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Abstract
Background  Immunogenic cell death (ICD) has been identified as regulated cell death, which is sufficient to activate 
the adaptive immune response. This study aimed to research ICD-related genes and create a gene model to predict 
pancreatic ductal adenocarcinoma (PAAD) patients’ prognosis.

Methods  The RNA sequencing and clinical data were downloaded from the TGCA and GEO databases. The PAAD 
samples were classified into two subtypes based on the expression levels of ICD-related genes using consensus 
clustering. Based on the differentially expressed genes (DEGs), a prognostic scoring model was constructed using 
LASSO regression and Cox regression, and the scoring model was used to predict the prognosis of PAAD patients. 
Moreover, colony formation assay was performed to confirm the prognostic value of those genes.

Results  We identified two ICD cluster by consensus clustering, and found that the the ICD-high group was closely 
associated with immune-hot phenotype, favorable clinical outcomes. We established an ICD-related prognostic 
model which can predict the prognosis of pancreatic ductal adenocarcinoma. Moreover, depletion of NT5E, ATG5, 
FOXP3, and IFNG inhibited the colony formation ability of pancreatic cancer cell.

Conclusion  We identified a novel classification for PAAD based on the expression of ICD-related genes, which may 
provide a potential strategy for therapeutics against PAAD.

Keywords  Immunogenic cell death, Pancreatic ductal adenocarcinoma, Tumor microenvironment, Immune 
infiltration, Prognosis model
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Introduction
Pancreatic ductal adenocarcinoma(PAAD) is known for 
its aggressive nature and poor overall 5-year survival rate 
of approximately 12% [1]. Over the past two decades, its 
incidence has doubled [2]. Currently, surgical resection is 
the only potentially curative option for PAAD [3]. How-
ever, only a small percentage of patients are eligible for 
surgery, as the majority are diagnosed at advanced stages 
[4]. Even after radical surgery, the 5-year survival rate 
remains low at 25% due to local recurrence or distant 
metastasis [5]. Given this challenging scenario, there is an 
urgent need for new biomarkers to predict and improve 
the prognosis of PAAD patients.

Immunogenic cell death (ICD) has been identified as 
a regulated cell death process capable of activating the 
adaptive immune response [6]. Over the past decade, 
extensive research has been conducted to elucidate the 
mechanisms underlying ICD and its ability to trigger an 
anticancer immune response [7–9]. These studies have 
shown that ICD induction ultimately contributes to long-
lasting antitumor immunity within the tumor microenvi-
ronment. Pancreatic cancer evades immune surveillance 
by exhibiting low immunogenicity and undergoing cell 
death through tolerogenic pathways [8]. However, ICD 
can timely release various damage-associated molecular 
patterns (DAMPs), thereby stimulating an anti-tumor 
adaptive immune response.

The objective of this study was to identify ICD-associ-
ated biomarkers and develop an ICD-related risk model 
that predicts the immune microenvironment and prog-
nosis in PAAD.

Materials and methods
Datasets
The RNA-seq transcriptome information, the somatic 
mutations, copy number variation data and matching 
clinicopathological data of PAAD patients were acquired 
from Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). GSE57495 from the GEO data-
base was used for the validation (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE57495).

Consensus clustering
To classify patients into distinct molecular subtypes, we 
performed unsupervised consensus clustering of ICD-
related genes by utilizing the R package “Consensus-
ClusterPlus”. Subsequently, we assessed the ideal cluster 
numbers between k = 2–10, and this process was repli-
cated 1,000 times to guarantee that the results would be 
stable. The pheatmap tool in R was utilized to create a 
cluster map.

Identification of differentially expressed genes (DEGs) 
between ICD-high and ICD-low subtypes
The differential mRNAs expression was assessed utiliz-
ing the Limma package (version: 3.40.2) of R software. In 
order to rectify false-positive TCGA data, the adjusted P 
values were examined. The screening criteria for mRNAs 
differential expression determined as adjusted P < 0.05 
and| fold change| >2 [10].

Functional enrichment analysis
To explore the potential mechanism underlying ICD 
low and high cohorts involved in PAAD, we performed 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[11–13] analysis using “ClusterProfiler” R package. The 
q-value and p-value thresholds of < 0.05 were set as the 
thresholds.

Then 50 gene sets of cancer hallmark-related pathways 
from the Gene Set Enrichment Analysis (GSEA) data-
base were collected and GSEA was conducted to assess 
whether there were considerable variations in the set of 
genes expressed between the ICD low and high cohorts 
in the enrichment of the MSigDB Collection (c2.cp.kegg.
v7.4.symbols.gmt) [14].

Characterization of the immune Landscape between two 
ICD subgroups
To identify immune characteristics of 502 HNSCC sam-
ples, their expression data were loaded into CIBERSORT 
(https://cibersort.stanford.edu/) and repeated 1000 times 
to determine the relative percentage of 22 immune cell 
types [15]. Then, we compared the relative percentage of 
22 immune cell types between the two ICD subgroups, 
and the results are presented in a landscape map.

Construction of the ICD-Related risk signature
Least Absolute Shrinkage and Selection Operator Regres-
sion (LASSO) is a form of penalized regression that can 
be used to screen variables from high-dimensional data 
to build a prognostic model. In this study, we filtered the 
significant ICD-related genes from PAAD specimens and 
performed the optimum survival cutoff analysis. Then, 
we used the LASSO method in a Cox regression model to 
pick out the most useful prognostic genes. After that, an 
ICD-related scoring system for PAAD patients was estab-
lished by the combination of the expression of genes and 
the estimated Cox regression coefficient: ICD-related 
risk score =∑ (coefficient of gene* expression of a gene).

And then, according to the best cutoff risk score, 
patients with PAAD were divided into high-risk group 
and low-risk group and then subjected to the Kaplan-
Meier (KM) survival analysis.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57495
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57495
https://cibersort.stanford.edu/
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RNA interference and colony formation
The small interfering RNAs were purchased from 
ThermoFisher: SiNT5E (11,636), SiATG5 (137,766), 
SiFOXP3(108,456), SiIFNG (144,586). The manufactur-
er’s recommendations were followed for siRNA trans-
fection when using Lipofectamine 2000 (Invitrogen, 
Carlsbad, CA, USA). PANC-1 cells were seeded to be 
70–90% confluent at transfection. For the colony forma-
tion assay, the cells were treated with the indicated siR-
NAs for 24 h, digested, and seeded into six-well plates at 
a density of 1,000 cells per well. After 14 days of incuba-
tion, the cells were fixed with 4% paraformaldehyde and 
visualized by 0.5% crystal violet staining. Each plate was 
washed by 3 thorough immersions in pure water and 
then scanned by camera.

Results
Identification of ICD-associated subtypes based on 
consensus clustering in PAAD
The ICD-related genes have been previously summarized 
by Abhishek [15], which including CALR, ENTPD1, 
NT5E, HMGB1, HSP90AA1, ATG5, BAX, CASP8, 
PDIA3, PIK3CA, CXCR3, IFNA1, IFNB1, IL10, TNF, 
CASP1, IL1B, P2RX7, LY96, MYD88, CD4, FOXP3, 
IFNG, IFNGR1, IL17RA, and PRF1. Firstly, to depict the 
connections of these ICD-related genes, we utilized the 
STRING database to conduct protein-protein interaction 
(PPI) network. As shown in Fig. 1A, there were complex 
interactions between these genes. Next, we analyzed the 
expression of ICD-related genes in normal samples and 
pancreatic cancer samples in The Cancer Genome Atlas 
(TCGA). Importantly, we found that most of ICD-related 
genes were overexpressed in pancreatic cancer samples 
(Fig. 1B).

Next, to further explore the profile and characteristics 
of ICD-related genes in pancreatic cancer, consensus 
cluster analysis was performed to determine the ICD-
associated clusters in PAAD patient samples. To obtain 
the optimal clustering number (k value), we calculated 
the consistency coefficient. Figure 1D showed the cumu-
lative distribution function (CDF) curve of consensus 
clustering for k = 2 to 10 and we found that k = 2 was a 
preferable selection for sorting the entire cohort into 
Clusters 1 (n = 146) and Clusters 2 (n = 29) (Fig. 1C, D). As 
a results, the TCGA cohort was grouped into two clus-
ters, C1 and C2. Next, we analysed the expression level 
of ICD-related genes between C1 and C2 and found that 
Clusters 1 revealed higher ICD-related genes expression 
level (Fig. 1E). Moreover, the Kaplan-Meier survival anal-
ysis exhibited different clinical results. In general, Clus-
ter 2 with lower ICD-related genes had a superior overall 
survival (log-rank test, p = 0.01) among pancreatic cancer 
patients (Fig. 1F).

Identification of differentially expressed genes and signal 
pathways in different ICD subtypes in PAAD
Given the two ICD-associated subtypes indicated differ-
ent clinical results, we identified the key Differentially 
Expressed Genes (DEGs) between Clusters 1 and Clus-
ters 2. The characteristics of PAAD patients are list in 
Table 1 and no significant difference was found between 
C1 and C2 in age, gender, T staging, N staging, and 
stage. After data prepossessing and analysis, we identi-
fied an aggregate of 3,008 dysregulated genes, including 
2,686 upregulated genes and 322 downregulated genes 
(Fig. 2A, B). Moreover, we performed functional enrich-
ment analysis to investigate the biological behavior of 
these DEGs. The KEGG pathway enrichment analysis 
implied that these upregulated genes in the ICD high 
subtype were frequently enriched in cytokine-cytokine 
receptor interaction, chemokine signaling pathway, viral 
protein interaction with cytokine and cytokine recep-
tor, B cell receptor signaling pathway primary immu-
nodeficiency, and intestinal immune network for IgA 
production, most of which were involved in activities of 
immunity (Fig. 2C).

Furthermore, the GSEA analysis were performed to 
identify the associated signaling pathways activated in the 
ICD-high subtype. We found that the immune pathways, 
including Fc gamma R-mediated phagocytosis, natural 
killer cell-mediated cytotoxicity, B cell receptor signal-
ing pathway, NOD like receptor signaling pathway, and 
T cell receptor signaling pathway, had higher enrichment 
scores in the ICD high subtype. Therefore, our results 
indicated that ICD-related genes are tightly associated 
with the immune-active microenvironment (Fig. 2D).

Mutations and tumor microenvironment landscape in ICD-
high and ICD-low subtypes
Tumor mutation burden is an important biomarker 
of cancers. Next, we explored the genetic alterations 
between the two subtypes by using the “maftools” R 
package. Among them, KRAS and TP53 had the high-
est mutation frequency, but the mutation rate was much 
higher in ICD-high subtype (Fig.  3A) (86.5% vs. 68.4% 
for KRAS and 72.3% vs. 47.4% for TP53). Differentially, 
following KRAS and TP53, ICD-high subtype showed a 
high frequency of SMAD4 (25.6%) and CDKN2A (18.6%), 
but ICD-low subtype (Fig. 3B) demonstrated higher mua-
tion frequency of TTN (36.8%) and ATM (21.1%).

Characterization of the tumor microenvironment (TME) 
landscape in different subtypes
Given that accumulating evidence strongly indicates 
that ICD can activate the antitumor immune response 
and is highly attractive to improve cancer treatment 
efficacy, we next sort to explore the composition of the 
tumor microenvironment in different subtypes. By using 
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the ESTIMATE R package, we observed that the stro-
mal score and the immune score were higher in ICD-
high subtype (Fig. 4A). More importantly, we found that 
the ESTIMATE score, which indicated the aggregation 
of immune or stromal scores in the tumor microenvi-
ronment, was statistically higher in ICD-high subtype. 
Next, we also analyzed the associations between the 
two subtypes and the immune infiltration of 22 kinds of 
immune cells utilizing the CIBERSORT approach in con-
junction with the LM22 signature matrix (Fig.  4B). We 
noticed significant variations in the infiltration of some 
immune cells in different subtypes. The infiltration level 
of B cells, T cells CD8, T cells CD4 memory resting, T 
cells CD4 memory activated, Tregs, NK cells activated, 

Macrophages M0, M1 and M2, dendritic cells activated, 
and neutrophils were considerably elevated in patients 
with ICD-high subtype (Fig. 4C).

Moreover, we also evaluated the human leukocyte anti-
gen (HLA) genes between the ICD-high and ICD-low 
subtypes. We discovered that most HLA genes were def-
erentially expressed between the two subtypes (Fig. 4D). 
We further investigated the profile of immune check-
points in different subtypes. We found that immune 
checkpoints, including CTLA4, PDCD1 (PD-1), LAG3, 
and CD274, were significantly upregulated in the ICD-
high subtypes, suggesting a potential role of the ICD-
related subtypes in immunotherapy (Fig. 4E). In general, 

Fig. 1  Identification of ICD-associated subtypes based on consensus clustering in PAAD. (A) Protein–protein interactions among the ICD-related genes. 
(B) Heatmap of the ICD-related genes expression among normal samples and PAAD samples in TCGA database. (C) Consensus clustering matrix (k = 2) of 
PAAD samples. (D) Consensus clustering cumulative distribution function (CDF) with k = 2 to 10. (E) Heatmap of ICD-related genes expression between 
different subtypes. (F) Kaplan–Meier curves of OS in different subtypes
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our results indicated that the ICD-high subtype in PAAD 
was associated with immune-hot phenotype.

Construction and validation of ICD risk model
To establish a predictive prognostic model for PAAD 
patients, we then explored the prognostic-related genes 
in the PAAD TCGA set. By using the LASSO logistic 
regression and Cox univariate analysis on the prognos-
tic related genes combined with 10-fold cross validation 
to narrow the gene scope, we obtained 13 ICD-related 
genes which were associated with the overall survival 
of PAAD patients (Fig.  5A, B). The risk score formula 
was derived to calculate a risk score of each PAAD 
patient based on the expression level of those genes: 
Risk Score = (-0.0200)*ENTPD1 +(0.3771)*NT5E+(-
0.5485)*ATG5+(0.2836)*PIK3CA+(-0.3363)*IL10+(-
0.1699)*TNF+(0.2760)*CASP1+(-0.0697)*P2RX7+(0.066
0)*LY96+(0.0787)*MYD88+(-0.5336)*FOXP3+(0.9603)*IF
NG+(0.2470)*IFNGR1.

Moreover, we further discovered the relationship 
between survival status and risk score. We found that 

Table 1  Clinical characteristics of Cluster 1 and Cluster 2
Characteristics C1 C2 p Value

146 29
Age
Median 64.94 (57–73) 64.29 (57–72) 0.77
Gender
Male 80 16 0.97
Female 66 13
T staging
T1 6 1 0.23
T2 17 7
T3 120 19
T4 3 0
N staging
N0 38 12 0.06
N1 106 15
Stage
I 14 7 0.09
II 124 20
II 3 0
IV 4 0

Fig. 2  Identification of Differentially Expressed Genes and signal pathways in different ICD subtypes in PAAD. (A) Volcano plot of the distribution of DEGs 
quantified between different subtypes. (B) Heatmap of the top 30 up-regualted and down-regulated DEGs in different subtypes. (C) Enrichment analyses 
of KEGG pipelines for DEGs. (D) GSEA analysis of the significant pathway between ICD-high and ICD-low subtypes
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Fig. 4  Characterization of the tumor microenvironment (TME) landscape in different subtypes. (A) Violin plots of the stroma score, immune score and 
ESTIMATE score between different subtypes. (B) Relative proportion of immune infiltration between different subtypes. (C, D) The expression of the im-
mune cells (C) and HLA genes (D) between different subtypes. (E) Box plots of immune checkpoints expression between different subtypes

 

Fig. 3  Comparison of the top 20 most frequently mutated genes of two ICD subtypes. (A) ICD-high subtype. (B) ICD-low subtype
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the alive status was associated with the low risk score 
(Fig.  5C). In addition, we also verified the prognostic 
significance of this risk profile in PAAD by utilizing KM 
analysis. We found that high risk score was closely asso-
ciated with worse survival probability (Fig.  5D), which 
was further verified by similar results in the GEO cohort 
(Fig. 5E).

Evaluation of tumor microenvironment in ICD risk models
To further explore the relationship between ICD risk 
model and the tumor microenvironment signature, we 
evaluated the correlation of risk subtypes and immune 
infiltration cells of PAAD. The results illustrated that the 
elevated risk score was negatively correlated with the 
infiltration level of CD4 memory cell, CD8 cell, and NK 
cell (Fig. 6A).

Next, the independent prognostic value of ICD risk sig-
nature, including age, gender, T-stage, and N-stage, were 

Fig. 5  Construction and validation of ICD risk model. (A) Univariate Cox analysis of the prognostic value of the ICD genes in terms of OS. (B) 13 prgnostic 
ICD-related genes were identified through Lasso Cox analysis. (C) Distribution map of the risk score, individual case survival information, and a clustering 
heatmap of mRNA expression profiles of the signature genes. (D, and E) Kaplan-Meier analyses of the prognostic significance of the risk model in TCGA 
and GSE57495 cohort, respectively.

 



Page 8 of 10Wang et al. BMC Genomics          (2024) 25:205 

evaluated by multivariate Cox analyses. The results show-
cased that the ICD-related signature was an indepen-
dent risk factor for overall survival in patient with PAAD 
(Fig. 6B).

Validation of the ICD-related genes for the prognostic 
signature
To further confirm the protein expression and the prog-
nostic value of the 13 genes, we selected 4 genes with 
the highest coefficients (including NT5E, ATG5, FOXP3, 
and IFNG) in the risk model to perform the colony for-
mation assay. We silenced the expression of each gene 
through siRNA (Fig. 7A) to further verify the biological 
functions of those genes. The results of colony formation 

indicated that depletion of NT5E, ATG5, FOXP3, and 
IFNG inhibited the colony formation ability of PANC-1 
cells (Fig. 7B).

Discussion
ICD is recognized as a distinct form of regulated cell 
death that can be induced by different cancer treatments, 
such as radiotherapy [16], photodynamic therapy [17], 
and chemotherapeutics [18]. During the process of ICD, 
specific molecules known as danger-associated molecu-
lar patterns (DAMPs) are released, including calreticulin 
(CRT), high mobility group box 1 (HMGB1), adenosine-
5’-triphosphate (ATP), and heat shock proteins (HSPs). 
These released DAMPs trigger an antigen-specific 

Fig. 7  Validation of the ICD-related genes for the prognostic signature. (A) siRNA knockdown efficiencies. (B) The colony formation of PANC-1 cells deple-
tion with NT5E, ATG5, FOXP3, and IFNG

 

Fig. 6  Evaluation of tumor microenvironment in ICD risk models. (A) the correlation of risk score with the infiltration of CD8, activated NK cell, and acti-
vated CD4 memory cell. (B) Multivariate Cox analyses of the independent prognostic value of ICD risk signature
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immune response against a wide range of solid tumors 
[19].

In our study, we constructed an ICD-related signature 
and demonstrated its close association with the progno-
sis and tumor microenvironment of PAAD. We employed 
the consensus clustering algorithm to classify PAAD 
patients in the TCGA dataset based on the expression of 
ICD-related genes. We observed significant differences in 
clinical features between the two identified clusters. High 
expression of ICD-related genes was correlated with 
improved clinical outcomes and increased infiltration of 
immune cells. Additionally, we identified 13 ICD-related 
genes with prognostic value in the signature, enabling 
the stratification of PAAD patients into high-risk and 
low-risk cohorts. Kaplan-Meier survival analysis with 
log-rank test further confirmed that patients in the low-
risk group exhibited significantly better overall survival, 
suggesting that this risk signature may serve as an inde-
pendent prognostic indicator. Furthermore, we selected 
4 genes with the highest coefficients (including NT5E, 
ATG5, FOXP3, and IFNG) to perform the colony forma-
tion assay. The results indicated that depletion of those 
genes inhibited the colony formation ability.

Immunotherapy has transformed cancer treatment by 
leveraging the immune system to target tumor cells and 
stimulate specific antitumor immune responses [20]. 
Despite its advancements, the effectiveness of immuno-
therapy has been hampered by the immunosuppressive 
tumor microenvironment [21]. ICD, a type of cell demise, 
augments the adaptive immune response against tumor 
cells [22]. During ICD, tumor antigens become acces-
sible to antigen-presenting cells, and damage-associated 
molecular patterns (DAMPs) are released, facilitating 
dendritic cell maturation [23], This process leads to the 
activation of T cells and the infiltration of cytotoxic T 
cells [24], culminating in robust antitumor immune 
responses [25]. In line with these findings, our study uti-
lized consensus clustering to identify two distinct ICD 
clusters. Remarkably, the ICD-high group exhibited a 
close association with an immune-hot phenotype.

Tumor mutation burden stands as a crucial biomarker 
in cancer assessment. Pancreatic adenocarcinoma 
(PAAD) exhibits a distinctive profile characterized by a 
limited number of recurrent mutations in pivotal onco-
genes and tumor suppressor genes, mutations that intri-
cately correlate with disease progression [26]. Among the 
notable mutations, KRAS, TP53, CDKN2A, and SMAD4 
represent the canonical quartet. The oncogenic KRAS 
mutation emerges as a primary event in pancreatic can-
cer pathogenesis [27]. TP53 mutations, frequently leading 
to gain-of-oncogenic activities, are closely tied to invasive 
and metastatic phenotypes [28]. CDKN2A, responsible 
for encoding a crucial cell-cycle regulator, prominently 
emerges as the most frequently altered tumor suppressor 

gene. Meanwhile, SMAD4, another tumor suppressor 
gene in PAAD, assumes a pivotal role in mediating down-
stream signaling of the TGFβ receptor [29]. Notably, 
somatic mutation analysis across different risk groups 
reveals a higher likelihood of mutations in KRAS, TP53, 
CDKN2A, and SMAD4 in ICD-high subtypes (Cluster 
1). Previous studies have demonstrated that mutations in 
CDKN2A, TP53, and SMAD4 are associated with poorer 
survival and the development of invasive PAAD [30]. This 
aligns with the observed worse prognosis in our ICD-
high subtypes, reinforcing the clinical relevance of these 
mutations in shaping the disease course.

In summary, our study established a novel classification 
for PAAD based on the expression of ICD-related genes, 
and demonstrated significant differences in survival, clin-
icopathologic features, and immune status between the 
two clusters. Furthermore, we developed a novel ICD-
related gene signature that can predict the outcome of 
PAAD patients. Overall, these findings provide potential 
therapeutic strategies against PAAD.
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