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Abstract
Background Understanding the molecular underpinnings of phenotypic variations is critical for enhancing poultry 
breeding programs. The Brazilian broiler (TT) and laying hen (CC) lines exhibit striking differences in body weight, 
growth potential, and muscle mass. Our work aimed to compare the global transcriptome of wing and pectoral 
tissues during the early development (days 2.5 to 3.5) of these chicken lines, unveiling disparities in gene expression 
and regulation.

Results Different and bona-fide transcriptomic profiles were identified for the compared lines. A similar number 
of up- and downregulated differentially expressed genes (DEGs) were identified, considering the broiler line as a 
reference. Upregulated DEGs displayed an enrichment of protease-encoding genes, whereas downregulated DEGs 
exhibited a prevalence of receptors and ligands. Gene Ontology analysis revealed that upregulated DEGs were mainly 
associated with hormone response, mitotic cell cycle, and different metabolic and biosynthetic processes. In contrast, 
downregulated DEGs were primarily linked to communication, signal transduction, cell differentiation, and nervous 
system development. Regulatory networks were constructed for the mitotic cell cycle and cell differentiation biological 
processes, as their contrasting roles may impact the development of distinct postnatal traits. Within the mitotic cell 
cycle network, key upregulated DEGs included CCND1 and HSP90, with central regulators being NF-κB subunits (RELA 
and REL) and NFATC2. The cell differentiation network comprises numerous DEGs encoding transcription factors (e.g., 
HOX genes), receptors, ligands, and histones, while the main regulatory hubs are CREB, AR and epigenetic modifiers. 
Clustering analyses highlighted PIK3CD as a central player within the differentiation network.

Conclusions Our study revealed distinct developmental transcriptomes between Brazilian broiler and layer lines. The 
gene expression profile of broiler embryos seems to favour increased cell proliferation and delayed differentiation, 
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Background
The domestic chicken Gallus gallus domesticus is omni-
present in human societies and is currently the world’s 
most common livestock species [1, 2]. Every year billions 
of chickens are raised to meet the demand for 120 mil-
lion tons of chicken meat and 1.2 trillion eggs per year 
[3]. This demand is expected to rise as human popula-
tions increase, become more urban, and gain access to 
improved living standards. It is estimated that by 2050 
the demand for livestock products will double [4].

Poultry breeding programs have contributed to the 
poultry industry, optimising broiler chickens’ produc-
tion traits and layer hens’ reproductive attributes. Inten-
sive directional genetic selection is the primary strategy 
in breeding programs to generate chicken strains with 
desired features. For this purpose, chickens with par-
ticular traits are systematically selected, and breeding 
is performed over several generations [5]. Due to this 
directional selection, broilers’ body weight and muscle 
yield have significantly increased, and feed conversion 
rate improved over the last 50 years [6]. Notably, broiler 
chickens weigh approximately five times as much as layer 
hens at 42 days of age [7]. Regarding layer hens, most 
commercial strains lay approximately 300 eggs annually, 
while female broiler strains from a purebred line lay an 
average of 132.4 eggs in the same period [8]. Therefore, 
the genomes of broilers and laying hens have been driven 
toward selecting alleles of genes related to body weight 
and increased egg production, respectively [5].

Understanding the molecular basis underlying pheno-
typic variations in chickens is essential to comprehend 
how distinct features arise among different lines and has 
significant applications for breeding improvement pro-
grammes. Hence, studies focused on analysing develop-
mental differences are crucial, given that changes in early 
development establish the conditions that give rise to dis-
tinct phenotypes displayed by juvenile and adult birds [9]. 
Since thousands of genes are expressed in the embryo’s 
body to regulate multiple developmental processes [10], 
mRNA sequencing methodologies have become power-
ful tools for comparing vast gene repertoires between 
conditions and identifying differentially expressed repre-
sentatives potentially involved in morphological diversifi-
cation in chickens.

The Brazilian broiler (TT) and laying hen (CC) lines 
show remarkable phenotypic differences concerning 
body weight, growth potential and muscle mass. For 

example, broilers’ breast muscle weight is more than 
four times higher than that of layer lines [6]. Therefore, 
this work aimed to identify key differentially expressed 
genes (DEGs) during early development (days 2.5 to 3.5) 
between these lines, which may contribute to distinct 
postnatal body traits in these chickens. For that, a global 
transcriptome analysis was performed using embryonic 
tissues of the broiler and layer chicken lines to identify 
DEGs. A flow of bioinformatics analysis was initially con-
ducted with the broilers up- and downregulated DEGs. 
Further analyses were conducted on the mitotic cell cycle 
and cell differentiation biological processes, given that 
these processes may impact postnatal body structure 
development.

Results
Summary of sequencing data
The present study employed RNA sequencing to investi-
gate gene expression profiles in embryonic tissues from a 
Brazilian broiler (TT) and a layer (CC) chicken lines. The 
sequencing yielded an average of 13,426,155 raw paired-
end reads of 100  bp per sample. Following quality con-
trol, a mean of 12,604,966 reads per sample was retained, 
with 93.8% of these uniquely mapped to the chicken ref-
erence genome (GRCg6a). In total, 16,455 transcripts 
were expressed in at least half of the samples, as outlined 
in Table S1. Principal component analysis (PCA) indi-
cated that sex and developmental stage variables contrib-
uted to data bias, as depicted in Fig. S1. Consequently, we 
accounted for these variables as fixed effects during the 
differential gene expression analysis to ensure an accurate 
interpretation of the results.

Data analysis outline
Our study aimed to identify DEGs during the develop-
ment of the Brazilian broiler (TT) and layer (CC) chicken 
lines, which may contribute to their distinct postnatal 
body traits. RNA-sequencing data were generated from 
tissue samples from embryos of these strains. We catego-
rised DEGs as up- and downregulated in TT compared 
to CC and conducted protein function and Gene Ontol-
ogy (GO) term enrichment analyses to detect potential 
biological processes and pathways associated with these 
genes.

Further analyses were focused on the mitotic cell cycle 
and cell differentiation biological processes, which were 
enriched in the up- and downregulated broiler gene sets 

which may contribute to the subsequent enlargement of pectoral tissues during foetal and postnatal development. 
Our findings pave the way for future functional studies and improvement of targeted traits of economic interest in 
poultry.

Keywords RNA-Seq, Transcriptome, Broiler and layer chicken lines, Differentially expressed genes, Gene ontology, 
Regulatory network, Breeding programs
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and are likely to impact postnatal body structure devel-
opment. We constructed regulatory networks to iden-
tify primary regulators, their target genes, and possible 
genetic interactions driving the expression of specific 
DEGs. We also built a STRING protein–protein inter-
action network and applied MCL clustering analysis to 
reduce network complexity and extract functional mod-
ules. Critical genes for network functionality were iden-
tified based on the connectors of different clusters and 
their first interactors. A flowchart of our analyses is pre-
sented in Fig. 1B.

Differentially expressed genes between the TT and CC lines
Our study identified 2,421 DEGs between embryonic tis-
sues of the Brazilian broiler (TT) and layer (CC) chicken 
lines based on FDR of < 0.05. A heatmap analysis of the 
top 50 up- and downregulated DEGs confirmed distinct 
expression patterns between the TT and CC lines and 
consistent gene expression profiles within each strain 
(Fig.  2A). Table S2 provides detailed information about 
the identified DEGs, including gene name, ID, descrip-
tion, and position in chicken chromosomes.

The differential expression between the TT and CC 
chicken lines ranged from a 5.46 to -3.83 log2-fold 
change, as pictured in a volcano plot (Fig. 2B), with a sim-
ilar number of upregulated (1,199) and downregulated 

Fig. 1 Overview of sample collection and RNA-seq data analysis. (A) This picture shows chicken embryos at developmental stages HH17, 19 and 21. The 
precursor region of chicken wings and breast, which was collected for RNA-seq analysis, is indicated by the dotted rectangle. A cross-section of the em-
bryo body is also provided to better understand the structures developing at this axial level. (NT) neural tube, (NO) notochord, (G) midgut, (LB) limb bud, 
(SO) somite and (DR) dorsal root ganglion. (B) The flowchart illustrates the key steps involved in RNA-seq data analysis. Boxes in the flowchart represent 
specific analysis stages, while arrows depict the flow of data between them
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(1,222) DEGs identified in TT compared to CC. More-
over, the distribution of DEGs in the chicken genome 
analysis revealed that chromosome 1 had the highest 
number of upregulated DEGs (133 DEGs), while chromo-
somes 2 to 5 had between 79 and 63 upregulated DEGs 
each. Chromosome 1 also had the most downregulated 
DEGs (159 genes), followed by chromosome 2 (111 
genes), and chromosomes 3, 4, and 5, with 88, 80, and 60 
downregulated DEGs, respectively.

Finally, our analysis revealed that approximately 16% 
of the upregulated DEGs in the broiler line and approxi-
mately 4% of the downregulated DEGs have LOC IDs. 
This means that so far there is limited information about 
the annotation of these DEGs.

Protein function and Gene Ontology (GO) enrichment 
analysis
To characterise the subsets of up- and downregulated 
DEGs, we performed an overrepresentation analysis of 
protein function and biological processes using the Meta-
core™ and GeneGO databases. To ensure the reliability of 
the results, we excluded the DEGs with LOC IDs, given 
the lack of information about them. The main findings of 
the analysis are summarised in Table S3.

Regarding protein function, a summary of enriched 
protein classes in broiler up- and downregulated DEGs is 
presented in Table 1. Upregulated DEGs were enriched in 
proteases, while downregulated DEGs were enriched in 
receptors and ligands. In addition, kinases, enzymes, and 
transcription factors were enriched in both DEG subsets.

The GO analysis revealed that upregulated DEGs 
were significantly enriched in various biological pro-
cesses, including the response to hormones, the mitotic 
cell cycle, and different types of metabolic and biosyn-
thetic processes (Fig.  3A). In contrast, downregulated 
DEGs were enriched in cell communication, signal 
transduction, and cell differentiation (Fig.  3B). Notably, 

Table 1 Enrichment of functional annotation in up- and 
downregulated DEGs in broiler embryonic tissues
Protein classes Up-regulated

p-value
Down-
regulated
p-value

Kinases 2.21.e-15 2.44.e-10
Receptors - 5.86.e-15
Enzymes 2.99.e-45 1.24.e-22
Ligands - 7.10.e-5
Transcription factors 1.89.e-11 8.23.e-8
Proteases 4.45.e-5 -
- Statistically nonsignificant

Fig. 2 Differential gene expression profiles between embryonic tissues of the Brazilian broiler (TT) and layer (CC) lines. (A) Heatmap built based on the 
50 most significantly up- and downregulated DEGs between broilers and layers. Genes and samples were clustered into rows and columns, respectively. 
Upregulated DEGs (red); downregulated DEGs (blue). (B) Volcano plot generated from the set of expressed genes (16.436 genes). The X-axis displays the 
relative expression as log2-fold change, and the Y-axis shows the log10 FDR corrected p-value. DEGs are denoted as red dots
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the downregulated DEGs were also enriched in a range 
of biological processes associated with nervous system 
development, such as neuron development, neurogene-
sis, and neuron differentiation, as well as with the regula-
tion and establishment of localization (Fig. 3B).

Integrated analysis of regulatory networks, protein–
protein interactions, and clustering to identify key genes in 
broiler development
In broilers, the DEGs were significantly enriched in the 
mitotic cell cycle (upregulated DEGs, p-value 2.79 e-12) 
and cell differentiation (downregulated DEGs, p-value 

2.058e-13) biological processes. Given that the inter-
play between cell proliferation and differentiation during 
development plays a crucial role in determining postna-
tal growth potential, we investigated the regulatory net-
works associated with these processes. This decision was 
founded on the idea that gene regulation is the basis for 
genetic information manifesting as morphological attri-
butes [11, 12].

The mitotic cell cycle regulatory network constructed 
using broilers’ upregulated DEGs is shown in Fig.  4. 
Among the DEGs, those with the highest expression 
levels were HSP90AA1 (log2FC 0.83), INSC (log2FC 

Fig. 3 Enriched GO terms in up- and downregulated gene sets of the TT broiler embryonic tissues. (A) Upregulated DEGs; (B) Downregulated DEGs. 
Significantly enriched GO terms were selected based on a False Discovery Rate (FDR) of less than 0.05
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0.76), MAK (log2FC 0.69), HSPA8 (log2FC 0.59), SMC2 
(log2FC 0.48), and BCAT1 (log2FC 0.43). The regulatory 
hubs that Metacore™ identified as potential regulators of 
these DEGs include the transcription factors NFATC2, 
RELA, REL, STAT3, p63, HIF1A, and FOXP3, although 
they were not differentially expressed themselves. In this 
network, the outer-located DEGs are regulated by a sin-
gle transcription factor, while the others are coregulated. 
CCND1, PLK1, and MUM1 are the most regulated genes 
in this network (Fig. 4). Table S4 summarises the mecha-
nisms and interaction effects among transcription factors 
and DEGs of the generated network.

The cell differentiation regulatory network generated 
from broilers’ downregulated DEGs is presented in Fig. 5. 
Among the genes with the most significant reduction in 
expression levels are the transcription factors HOXD11 
(log2FC -2.78), HOXA11 (log2FC -2.6), GSC (log2FC 
-2.21), HOXA10 (log2FC -1.93), and the receptor CD44 

(log2FC -1.49). HOX genes and the homeobox Goosec-
oid (GSC) are pivotal components of the developmental 
genetic toolkit [13, 14], and they were all downregulated 
in the TT compared to the CC line. In addition, many 
other transcription factors, receptors, and ligands were 
downregulated in the cell differentiation network. Nota-
bly, genes encoding histones HIST1H4I (log2FC -0.92) 
and HIST2H3D (log2FC -0.52) were also among the 
downregulated DEGs.

Regarding the regulators of the cell differentiation 
network, CREB (non DEG, 114 connections) and AR 
(log2FC -0.44, 62 connections) are the main hubs, fol-
lowed by the transcription factors SMAD3, ATF2 and 
COUPTFII. Additionally, genes encoding epigenetic 
modifiers such as CBP, HDAC2, and p300 are putative 
regulators of the network, despite not being DEGs them-
selves (Fig.  5). Notably, the DEGs in the network were 
found to interact primarily with either CREB or AR (see 

Fig. 4 Mitotic cell cycle regulatory network generated from broilers’ upregulated DEGs. A gradient of red was used to indicate upregulated DEGs; darker 
red indicates higher expression levels. Transcription factors are represented as bold octagons. Arrows indicate the interaction between the regulator and 
the target gene. White geometric shapes denote genes that are not DEGs
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outer-located DEGs, Fig.  5). However, genes encoding 
histones HIST1H4I, HIST2H3D, and BMP7 are linked to 
several putative regulators, most of which are chromatin-
modifying enzymes (Fig.  5). Table S5 summarises the 
mechanisms and interaction effects among transcription 
factors and DEGs of the cell differentiation network.

After regulatory analysis, the genes related to cell dif-
ferentiation and their regulators were employed to create 
a protein–protein interaction (PPI) network, followed by 
MCL clustering analysis. Clustering analysis helps the 
interpretation of complex networks. This approach was 

used to identify highly connected genes and genes that 
bridge different clusters, which are particularly relevant 
since they can profoundly affect gene expression and 
specific biological processes during development. These 
molecules were subsequently highlighted as pertinent to 
broiler (TT) development control.

The PPI network built by STRING was highly signifi-
cant (p-value of 7.7e-14) and was enriched in nervous, 
skeletal, and immune system development (GO:0007399, 
GO:0001501, GO:0002376). In addition, it was 

Fig. 5 Cell differentiation regulatory network generated from broilers’ downregulated DEGs. A gradient of blue was used to indicate downregulated DEGs; 
darker blue indicates lower expression levels. DEGs representing ligands, receptors, and transcription factors are represented as parallelograms, round 
rectangles, and octagons, respectively. DEGs encoding other protein classes are shown as ellipses. Regulatory genes are represented either as bold octa-
gons (transcription factors) or diamonds (proteins involved in epigenetic modifications). Arrows indicate the interaction between the regulator and the 
target gene. White geometric shapes denote genes that are not DEGs
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significantly enriched in the TGF-beta (gga04350) and 
Notch (gga04330) KEGG signalling pathways.

MCL clustering analysis (Fig.  6) revealed two main 
protein clusters in the cell differentiation PPI network. 
The MCL algorithm employs a Markov chain to simulate 
random walks on the network, with clusters determined 
by the steady-state probabilities of these walks. These 
resulting clusters reflect sets of proteins that exhibit 
strong interconnectivity and likely possess functional rel-
evance [15]. To assess the biological significance of these 
clusters, we subjected them to further analysis using 
established tools for gene ontology (GO) and pathway 
enrichment analysis. The first cluster, which contained 
32 proteins (clustering coefficient 0.512), was enriched 
in the GO term “Regulation of Transcription, DNA-
templated” (GO:0006355), with 24 proteins involved in 
this biological process. Transcription factors and chro-
matin modification proteins constitute most of this clus-
ter. Therefore, it is a cluster involved in the modulation 

of gene expression at different levels. The second larger 
cluster comprised 11 proteins (clustering coefficient 
0.545) and was associated with biological processes such 
as “Regulation of anatomical structure morphogenesis” 
(GO:0022603), with 8 proteins. This cluster mainly com-
prises proteins related to morphogenesis, cell adhesion 
and migration, which are located in the cell plasma mem-
brane; thus it is a cluster of proteins involved in signal 
transduction.

Cytoscape software was used for better visualisation of 
clusters after the PPI network and MCL analyses from 
the cell differentiation regulatory network (Fig.  6). The 
green cluster represents “regulation of transcription, 
DNA-templated”, and the purple cluster represents “reg-
ulation of anatomical structure morphogenesis”. Con-
necting these two clusters is the PIK3CD lipid kinase (FC 
-0.34), which has as its first partners ACTN2 (FC -0.56), 
CREB1 (regulator) and AR (FC -0.44) in the first cluster, 
while in the second cluster, it connects with TIAM1 (FC 

Fig. 6 MCL clustering analysis in STRING reveals different functional clusters in the protein–protein interaction network generated from cell differentia-
tion downregulated DEGs and their putative regulators. Cytoscape software was used for better visualization of this network. The nodes represent genes 
and the line thickness denotes the degree of confidence prediction of node interaction. Each colour represents a different cluster. Green and purple 
clusters were considered “main clusters” as they contain most of the genes. Interaction score > 0.4
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-0.28) and IFNGR1 (FC -0.47). The MCL clustering anal-
ysis is summarised in Table S6.

Discussion
The postnatal characteristics of chickens are significantly 
influenced by events occurring during embryonic devel-
opment. The Brazilian chicken lines TT (broiler) and CC 
(layer) exhibit notable differences in their morphological 
and growth performance traits [16]. Our study compared 
the transcriptomes of wings and breast-level tissues in 
TT and CC embryos during early development to better 
understand the genetic mechanisms underlying the phe-
notypic variations between these lines. Specifically, we 
aimed to identify dissimilarities in gene expression, regu-
lation, enriched biological processes, and pathways that 
may contribute to the observed phenotypic differences.

Comparing the developmental transcriptomes of TT 
and CC lines revealed that chromosomes (Chr) 1 and 2 
have the highest number of differentially expressed genes 
(DEGs), followed by Chr3 to 5. Importantly, among the 
chromosomes with the highest number of DEGs, Chr1 
and 4, along with Chr27, have been associated with 
quantitative trait genes (QTGs) or quantitative trait loci 
(QTLs) that have the strongest influence on chicken 
growth [17, 18]. Therefore, some DEGs identified in our 
work may be within these QTGs or QTLs regions. To 
confirm that, future investigations could be conducted 
addressing the overlap between the DEGs identified in 
our study to the distribution of known QTLs on chromo-
somes 1 and 4.

Another important finding of our RNA-seq data 
analysis is that many DEGs are named LOCs, which 
infers that their orthologues are currently unknown. 
Among the LOCs are the top upregulated genes in broil-
ers - LOC107049387 (log2FC 5.45) and LOC107052718 
(log2FC 4.01) - predicted to encode a coiled-coil domain-
containing protein 81-like and endogenous retrovirus 
group K member 11 Pol protein, respectively. To fully 
understand the roles of these genes during development 
and their potential in genetics and poultry breeding pro-
grams, it will be essential to characterise their expression 
patterns and perform functional studies.

In the functional enrichment analysis of proteins 
encoded by DEGs, the upregulated DEGs showed enrich-
ment only in proteases. Proteases play a critical role in 
breaking complex proteins into amino acids present 
in egg white or yolk. Therefore, genetic selection may 
have contributed to the increased or advanced expres-
sion of these proteins during breeding [19, 20]. On the 
other hand, receptors and ligands were enriched among 
the downregulated DEGs in broilers. This enrichment 
implies a potential reduction in signal transduction 
within molecular signalling pathways, considering the 

crucial role of these protein classes in activating molecu-
lar pathways.

The enrichment analysis of DEGs revealed that the 
subset of broilers’ upregulated DEGs was significantly 
enriched in biosynthetic and metabolic biological pro-
cesses, which is consistent with the enrichment of pro-
teases in this gene set. This finding suggests that these 
metabolic alterations are intrinsic to the TT broiler line 
and may be related to increased nutrient uptake by the 
embryos during development, providing higher energy 
levels necessary to sustain a higher growth rate in this 
line compared to the CC line. Other studies have also 
indicated that broiler embryos have higher growth capac-
ity than layer embryos, likely due to their enhanced nutri-
ent uptake [21–23]. This difference could promote better 
utilisation of nutrients from the egg in broiler embryos. 
Furthermore, the subset of downregulated DEGs in TT 
was significantly enriched in biological processes related 
to cell interaction and communication, which are essen-
tial for tissue differentiation at the cellular and molecular 
levels [24]. This finding is consistent with the significant 
reduction in the classes of proteins that encode recep-
tors and ligands in this gene set, as previously discussed. 
This result suggests a possible delay in the start of these 
genetic programs during broiler embryo development.

We selected the mitotic cell cycle and cell differentia-
tion for deeper analysis among the enriched biological 
processes in broilers due to their impact on the post-
natal growth potential of chickens. During develop-
ment, proliferation and differentiation are fine-tuned by 
a switch-on/off type mechanism, where progenitor cells 
proliferate and then withdraw from the mitotic cell cycle 
to only then activate specific differentiation programs 
[25]. Therefore, more extended periods of cell prolifera-
tion could lead to greater growth potential in postnatal 
life.

The analysis of the mitotic cell cycle regulatory net-
work indicates that the CCND1 and HSP90 are central 
molecules in broiler cell cycle regulation, as they are 
the most coregulated gene and the most upregulated 
gene, respectively. In addition, CDK1 (Cyclin Dependent 
Kinase), which encodes an essential protein involved in 
G1/S and G2/M phase transitions [26], was upregulated 
in TT. On the other hand, a critical CDK1 inhibitor, 
CDKN1A (Cyclin Dependent Kinase Inhibitor), which 
encodes the p21 protein that arrests cell cycle progres-
sion, was strongly downregulated in TT [25, 27]. There-
fore, reduced p21/CDKN1A in broilers may be related 
to increased mitosis as CDK1 is free to promote the cell 
cycle. Regarding gene regulation in the mitosis cell cycle 
network, CCND1 is among the most coregulated genes 
with PLK1 and MUM1. PLK1 encodes a kinase highly 
expressed during mitosis, while MUM1 encodes a protein 
involved in DNA repair and chromatin organisation [28, 
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29]. The main regulators of these genes and other DEGs 
in the regulatory network include NF-κB subunits (RELA 
and REL) and the transcription factors STAT3, NFATC2 
and FOXP3. These transcription factors have been asso-
ciated with controlling the cell cycle [30–32], suggesting 
that the NF-κB JAK-STAT and FOXP signalling pathways 
might orchestrate the expression of multiple genes, most 
likely enhancing the mitotic potential of undifferentiated 
mesenchymal cells.

The cell differentiation regulatory network analysis 
revealed a significant downregulation of genes that con-
stitute the developmental genetic toolkit. The toolkit 
encompasses a hierarchical network of evolutionarily 
conserved genes, mainly encoding transcription fac-
tors and signalling molecules that drive the expression 
of numerous other genes to regulate cell proliferation, 
differentiation, migration, and apoptosis in the devel-
oping embryo [33]. Examples of genes in the genetic 
toolkit are the transcription factors HOXA9, A10, A11 
and D11, which were all strongly downregulated in TT 
compared to CC and are known to be expressed in the 
developing wings of chickens during the stages evaluated 
in our study [13, 34]. In addition to the HOX genes, the 
homeobox transcription factor GSC is also a key gene in 
the developmental genetic toolkit and was found to be 
strongly downregulated in broiler chickens. This gene is 
well known for regulating dorsoventral axis patterning 
during gastrulation and it has also been shown to regu-
late HOX genes during limb development [35, 36]. Con-
cerning the regulation of the cell differentiation network, 
CREB and AR have been identified as the primary regula-
tory hubs (Fig. 5). Notably, CREB regulates essential HOX 
genes in the network and coregulates GSCs along with 
SMAD3.

In addition to transcription factors, histone genes were 
also downregulated in TT, suggesting that the chroma-
tin-state is an additional layer in the regulation of cell 
differentiation. These findings indicate that a repressive 
influence on gene expression, particularly on differenti-
ation-related genes in broilers, can be achieved through 
the coordinated suppression of foundational toolkit 
genes such as HOX genes and GSC, as well as a reduc-
tion in the expression of chromatin structural proteins. 
Furthermore, proteins involved in the epigenetic control 
of transcription, including p300, HDAC2, and CBP, were 
predicted to be regulators of the cell differentiation net-
work. Although proteins involved in epigenetic changes 
are not direct regulators of transcription, they influence 
the binding of transcription factors to gene promoters 
[37]. This combined regulatory action probably delays 
the activation of differentiation-related genes in broilers, 
potentially extending the proliferative phase of progeni-
tor cells during development. Consequently, these syner-
gistic regulatory mechanisms may influence the growth 

rate capacity of broilers by affording additional time for 
progenitor cells to undergo proliferation before com-
mitting to specific cell fates. Regarding the PPI network 
and MCL analyses of the cell differentiation biological 
process, one might hypothesise that PIK3CD and its first 
connectors in the aforementioned networks are pivotal 
in controlling the notable downregulation of genes that 
contribute to different aspects of cell differentiation in 
the TT line. However, further research is needed to fully 
understand the mechanisms underlying these clusters’ 
conjoint roles in differentiation.

Conclusions
Our study reveals distinct transcriptomic profiles in early 
embryonic development for the TT broiler and CC layer 
Brazilian lines. Notably, our findings suggest heightened 
cell proliferation and postponed differentiation in broiler 
embryos, likely influencing their increased postnatal 
growth rates. In addition, our work points to specific 
molecules and regulators as playing a critical role in the 
phenotypic divergence of the compared strains (Fig.  7). 
This study paves the way for in vivo functional assays to 
uncover the impact of modulating gene expression on 
specific morphological traits of chicken. Additionally, 
they may allow future genetic interventions in chickens 
(e.g., gene editing or RNAi use) to refine poultry growth 
traits.

Methods
Ethics statement
The procedures involving animals were evaluated and 
approved by the Ethics Committee for the Use of Ani-
mals (CEUA, number 015/2016) from the Brazilian Agri-
cultural Research Corporation – Embrapa Suínos e Aves. 
All procedures followed the guidelines by the Brazilian 
Council of Animal Experimentation and the ethical prin-
ciples in animal research, according to FASS [38], the 
Guide for the Care and Use of Agricultural Animals in 
Agricultural Research and Teaching. This study was car-
ried out in compliance with the ARRIVE guidelines.

Egg incubation and embryo tissue harvesting
Fertilised eggs from broilers (TT) and layers (CC) were 
supplied by Embrapa Suínos e Aves National Research 
Center, Concórdia-SC, Brazil. Egg incubation was per-
formed in a humidified atmosphere at 37.8oC until the 
embryos reached HH17 (52–64 h), HH19 (68–72 h), and 
HH21 (3.5 days) Hamburger & Hamilton developmental 
stages [39].

After embryo harvesting, a tissue strip at the level of 
somite 17 to 18 was dissected using a sharpened tungsten 
needle (100  μm), as illustrated in Fig.  1A. The removed 
tissue section, including somites and all adjacent struc-
tures, was immediately processed for RNA extraction. 
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Four samples (n = 4) were prepared for each develop-
mental stage and chicken line, totalling 24 independent 
samples.

RNA extraction, quality analysis, library preparation, and 
sequencing
Total RNA of samples from the collected tissue section 
was extracted immediately after collection using TRIzol 
Reagent (Life Technologies, Carlsbad, CA) extraction 
protocol. The integrity of RNA samples was evaluated 
with a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA), 
and only samples with RIN (RNA Integrity Number) val-
ues > 7 were used for subsequent analyses. RNA libraries 
were prepared with 2 µg of total RNA using the TruSeq 
RNA Sample Preparation kit v2 (Illumina, San Diego, 
CA) according to the protocol provided by the manufac-
turers. Average library sizes were estimated using an Agi-
lent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) 
and quantification was performed by quantitative PCR 
with the KAPA Library Quantification kit (KAPA Bio-
systems, Foster City, CA, USA). One lane of a sequenc-
ing flow cell, using the TruSeq PE Cluster kit v3-cBot-HS 
kit (Illumina, San Diego, CA, USA), was clustered and 
sequenced with TruSeq SBS Kit v3-HS (200 cycles) 
equipment, according to the manufacturer’s instructions. 
Sequencing was performed using HiSeq 2500 (Illumina, 
San Diego, CA, USA), using a paired-end (2 × 100  bp) 
protocol. All sequencing steps were performed at the 

ESALQ-USP Animal Genomics Center, located in the 
Animal Biotechnology Laboratory of ESALQ-USP, Pirac-
icaba, São Paulo, Brazil.

Quality control and read alignment
Sequencing adaptors and low-complexity reads were 
removed in an initial data-filtering step. Quality control 
and read statistics were estimated with FASTQC ver-
sion 0.11.8 software [http://www.bioinformatics.bbsrc.
ac.uk/projects/fastqc/]. Sequencing data were aligned 
and uniquely mapped against the reference chicken 
genome GRCg6a with STAR v.2.5.4 software [40]. The 
same software was used to quantify the paired-end reads, 
which provided the expression matrix with 24,106 genes. 
From this matrix, only the genes presenting at least one 
count per million (CPM) in at least 12 samples (half the 
samples) were kept for further analysis. Data were nor-
malised for library sizes and transcripts with zero counts 
(unexpressed) or low expression were removed from 
this matrix, using TMM (trimmed means of m values) 
and transformed into log2CPM using the EdgeR v3.26.8 
package [41]. Finally, the expression matrix was nor-
malised using the ARSyNseq package with the NOISeq 
v2.28.0 function to decrease batch effects concerning sex 
and developmental stage variation in the mathematical 
model.

Fig. 7 Distinct transcriptomic profiles between broiler and layer lines in pectoral and wing development. The biological processes Mitosis cell cycle and 
Cell differentiation were highlighted, together with DEGs and regulators that may contribute to the phenotypic divergence of the compared lines
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Identification of differentially expressed genes
After data filtering and normalisation, expressed genes 
were analysed for differential expression. This analysis 
was carried out using the EdgeR package [41, 42], from a 
R environment and adjusted p-values (q-value) were cal-
culated using Benjamini and Hochberg’s (BH) approach 
for controlling the false discovery rate (FDR) at 5% [43]. 
Differentially expressed genes received transcript anno-
tation from the Biomart database, a tool of Ensembl 
Release 106 (Mar 2022) [https://www.ensembl.org/
biomart/martview/a6b1284a9436076779cf1bb5057d78ca
]. Information about transcripts that were not annotated 
in Ensembl was obtained from the Gene database of The 
National Center for Biotechnology Information (NCBI) 
[https://www.ncbi.nlm.nih.gov/].

Functional enrichment and regulatory network analyses
To further investigate the DEGs, we conducted an 
enrichment analysis using the GeneGo Metacore™ soft-
ware (Clarivate Analytics, London, UK, v.21.4, build 
70,700). [https://portal.genego.com/]. The Gene Ontolo-
gies (GO) terms were corrected for multiple tests with a 
FDR threshold of less than 0.05. The regulatory networks 
generated by Metacore™ were illustrated and simplified 
using Cytoscape software [https://cytoscape.org/] [44] 
for better visualisation of the interplay among the regula-
tors, DEGs, and their associated pathways.

Protein–protein interaction analysis
To explore protein–protein interactions related to DEGs 
involved in the cell differentiation regulatory network, we 
employed the Search Tool for the Retrieval of Interact-
ing Genes/Proteins (STRING) version 11.5 [45, 46]. We 
applied a filter for interactions with at least medium con-
fidence (interaction score > 0.4) to generate a PPI network 
[45]. We then applied the Markov Cluster Algorithm 
(MCL) in STRING to identify clusters of functionally 
related proteins [15]. An inflation parameter of 1.4 was 
used to generate the clusters. Cytoscape was also used to 
simplify the MCL cluster network, and only the intercon-
nected nodes within the clusters were considered for the 
analysis; the other nodes were manually removed [44].
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