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Abstract
Background  Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic 
Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a 
sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the 
detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be 
demonstrated.

Results  In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets 
supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological 
observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine 
exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an 
inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 
1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional 
analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, 
and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, 
were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was 
performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus.

Conclusions  Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. 
leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements 
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Introduction
With the world population increasing, the contradiction 
between land resources and human beings has increased 
prominently, which caused food shortages and security 
risks [1, 2]. In this situation, “Blue food”, defined as refers 
to a range of nutritionally valuable aquatic foods obtained 
from marine and freshwater sources, encompassing a 
wide variety of organisms from fish and shellfish to sea-
weeds, has played an increasingly vital part in human 
consumption of food [3–6]. Meanwhile, aquaculture 
has developed rapidly to expand the production of “blue 
food” to meet increasing population- and wealth-driven 
demand [7, 8]. In the period 2001–2018, aquaculture has 
become the fastest-growing sector for “blue food” pro-
duction with an average annual growth rate of 5.3% and 
will rise to 50% by 2030 in the contribution to the global 
“blue food” market [7]. However, an explosive expansion 
in the size of the aquaculture industry has accelerated 
the demand for aquafeed supply that relied on fish meal 
and terrestrial crop ingredients, which will raise concerns 
about the sustainability of the aquaculture industry [9, 
10]. Fish meal production faces challenges in meeting the 
escalating demand, leading to rising prices [11]. Simul-
taneously, intensified crop production for aquaculture 
contributes to excessive waste, amplifying the environ-
mental burden [12]. Furthermore, traditional aquafeed 
is increasingly unable to meet the demand for healthy 
growth of aquaculture organisms under the intensive and 
high-density aquaculture patterns, which usually lead to 
physiological alterations of aquaculture organisms, such 
as oxidative stress, metabolism disturbances, and inflam-
matory responses [13, 14]. Therefore, searching for effi-
cient dietary supplements or alternative ingredients is a 
priority to ensure the healthy and sustainable develop-
ment of the aquaculture industry.

Antarctic krill, thriving in the Antarctic Ocean, stands 
as Earth’s most abundant wild animal, playing a pivotal 
role in the Antarctic Ocean ecosystem due to its colos-
sal biomass [15, 16]. Boasting high levels of protein, EPA, 
DHA, vitamins, and phospholipids, Antarctic krill prod-
ucts are gaining popularity in human consumption [17, 
18]. Much research has demonstrated that krill products 
in feeding with a high-fat diet have been demonstrated to 
improve dyslipidemia, body weight, and glucose metabo-
lism [19, 20]. Within the aquaculture industry, Antarctic 
krill products have also been recognized as a sustainable 
source of aquafeed with ideal nutritional profiles [21, 22]. 
With widespread applications of krill products in the 
aquaculture industry, great efforts have been made to 

uncover the detailed benefits of dietary Antarctic krill for 
aquaculture organisms. Notably, studies have shown that 
dietary Antarctic krill positively affects the growth per-
formance, muscle quality, lipid metabolism, and immu-
nity system of multiple species, including Atlantic salmon 
(Salmon salar), yellowtail (Seriola quinqueradiata), 
European sea bass (Dicentrarchus labrax), and rainbow 
trout (Oncorhynchus mykiss) [23–25]. Furthermore, Ant-
arctic krill, with its rich astaxanthin content known for 
its antioxidant properties, has demonstrated the ability 
to alleviate oxidative stress in aquaculture organisms [26, 
27].. Indeed, while previous research has offered valuable 
insights through the exploration of physiological indica-
tors, elucidating the molecular regulation of dietary Ant-
arctic krill on aquaculture biological health is important 
for gaining a deeper understanding of the mechanisms 
involved, optimizing aquafeed formulations, monitoring 
health, promoting sustainability, and exploring biotech-
nological application.

With the development of Next-generation Sequencing, 
transcriptome has been widely applied for the resolution 
of genes and molecular networks that function in the 
key traits in aquaculture organisms [28, 29]. In exploring 
effects of feeding or feeding supplements on aquaculture 
organisms, transcriptome has also been proven to be a 
valuable tool, offering a detailed gene atlas responsible 
for physiological changes [30, 31]. However, the applica-
tions of the transcriptome in investigating the beneficial 
effects of dietary Antarctic krill for aquaculture organ-
isms remain limited.

The leopard coral grouper (Plectropomus leopardus), is 
mainly distributed in the tropical and subtropical waters 
of the Western Pacific Ocean [32]. Owing to its vivid 
pigmentation, high-protein flesh, and palatable taste, P. 
leopardus has become increasingly popular in human 
consumption worldwide [33]. Consequently, the aquacul-
ture industry of P. leopardus has made significant strides 
in recent years to meet market demand. Nevertheless, 
there are also several factors restricting the healthy devel-
opment of the P. leopardus aquaculture industry. For one 
thing, the intensive and high-density aquaculture mode 
made P. leopardus continuously exposed to stressful con-
ditions, which could be detrimental to physiological sta-
tus, including metabolism, immunity, and antioxidants 
[34, 35]. Additionally, traditional feeds without supple-
ments may not offer sufficient nutrition and protection 
for P. leopardus [36]. Therefore, it is essential to explore 
suitable feed supplements or alternative feeds to ensure 
healthy and sustainable development of P. leopardus 

in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic 
krill in P. leopardus and provide insights into aquaculture nutritional strategies.
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aquaculture. Although Antarctic krill has been widely 
used for aquafeed, its effects on the health of P. leopar-
dus have yet to be thoroughly investigated. Here, we 
found that dietary Antarctic krill was beneficial for the 
intestine and liver of P. leopardus based on histologi-
cal observation and enzyme activity measurement. Fur-
ther transcriptome analysis was utilized to investigate 
the molecular regulation of Antarctic krill on the intes-
tine and liver of P. leopardus, and the biased effects of 
dietary Antarctic krill and astaxanthin on hepatic gene 
expression of P. leopardus. Our findings will facilitate the 
understanding of the effects of dietary Antarctic krill on 
P. leopardus, and provide valuable insights into the appli-
cations of Antarctic krill in P. leopardus aquaculture.

Materials and methods
Ethics statement
This study was carried out with the permission of the 
College of Marine Life Sciences, the Ocean University 
of China Institutional Animal Care and Use Commit-
tee on 10 October 2018 (Project Identification Code: 
20,181,010).

Diet preparation, feeding experiment, and sampling
Diet preparation was performed as described previously 
[37]. Frozen Antarctic krill were bought from Haikou 
Jianliang Antarctic Shrimp Food Technology Co., Ltd., 
Hainan, China. Firstly, frozen krill were thawed at room 
temperature and pulverized thoroughly by the grinder. 
Subsequently, the basal diet was thoroughly mixed with 
Antarctic krill and an appropriate amount of tap water 
until homogenous. Then the mixture was pelleted by a 
laboratory pellet machine. Meanwhile, the basal diet was 
also mixed with equal volume water and pelleted using 
a pellet machine. All diet particles were air-dried and 
stored at room temperature.

The Antarctic krill feeding experiment was performed 
at Dongfang Chenhai Aquatic Co., Ltd., Hainan, China. 
The detailed procedures of the experiment were as fol-
lows: A total of 1200 P. leopardus larvae with uniform 
body size (body weight: 0.77 ± 0.29 g) at 60 days after fer-
tilization (dpf) were randomly divided into two groups. 
For each group, 600 individuals were equally distributed 
into three tanks (400 L, each) and cultured in recirculat-
ing filtered seawater with continuous aeration. Here, two 
experimental diets were set up: a basal commercial diet 
(Fish treasure, Dongwan, Japan) without supplements 
(the control group) and a basal commercial diet supple-
mented with 50% Antarctic krill (the krill group). Except 
for diet, the rearing conditions were strictly identical 
between the control group and the krill group.

After a 40-day feeding trial, the individuals from two 
groups were anesthetized with MS222. Then the samples 
of liver and intestine from each individual were collected 

and washed in RNase-free water. Half of each sample 
was cut into 5 mm3, immediately frozen in liquid nitro-
gen, and stored at -80 ℃ for further RNA extraction, the 
remaining was used for histological observation and in 
situ hybridization. Three individuals were collected in the 
control group and the krill group, respectively.

Histological observation
The experimental procedure for histological observation 
was referred to the protocol of our laboratory [38]. Sam-
ples were fixed in 4% paraformaldehyde (PFA) (Boster 
Biological Technology, USA) overnight, then transferred 
into methanol (30%, 50%, 70%, 90%, 2  h, respectively), 
and stored in 100% methanol. After dehydrating in etha-
nol and embedding in paraffin, the tissue blocks were cut 
into 5  μm thickness. The haematoxylin-eosin staining 
experiment was performed according to manufacturer’s 
specification (Solarbio, Beijing, China). The results were 
observed and photographed using an Olympus BX43 
microscope (Tokyo, Japan).

Determination of antioxidant enzyme activities of 
intestines and livers
The analysis of antioxidant enzyme activities was per-
formed as described previously [39]. The frozen intes-
tinal and liver samples were homogenized with 0.9% 
saline using an electronic homogenizer and centrifugated 
at 12,000  rpm at 4 ℃, then the supernatant was used 
for further antioxidant enzyme activities analysis. The 
enzyme activity of total superoxide dismutase (T-SOD), 
total glutathione peroxidase (T-GPX), and total antioxi-
dant capacity (T-AOC) levels were measured according 
to the standard protocol (Beyotime Biotechnology Co., 
Ltd., Shanghai, China).

Total RNA extraction, transcriptome library construction, 
and sequencing
Total RNA extraction of intestines and livers was per-
formed by TRIzol reagent (Invitrogen, Carlsbad, CA, 
United States) according to the protocols of our lab [40]. 
After removing genomic DNA by Dnase I (TaKaRa, 
Dalian, China), the quality and quantity of RNA were 
evaluated by 1.5% agarose gel electrophoresis and Nano-
Photometer Pearl (Implen GmbH, Munich, Germany), 
respectively. Following re-evaluation using the Agilent 
2100 Bioanalyzer (Agilent Technologies, Santa Clara, 
CA, United States), RNA samples with RIN > 7 were uti-
lized for library construction by Illumina TruSeq RNA 
Sample Prep Kit (Illumina, San Diego, CA, United States) 
according to manufacturer’s instruction [41]. Finally, the 
cDNA libraries were sequenced on Illumina NovaSeq 
6000 platform with PE150.
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Transcriptome data processing and analysis
Firstly, the raw reads qualities were checked by fastQC 
(http://www.bioinformatics.babraham.ac.uk/proj-
ects/fastqc/). After trimming adaptors and the low-
quality reads by Trimmomatic v0.36, clean reads were 
obtained. Subsequently, clean reads were mapped to the 
P. leopardus reference genome (NCBI Accession number: 
PRJNA545594) using HISAT2 v2.1.0 software. The read 
counts and TPM (Transcripts Per Million) of all genes 
were calculated by Salmon tools. DEGs analysis was 
conducted by DEseq2 based on read counts, and genes 
with|log2FoldChange| ≥ 1 and p-value < 0.05 were consid-
ered as DEGs. The functional analysis of DEGs was per-
formed by DAVID (https://david.ncifcrf.gov/), and results 
were displayed by a bubble diagram and histogram drawn 
by R software. Besides, PCA analysis, heatmap, and Venn 
plot were all constructed by R software.

qRT-PCR and statistical analysis
The primers used for qRT-PCR were designed by Inte-
grated DNA Technologies (http://sg.idtdna.com/pages/
home) based on sequences of genes under test (Table 
S1). P. leopardus b2m gene was used as an internal refer-
ence for standardizing expressions of detectd genes [36]. 
qRT- PCR experiment was performed with a 20 µL mix 
solution containing 10 µL SYBR qPCR SuperMix Plus 
(Novoprotein, Shanghai, China), 0.4 µL of each primer 
(10 µM), 2 µL cDNA template (10 ng), and 7.2 µL nucle-
ase-free water by using LightCycler 480 (Roche, Forrent-
rasse, Switzerland). The procedure for qRT-PCR was 95 
℃ for 5 min, 45 cycles (95 ℃ for 15 s), and 60 ℃ for 45 s. 
The relative expressions of detected genes were calcu-
lated by 2−ΔΔCt comparative Ct method. Statistical anal-
ysis was performed by SPSS20.0 (IBM, NY, USA) with 
one-way ANOVA followed by the least significant differ-
ence test (LSD).

Dual-color fluorescence in situ hybridization
Fluorescence in situ hybridization (FISH) probes were 
synthesized using a Digoxigenin (DIG)-labeled RNA 
labeling kit and a Biotin-labeled RNA labeling kit, respec-
tively, based on the manufacturer’s protocol (Roche, 
Berlin, Germany). The primers used for template ampli-
fication of probes were listed in Table S2. The procedures 
of FISH were performed following the standard proto-
cols of our lab. The results were observed and imaged by 
Olympus FV3000 confocal microscope (Olympus, Japan).

Results
Effects of dietary Antarctic krill on intestinal and hepatic 
histology of P. leopardus and liver antioxidant status
Histological observations of the intestine and liver were 
carried out and the results were shown in Fig. 1. Notably, 
no significant morphological differences were observed 

in the intestines of the krill group compared to the con-
trol group (Fig. 1A, B, A and B’), indicating that the effect 
of feeding krill on the intestinal health of P. leopardus 
did not manifest in histological morphology. However, 
a noticeable reduction in cytoplasm vacuolization (lipid 
droplet) was evident in the krill group compared to the 
control group (Fig.  1C, D and C’, D’). Additionally, the 
degree of hepatocyte marginalization was significantly 
decreased in the krill group. Further, we examined the 
levels of antioxidant system enzymes in the liver and 
intestine of P. leopardus, including T-GPX, T-AOC, and 
T-SOD. The results, as depicted in Fig.  1E, showcased 
a substantial increase in enzyme activities of T-SOD, 
T-GPX, and T-AOC in the krill group compared to the 
control group.

Overview of transcriptome data
In this study, a total of 12 libraries were constructed from 
both the intestine (control_I1, control_I2, control_I3, 
krill_I1, krill_I2, and krill_I3) and liver (control_L1, con-
trol_L2, control_L3, krill_L1, krill_L2, and krill_L3). The 
detailed information on transcriptome data was listed 
in Table S3. Following the removal of adaptors and low-
quality reads, an average of 19,143,367 clean reads were 
obtained, with an average Q20 and Q30 of 97.36% and 
93.23%, respectively. Subsequently, the clean reads were 
aligned to the P. leopardus reference genome, yielding an 
average mapping rate of 87.13%. The above results indi-
cated the high quality and sufficiency of transcriptome 
data for subsequent analysis. The transcriptome raw data 
has been uploaded to the NCBI sequence Read Archive 
(SRA) with the accession number PRJNA834932.

DEGs analysis between the control group and the krill 
group
Firstly, Principal component analysis (PCA) was exe-
cuted to discern the similarities and differences between 
samples from the control groups and the krill groups. As 
depicted in Fig. 2A and B, samples from the same group 
in both the intestine and liver exhibited distinct cluster-
ing. Simultaneously, samples from different groups dis-
played clear separation in clustering, underscoring the 
reliability and efficacy of the feeding experiment. Sub-
sequently, two comparison groups were established, 
and DEGs analysis was conducted by DEseq2. A total of 
1,597 and 1,161 DEGs were identified from the intestine 
and liver, respectively. Besides, the number and expres-
sion profiles of up-regulated and down-regulated DEGs 
in both the intestine and liver were visually represented 
through by heat-map (Fig. 2C, D).

Functional analysis of DEGs
GO and KEGG enrichment analysis were conducted 
to unravel the functions of DEGs and the pathways 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://david.ncifcrf.gov/
http://sg.idtdna.com/pages/home
http://sg.idtdna.com/pages/home
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that DEGs were involved in. DEGs obtained from the 
intestine and liver yield a total of 59 GO terms in level 
2, respectively (Fig.  3A, B). Notably, a similarity was 
observed between categories in biological process (BP), 
molecular function (MF), and cellular component (CC) 
enriched from the two group DEGs. At the BP level, the 
most enriched GO terms were “cellular process”, “single-
organism process”, “biological regulation”, and “metabolic 
process”. At the MF level, DEGs were predominantly 
associated with “binding”, “catalytic activity”, and “molec-
ular function regulator”. At the CC level, DEGs involved 
in “cell”, “cell part”, and “organelle” exhibited the highest 
representation. It was noteworthy that both the DEGs in 
the intestine and liver were involved in antioxidant activ-
ity at the MF level, consistent with the results obtained 
from the enzyme activity measurement above.

For a deeper understanding of DEGs functions, the 
terms belonging to BP and MF were further screened. As 
shown in Fig.  3C, DEGs identified in the intestine were 
found to be related to the glycolipid catabolic process, 

cholesterol biosynthesis process, and glucose metabolic 
process at the BP level, suggesting significant regula-
tion of these biological processes in response to dietary 
Antarctic krill. Furthermore, multiple MF terms, such as 
hydrolase activity on glycosyl bonds and transmembrane 
transporter activity, were screened out, indicating that 
dietary Antarctic krill might alter the metabolism of glu-
cose and cholesterol by regulating the activity of hydro-
lase enzymes and transmembrane transport proteins. In 
the liver, DEGs were found to be extensively involved in 
biological processes related to lipid metabolism, as well 
as oxidation-reduction (Fig. 3D). At the MF level, DEGs 
were notably related to catabolic activity, oxidoreductase 
activity, steroid hydrolase activity, and vitamin binding. 
Subsequently, the expression dynamics of cholesterol 
metabolic-related genes with dietary Antarctic krill were 
analyzed, revealing that cholesterol synthesis-related 
genes, including sc5d, dhcr24, ebp, dhcr7, and apoa4, 
were almost all down-regulated in both intestine and 
liver with dietary Antarctic krill (Fig. 3E).

Fig. 1  Histological observation of intestine and liver, and antioxidant enzyme activity analysis of the livers with different treatments. (A-D) The histology 
of the intestines and livers with different treatments. (A and C) The histology of the intestines and livers in the control group. (B and D) The histology of 
the intestines and livers in the krill group. Scale bars = 50 µm. (A-D) The histology of the intestines and livers at higher magnification with different treat-
ments. Scale bars = 20 μm. The vacuolization (lipid droplets) was indicated by circles. MF, mucosal fold; TP, tunica propria; MV, microvillus; IEC, intestine 
epithelial cells; GC, goblet cell. (E) The dynamics of antioxidant capacity of intestine and liver with dietary Antarctic krill. Data were shown as mean ± SEM 
(n = 3). Marks * and ** indicated statistical significance (P < 0.05 or P < 0.01)
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The KEGG enrichment analysis results indicated that 
DEGs from both the intestine and liver were broadly 
involved in metabolism-related pathways, such as steroid 
biosynthesis, galactose metabolism, amino acid metabo-
lism, and cholesterol metabolism, which demonstrated 
that dietary Antarctic krill significantly altered the 
metabolism state of P. leopardus. Moreover, it was found 
that DEGs from the liver were closely related to immune 
response-related pathways, including chemokine signal-
ing pathway, Toll-like receptor signaling pathway, Natural 
killer cell-mediated cytotoxicity, and JAK-STAT signal-
ing pathway (Fig. 4). In the pathways related to immune 
system, DEGs inhibiting inflammation, such as pik3rl 
and il17ra, were up-regulated in the krill group, while 
some pro-inflammatory factors like tlr5 and cxcl10, were 
down-regulated in the krill group.

Validation of DEGs expression profile by the qPCR and FISH
The results demonstrated that the expression patterns 
of DEGs obtained from qRT-PCR analysis were gener-
ally consistent with those from RNA-seq data (Fig.  5), 
indicating the trustworthiness of transcriptome data and 
analysis in our study. In the intestine, cholesterol metab-
olism-related genes, including dhcr7, sc5d, ebp, lipa, and 
apoa4, exhibited a down-regulated in the krill group 

compared to the control group. In the liver, genes related 
to cholesterol metabolism, such as dhcr7, sc5d, and lss, 
also showed a relatively lower expression level in the 
krill group in contrast to the control group, while scarf1 
and cat were up-regulated with dietary Antarctic krill. 
For immune response-related genes, there was a down-
regulation observed in tlr5 and cxcl10, coupled with an 
up-regulation in pik3r1 and il17ra in the liver under the 
influence of dietary Antarctic krill.

We conducted further validation to explore the expres-
sion patterns of DEGs in the intestines and livers of P. 
leopardus using FISH. The nuclei of intestinal epithe-
lial cells (IECs) and hepatocytes were vividly visual-
ized by staining with DAPI. Our findings revealed that 
the mRNA signals of apoa4 and dhcr7 were noticeably 
diminished in the krill group compared to the control 
group, as illustrated in Fig.  6A. Intriguingly, these two 
genes exhibited consistent expression locations in the 
intestine of P. leopardus, with the mRNA signals of apoa4 
and dhcr7 predominantly localized in the cytoplasm of 
IECs. Likewise, the expression level of scarf1 and sc5d 
was stronger in the liver of the control group, and the 
mRNA signals of scarf1 and sc5d were co-located in the 
cytoplasm of hepatocytes of P. leopardus (Fig. 6B).

Fig. 2  The correlation analysis of transcriptome data and DEGs analysis of intestines and livers with different treatments. (A) The PCA analysis of intestines 
at different treatments. (B) The PCA analysis of livers at different treatments. (C) Heatmap of all DEGs of intestines between two groups. (D) Heatmap of 
all DEGs of livers between two groups
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Biased effects of dietary Antarctic krill and astaxanthin on 
hepatic gene expression of P. Leopardus
Krill stands out as a primary source of astaxanthin, a 
compound widely recognized in aquaculture for its 
beneficial properties. In our recent work, we unveiled 
the positive impact of dietary astaxanthin on the liver 
health of P. leopardus, specifically in its role in regulat-
ing lipid metabolism, fortifying the antioxidant system, 
and enhancing the immune system [36]. Building upon 
these findings, we delved into a comparative explora-
tion of the effects exerted by dietary Antarctic krill and 
astaxanthin on the gene expression profiles within the 
liver of P. leopardus. Our results spotlighted 247 genes 
that exhibited significant differences in expression lev-
els in response to both dietary Antarctic krill (the krill 
group) and astaxanthin (the AX group) (Fig. 7A). The GO 
analysis illuminated the substantial involvement of these 
genes in biological processes linked to lipid metabolism, 
antioxidant system, and immune responses (Fig.  7B). 
Furthermore, KEGG enrichment analysis also yielded a 
bunch of lipid metabolism-related signaling pathways, 
such as steroid biosynthesis, cholesterol metabolism, and 
vitamin B6 metabolism, et al. (Fig. 7C). Subsequently, we 

drew comparisons in the dynamic expression patterns of 
genes associated with cholesterol metabolism, immune 
response, and oxidative stress between the krill or AX 
group, and the control group (Fig. 7D). Compared to the 
AX group, dietary Antarctic krill showed a more dis-
tinct inhibitory effect on cholesterol biosynthesis genes 
in the liver. Conversely, oxidative stress and immune 
response-related genes showcased a heightened sensitiv-
ity to dietary astaxanthin compared to dietary Antarctic 
krill, indicating a biased effect of dietary Antarctic krill 
and astaxanthin on the hepatic gene expression of P. 
leopardus.

Discussion
The intestine and liver, vital organs responsive to diets, 
play crucial roles in metabolism, synthetics, and immu-
nity [42, 43]. Based on histological observation, we found 
that the structural integrity and composition of the intes-
tine remained unaffected by dietary Antarctic krill, align-
ing with findings in large yellow croaker where Antarctic 
krill had no discernible impact on intestinal morphology 
[44]. The intestine has been shown owing high plasticity, 
defined as the ability to modify its size or thickness and 

Fig. 3  GO enrichment analysis and expression dynamics of DEGs in intestines and livers of P. leopardus. (A) The number of GO terms enriched at level 2 
from different treatments group in intestines. (B) The number of GO terms enriched at level 2 from different treatment groups in livers. (C) Main biologi-
cal process terms and molecular function terms of unique DEGs in the control vs. the krill group in intestines of P. leopardus. (D) Main biological process 
terms and molecular function terms of unique DEGs in the control vs. the krill group in the livers of P. leopardus. (E) Heatmap of expression dynamics of 
cholesterol metabolic related genes in intestine and liver
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intestinal cells to adapt to different nutritional conditions 
[45]. Additionally, tightly arranged intestine epithelial 
cells could be able to maintain the stability of intestinal 
morphology and structure [46]. In contrast, the integrity 
of fish liver has been demonstrated to be sensitive to the 
consumption of formulated feed [47]. Our results showed 

that a reduction in hepatic cytoplasmic vacuolization 
in the krill group, suggesting that dietary Antarctic krill 
could significantly reduce lipid accumulation in the liver. 
The nutritional composition of Antarctic krill, particu-
larly its omega-3-rich phospholipids, has been recog-
nized for its cholesterol-lowering effects [48]. Indeed, 

Fig. 5  Validation of RNA-seq data by qPCR of representative DEGs intestines and livers. qPCR data were shown as means ± SEM (n = 3) from the same three 
biological replicates utilized in RNA-seq

 

Fig. 4  Scatter plots of enriched KEGG pathways for DEGs with different treatments in intestines and livers. (A) Scatter plots of enriched KEGG pathways for 
DEGs in intestines. (B) Scatter plots of enriched KEGG pathways for DEGs in livers. Rich Factor was the ratio of the number of DEGs for certain KEGG over 
the total of genes in that pathway. The significance of identified KEGG pathways was determined by q-value < 0.05
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dietary Antarctic krill has also been demonstrated to 
reduce liver cholesterol and increase free fatty acid con-
tents in multiple aquaculture organisms, including Euro-
pean sea bass, Atlantic salmon, and White shrimp [24, 
49, 50]. Furthermore, the results of antioxidant enzyme 
activity analysis showed that dietary Antarctic krill could 
significantly reduce oxidative stress in both intestine and 
liver of P. leopardus, which could be attributed to the 
high contents of astaxanthin that were notable as an effi-
cient antioxidant in Antarctic krill.

The reduction in liver lipid accumulation, modulation 
of antioxidant capacities, and molecular-level improve-
ments in lipid metabolism and immunity underscored 
the potential of Antarctic krill as a beneficial dietary sup-
plement. Subsequently, a comparative transcriptome was 
performed and a bunch of DEGs was obtained. As shown 
in Fig. 2, a higher abundance of DEGs was identified in 
the intestine compared to the liver, indicating that dietary 

Antarctic krill did not elicit significant histological 
changes in the intestine, it exerted a substantial molec-
ular impact at the transcriptomic level. The functional 
analysis of these DEGs revealed a pronounced associa-
tion with lipid metabolism, encompassing cholesterol 
metabolism, steroid metabolism, and steroid biosynthe-
sis. For instance, 7-dehydrocholesterol reductase (dhcr7), 
known as a terminal enzyme of cholesterol synthesis [51], 
was found to be down-regulated in the intestine of P. 
leopardus with dietary Antarctic krill, indicating the inhi-
bition effects of Antarctic krill on cholesterol biosynthe-
sis in the intestine. Besides, sterol C5-desaturase (sc5d) 
was also significantly down-regulated in the liver with 
dietary Antarctic krill, which has been demonstrated to 
play vital roles in cholesterol biosynthesis [52]. In com-
paring the intestine and liver, DEGs enriched in the liver 
were associated with multiple pathways related to immu-
nity, including the Toll-like receptor pathway, Chemokine 

Fig. 6  The expression profiles of representative DEGs of intestines and livers. (A) Double color fluorescence in situ hybridization verifies the location of 
apoa4 and dhcr7 expression in the intestines of P. leopardus. (B) Double color fluorescence in situ hybridization verifies the expression and location of 
scarf1 and sc5d in the livers of P. leopardus. The DIG-labeled positive signals were marked by white arrows, and the Biotin-labeled positive signals were 
marked by white arrowheads. Scale bar: 20 μm
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signaling pathway, Natural killer cell-mediated cytotoxic-
ity, and JAK-STAT signaling pathway, suggesting that the 
liver was more sensitive to dietary Antarctic krill com-
pared to the intestine in terms of the immune response. 
Indeed, the protective effects of dietary Antarctic krill on 
the immune system have been widely demonstrated in 
multiple aquaculture organisms, such as White shrimp, 
Japanese flounder, and Red swamp crayfish [37, 53, 54]. 
In addition, various anti-inflammatory factors have 
been screened out, the expression dynamics of which 
have been validated by qRT-PCR. For example, scav-
enger receptor class F member 1 (scarf1), identified for 
its immune-regulatory role in hepatocellular carcinoma 

and promote the adhesion of CD4 + T cells to hepatic 
sinusoidal endothelium in mammals [55]. In teleost, 
scarf1 has also been known as an important immunity-
related gene in multiple species, such as Common carp, 
Japanese flounder, and Zebrafish [56–58]. In our study, 
scarf1 was found to be distributed in the hepatocytes 
and up-regulated with dietary Antarctic krill, suggest-
ing that it could function in hepatic immune response in 
P. leopardus. Moreover, other immunity-related genes, 
including tlr5, pik3r1, il17ra, and cxcl10, vital for teleost 
immune response [59–62], exhibited dynamic regulation 
in the liver with dietary Antarctic krill. The elucidation 
of these pathways and gene sets provides a foundation 

Fig. 7  Comparison of effects of dietary Antarctic krill and astaxanthin on gene expression profiles of P. leopardus liver. (A) Venn diagram of the distribution 
of the DEGs of P. leopardus liver on dietary Antarctic kill and astaxanthin. (B) Scatter plots of enriched GO enrichment pathways of DEGs from two groups. 
(C) Scatter plots of enriched KEGG pathways for DEGs from two groups. The Rich Factor was the ratio of the number of DEGs for certain GO and KEGG over 
the total of genes in that pathway. The significance of identified GO and KEGG pathways was determined by p-value < 0.05. (D) Gene expression in main 
biological process terms of unique DEGs in the krill group VS the astaxanthin
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for the development of targeted interventions. Of course, 
while shedding light on these molecular mechanisms, 
the detailed functions of these genes and pathways in the 
intestine and liver warrant further investigation in future 
research.

Among the nutritional profiles of Antarctic krill, astax-
anthin has been famous for its antioxidant, anti-inflam-
mation, and lipid-reduction, which has been widely 
applied in aquafeed supplements for various aquaculture 
organisms, including P. leopardus [63]. In our previous 
study, dietary astaxanthin was found to be beneficial for 
lipid reduction, immune system, and antioxidant in the 
P. leopardus liver [36]. Here, the identification of genes 
differentially expressed in both the Antarctic krill (krill 
group) and astaxanthin (AX group) groups, specifically 
related to cholesterol metabolism and immunity, fur-
ther underscores the multifaceted functions of dietary 
Antarctic krill and astaxanthin. To provide valuable 
insights into the selection of focused feeds in P. leopar-
dus aquaculture, the expressions of specific genes related 
to cholesterol biosynthesis, oxidative stress, and immune 
response were concluded to evaluate the biased effects of 
dietary Antarctic krill and astaxanthin on the liver. Based 
on nutritional profiles, except for astaxanthin, Antarc-
tic krill has been also known for its abundance in DHA 
and EPA, both of which have been previously established 
for their beneficial role in cholesterol reduction [64]. 
Our findings indicated that dietary Antarctic krill exhib-
ited more significant inhibitory effects on most DEGs 
involved in cholesterol biosynthesis compared to dietary 
astaxanthin. This suggested that the lipid reduction effect 
of dietary Antarctic krill was more pronounced than that 
of dietary astaxanthin, potentially attributed to the syn-
ergistic actions of multiple nutrients in Antarctic krill. 
Future research could delve into identifying the most 
efficient lipid-reducing nutrient within Antarctic krill. 
Moreover, dietary astaxanthin demonstrated more con-
spicuous effects on the expressions of DEGs related to 
oxidative and immune responses. It’s worth noting that 
organic pollutants, including fluorine and arsenic, have 
been detected in krill [65, 66], and microorganisms in 
krill tissues could potentially affect the immune system 
and antioxidants [67]. Up to date, the development of 
krill products, such as krill oil and krill meal, could alle-
viate the effects of these toxicological factors to some 
extent. However, the balance between processing costs 
and the nutritional value of krill products remains to be 
resolved. In conclusion, our study indicated that the dif-
ferential effects of dietary Antarctic krill and astaxanthin 
on gene expression in the liver offer a nuanced under-
standing of their impact on cholesterol metabolism, oxi-
dative stress, and immune responses.

Conclusion
In summary, the present study has significantly advanced 
our understanding of the impact of dietary Antarctic krill 
on the physiological and molecular aspects of juvenile 
P. leopardus. The addition of krill into the diet demon-
strated notable benefits, notably reducing lipid accumu-
lation in the liver and enhancing antioxidant capacities 
in both the intestine and the liver. Importantly, our find-
ings extended beyond mere physiological observations, 
revealing profound molecular-level improvements in 
lipid metabolism, immune response, and antioxidant 
mechanisms. One of the key revelations from our study is 
the effectiveness of dietary Antarctic krill in modulating 
specific genes associated with cholesterol biosynthesis 
and immunity, exemplified by the differential expression 
of dhcr7, apoa4, sc5d, and scarf1. Furthermore, our com-
parative transcriptome analysis shed light on the biased 
effects of dietary Antarctic krill and astaxanthin on gene 
expressions in the liver. Notably, Antarctic krill exhibited 
a more pronounced inhibitory impact on genes linked to 
cholesterol biosynthesis, whereas astaxanthin exerted a 
greater influence on genes associated with immunity and 
antioxidant responses. This distinction underscored the 
specificity and versatility of Antarctic krill as a dietary 
supplement in aquafeed formulations. By elucidating the 
intricate molecular mechanisms underlying the positive 
effects of dietary Antarctic krill, our results will offer a 
foundation for optimizing aquaculture practices and for-
mulating feed regimes that capitalize on the unique ben-
efits provided by Antarctic krill.
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