEGs in TT
was significantly enriched in biological processes related
to cell interaction and communication, which are essen-
tial for tissue differentiation at the cellular and molecular
levels [24]. This finding is consistent with the significant
reduction in the classes of proteins that encode recep-
tors and ligands in this gene set, as previously discussed.
This result suggests a possible delay in the start of these
genetic programs during broiler embryo development.

We selected the mitotic cell cycle and cell differentia-
tion for deeper analysis among the enriched biological
processes in broilers due to their impact on the post-
natal growth potential of chickens. During develop-
ment, proliferation and differentiation are fine-tuned by
a switch-on/off type mechanism, where progenitor cells
proliferate and then withdraw from the mitotic cell cycle
to only then activate specific differentiation programs
[25]. Therefore, more extended periods of cell prolifera-
tion could lead to greater growth potential in postnatal
life.

The analysis of the miitotic cell cycle regulatory net-
work indicates that the CCNDI and HSP90 are central
molecules in broiler cell cycle regulation, as they are
the most coregulated gene and the most upregulated
gene, respectively. In addition, CDKI (Cyclin Dependent
Kinase), which encodes an essential protein involved in
G1/S and G2/M phase transitions [26], was upregulated
in TT. On the other hand, a critical CDK1 inhibitor,
CDKNIA (Cyclin Dependent Kinase Inhibitor), which
encodes the p21 protein that arrests cell cycle progres-
sion, was strongly downregulated in TT [25, 27]. There-
fore, reduced p21/CDKNIA in broilers may be related
to increased mitosis as CDK1 is free to promote the cell
cycle. Regarding gene regulation in the mitosis cell cycle
network, CCNDI is among the most coregulated genes
with PLK1 and MUMI. PLKI encodes a kinase highly
expressed during mitosis, while MUM 1 encodes a protein
involved in DNA repair and chromatin organisation [28,
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29]. The main regulators of these genes and other DEGs
in the regulatory network include NF-«xB subunits (RELA
and REL) and the transcription factors STAT3, NFATC2
and FOXP3. These transcription factors have been asso-
ciated with controlling the cell cycle [30-32], suggesting
that the NF-xB JAK-STAT and FOXP signalling pathways
might orchestrate the expression of multiple genes, most
likely enhancing the mitotic potential of undifferentiated
mesenchymal cells.

The cell differentiation regulatory network analysis
revealed a significant downregulation of genes that con-
stitute the developmental genetic toolkit. The toolkit
encompasses a hierarchical network of evolutionarily
conserved genes, mainly encoding transcription fac-
tors and signalling molecules that drive the expression
of numerous other genes to regulate cell proliferation,
differentiation, migration, and apoptosis in the devel-
oping embryo [33]. Examples of genes in the genetic
toolkit are the transcription factors HOXA9, A10, All
and D11, which were all strongly downregulated in TT
compared to CC and are known to be expressed in the
developing wings of chickens during the stages evaluated
in our study [13, 34]. In addition to the HOX genes, the
homeobox transcription factor GSC is also a key gene in
the developmental genetic toolkit and was found to be
strongly downregulated in broiler chickens. This gene is
well known for regulating dorsoventral axis patterning
during gastrulation and it has also been shown to regu-
late HOX genes during limb development [35, 36]. Con-
cerning the regulation of the cell differentiation network,
CREB and AR have been identified as the primary regula-
tory hubs (Fig. 5). Notably, CREB regulates essential HOX
genes in the network and coregulates GSCs along with
SMADS3.

In addition to transcription factors, histone genes were
also downregulated in TT, suggesting that the chroma-
tin-state is an additional layer in the regulation of cell
differentiation. These findings indicate that a repressive
influence on gene expression, particularly on differenti-
ation-related genes in broilers, can be achieved through
the coordinated suppression of foundational toolkit
genes such as HOX genes and GSC, as well as a reduc-
tion in the expression of chromatin structural proteins.
Furthermore, proteins involved in the epigenetic control
of transcription, including p300, HDAC2, and CBP, were
predicted to be regulators of the cell differentiation net-
work. Although proteins involved in epigenetic changes
are not direct regulators of transcription, they influence
the binding of transcription factors to gene promoters
[37]. This combined regulatory action probably delays
the activation of differentiation-related genes in broilers,
potentially extending the proliferative phase of progeni-
tor cells during development. Consequently, these syner-
gistic regulatory mechanisms may influence the growth
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rate capacity of broilers by affording additional time for
progenitor cells to undergo proliferation before com-
mitting to specific cell fates. Regarding the PPI network
and MCL analyses of the cell differentiation biological
process, one might hypothesise that PIK3CD and its first
connectors in the aforementioned networks are pivotal
in controlling the notable downregulation of genes that
contribute to different aspects of cell differentiation in
the TT line. However, further research is needed to fully
understand the mechanisms underlying these clusters’
conjoint roles in differentiation.

Conclusions

Our study reveals distinct transcriptomic profiles in early
embryonic development for the TT broiler and CC layer
Brazilian lines. Notably, our findings suggest heightened
cell proliferation and postponed differentiation in broiler
embryos, likely influencing their increased postnatal
growth rates. In addition, our work points to specific
molecules and regulators as playing a critical role in the
phenotypic divergence of the compared strains (Fig. 7).
This study paves the way for in vivo functional assays to
uncover the impact of modulating gene expression on
specific morphological traits of chicken. Additionally,
they may allow future genetic interventions in chickens
(e.g., gene editing or RNAI use) to refine poultry growth
traits.

Methods

Ethics statement

The procedures involving animals were evaluated and
approved by the Ethics Committee for the Use of Ani-
mals (CEUA, number 015/2016) from the Brazilian Agri-
cultural Research Corporation — Embrapa Suinos e Aves.
All procedures followed the guidelines by the Brazilian
Council of Animal Experimentation and the ethical prin-
ciples in animal research, according to FASS [38], the
Guide for the Care and Use of Agricultural Animals in
Agricultural Research and Teaching. This study was car-
ried out in compliance with the ARRIVE guidelines.

Egg incubation and embryo tissue harvesting

Fertilised eggs from broilers (TT) and layers (CC) were
supplied by Embrapa Suinos e Aves National Research
Center, Concérdia-SC, Brazil. Egg incubation was per-
formed in a humidified atmosphere at 37.80C until the
embryos reached HH17 (52-64 h), HH19 (68-72 h), and
HH21 (3.5 days) Hamburger & Hamilton developmental
stages [39].

After embryo harvesting, a tissue strip at the level of
somite 17 to 18 was dissected using a sharpened tungsten
needle (100 pum), as illustrated in Fig. 1A. The removed
tissue section, including somites and all adjacent struc-
tures, was immediately processed for RNA extraction.
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Fig. 7 Distinct transcriptomic profiles between broiler and layer lines in pectoral and wing development. The biological processes Mitosis cell cycle and
Cell differentiation were highlighted, together with DEGs and regulators that may contribute to the phenotypic divergence of the compared lines

Four samples (n=4) were prepared for each develop-
mental stage and chicken line, totalling 24 independent
samples.

RNA extraction, quality analysis, library preparation, and
sequencing

Total RNA of samples from the collected tissue section
was extracted immediately after collection using TRIzol
Reagent (Life Technologies, Carlsbad, CA) extraction
protocol. The integrity of RNA samples was evaluated
with a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA),
and only samples with RIN (RNA Integrity Number) val-
ues>7 were used for subsequent analyses. RNA libraries
were prepared with 2 pg of total RNA using the TruSeq
RNA Sample Preparation kit v2 (Illumina, San Diego,
CA) according to the protocol provided by the manufac-
turers. Average library sizes were estimated using an Agi-
lent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA)
and quantification was performed by quantitative PCR
with the KAPA Library Quantification kit (KAPA Bio-
systems, Foster City, CA, USA). One lane of a sequenc-
ing flow cell, using the TruSeq PE Cluster kit v3-cBot-HS
kit (Illumina, San Diego, CA, USA), was clustered and
sequenced with TruSeq SBS Kit v3-HS (200 cycles)
equipment, according to the manufacturer’s instructions.
Sequencing was performed using HiSeq 2500 (Illumina,
San Diego, CA, USA), using a paired-end (2x100 bp)
protocol. All sequencing steps were performed at the

ESALQ-USP Animal Genomics Center, located in the
Animal Biotechnology Laboratory of ESALQ-USP, Pirac-
icaba, Sdo Paulo, Brazil.

Quality control and read alignment

Sequencing adaptors and low-complexity reads were
removed in an initial data-filtering step. Quality control
and read statistics were estimated with FASTQC ver-
sion 0.11.8 software [http://www.bioinformatics.bbsrc.
ac.uk/projects/fastqc/]. Sequencing data were aligned
and uniquely mapped against the reference chicken
genome GRCgb6a with STAR v.2.5.4 software [40]. The
same software was used to quantify the paired-end reads,
which provided the expression matrix with 24,106 genes.
From this matrix, only the genes presenting at least one
count per million (CPM) in at least 12 samples (half the
samples) were kept for further analysis. Data were nor-
malised for library sizes and transcripts with zero counts
(unexpressed) or low expression were removed from
this matrix, using TMM (trimmed means of m values)
and transformed into log2CPM using the EdgeR v3.26.8
package [41]. Finally, the expression matrix was nor-
malised using the ARSyNseq package with the NOISeq
v2.28.0 function to decrease batch effects concerning sex
and developmental stage variation in the mathematical
model.
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Identification of differentially expressed genes

After data filtering and normalisation, expressed genes
were analysed for differential expression. This analysis
was carried out using the EdgeR package [41, 42], from a
R environment and adjusted p-values (q-value) were cal-
culated using Benjamini and Hochberg’s (BH) approach
for controlling the false discovery rate (FDR) at 5% [43].
Differentially expressed genes received transcript anno-
tation from the Biomart database, a tool of Ensembl
Release 106 (Mar 2022) [https://www.ensembl.org/
biomart/martview/a6b1284a9436076779cf1bb5057d78ca
]. Information about transcripts that were not annotated
in Ensembl was obtained from the Gene database of The
National Center for Biotechnology Information (NCBI)
[https://www.ncbi.nlm.nih.gov/].

Functional enrichment and regulatory network analyses
To further investigate the DEGs, we conducted an
enrichment analysis using the GeneGo Metacore™ soft-
ware (Clarivate Analytics, London, UK, v.21.4, build
70,700). [https://portal.genego.com/]. The Gene Ontolo-
gies (GO) terms were corrected for multiple tests with a
FDR threshold of less than 0.05. The regulatory networks
generated by Metacore™ were illustrated and simplified
using Cytoscape software [https://cytoscape.org/] [44]
for better visualisation of the interplay among the regula-
tors, DEGs, and their associated pathways.

Protein-protein interaction analysis

To explore protein—protein interactions related to DEGs
involved in the cell differentiation regulatory network, we
employed the Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING) version 11.5 [45, 46]. We
applied a filter for interactions with at least medium con-
fidence (interaction score>0.4) to generate a PPI network
[45]. We then applied the Markov Cluster Algorithm
(MCL) in STRING to identify clusters of functionally
related proteins [15]. An inflation parameter of 1.4 was
used to generate the clusters. Cytoscape was also used to
simplify the MCL cluster network, and only the intercon-
nected nodes within the clusters were considered for the
analysis; the other nodes were manually removed [44].
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