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Abstract 

Mitochondrial genomes play important roles in studying genome evolution, phylogenetic analyses, and species 
identification. Amphipods (Class Malacostraca, Order Amphipoda) are one of the most ecologically diverse crustacean 
groups occurring in a diverse array of aquatic and terrestrial environments globally, from freshwater streams and lakes 
to groundwater aquifers and the deep sea, but we have a limited understanding of how habitat influences the molec-
ular evolution of mitochondrial energy metabolism. Subterranean amphipods likely experience different evolutionary 
pressures on energy management compared to surface-dwelling taxa that generally encounter higher levels of pre-
dation and energy resources and live in more variable environments. In this study, we compared the mitogenomes, 
including the 13 protein-coding genes involved in the oxidative phosphorylation (OXPHOS) pathway, of surface 
and subterranean amphipods to uncover potentially different molecular signals of energy metabolism between sur-
face and subterranean environments in this diverse crustacean group. We compared base composition, codon 
usage, gene order rearrangement, conducted comparative mitogenomic and phylogenomic analyses, and examined 
evolutionary signals of 35 amphipod mitogenomes representing 13 families, with an emphasis on Crangonyctidae. 
Mitogenome size, AT content, GC-skew, gene order, uncommon start codons, location of putative control region 
(CR), length of rrnL and intergenic spacers differed between surface and subterranean amphipods. Among crango-
nyctid amphipods, the spring-dwelling Crangonyx forbesi exhibited a unique gene order, a long nad5 locus, longer 
rrnL and rrnS loci, and unconventional start codons. Evidence of directional selection was detected in several protein-
encoding genes of the OXPHOS pathway in the mitogenomes of surface amphipods, while a signal of purifying 
selection was more prominent in subterranean species, which is consistent with the hypothesis that the mitogenome 
of surface-adapted species has evolved in response to a more energy demanding environment compared to subter-
ranean amphipods. Overall, gene order, locations of non-coding regions, and base-substitution rates points to habitat 
as an important factor influencing the evolution of amphipod mitogenomes.
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Introduction
Caves and other subterranean habitats, such as ground-
water aquifers and superficial subterranean habitats 
(SSHs; [1]), represent some of the most challenging envi-
ronments that exist on Earth. The primary characteristic 
of all subterranean habitats is the lack of light and asso-
ciated photosynthesis [1, 2]. Though some subterranean 
ecosystems are supported by chemoautotrophic produc-
tion by microbial communities [3, 4], chemoautotrophy 
rarely provides enough energy to support several trophic 
levels in most subterranean ecosystems [1, 5]. The pri-
mary source of energy input for many cave systems is the 
organic matter transferred from the surface hydrologi-
cally or by animals that frequently enter and exit caves 
[1, 6], which drive the structure and dynamics of subter-
ranean communities [7–9]. Although most subterranean 
ecosystems are largely thought to be energy-limited [10], 
food availability can be highly variable both among and 
within cave systems [11, 12]. Previous studies have shown 
that many subterranean organisms living in such energy-
limited habitats have undergone several physiological 
and metabolic adaptations to sustain themselves during 
extended food shortages [13, 14]. Among these troglo-
morphic traits, low metabolic rate is a key adaptation 
that occurs in both terrestrial and aquatic fauna of sub-
terranean communities [15, 16].

Mitochondria are the primary sites of energy produc-
tion in cells, generating ~ 95% of the adenosine triphos-
phate (ATP) required for everyday activities of life 
through oxidative phosphorylation [17–19]. The mito-
chondrial genome—mitogenome—encodes 13 essential 
proteins including two ATP synthases (atp6 and atp8), 
three cytochrome oxidases (cox1, cox2, and cox3), seven 
NADPH reductases (nad1, nad2, nad3, nad4, nad4l, 
nad5, and nad6), and cytochrome b (cytb) subunits. 
All mitochondrial protein-coding genes (PCGs) play a 
vital role in the electron transport chain [20–22]. Due 
to the unique characteristics of mitochondria, includ-
ing maternal inheritance, small genomic size, absence 
of introns, and their surplus availability in cells, the use 
of mitochondrial DNA (mtDNA) loci and mitogenomes 
has a long history in population genetics, phylogenet-
ics, and molecular evolution studies [23–25]. Previous 
studies have demonstrated a close association between 
mitochondrial loci and energy metabolism [18, 26, 26, 
27]. Although considered to largely evolve under puri-
fying selection, there is growing evidence that mitog-
enomes may undergo episodes of directional selection 
in response to shifts in physiological or environmental 
pressures [28, 29] leading to improved metabolic per-
formance under new environmental conditions [26, 30, 
31]. For example, previous studies that investigated vary-
ing selective pressures acting on mitochondrial PCGs of 

insects and mammals have revealed significant positive 
selective constraints at several loci that have compara-
tively increased energy demands [18, 19, 32]. Similarly, 
other studies have shown the various adaptive mitochon-
drial responses of organisms surviving in extreme envi-
ronments including the deep sea and Tibetan Plateau [29, 
32, 33]. However, these adaptations can occur at different 
metabolic levels, not just mitochondrial metabolism [34, 
35]. Thus, variation in mitogenomes of species inhabiting 
different environments may reflect only a small portion 
of these adaptive metabolic changes. Despite this limita-
tion, previous studies have detected signals of directional 
selection in the mitogenomes of organisms dwelling 
in contrasting habitats with varying energy demands 
[36–38].

Amphipods (Class Malacostraca: Order Amphipoda) 
are one of the most ecologically diverse crustacean groups 
including over 10,000 species [39, 40], occurring in a 
diverse array of aquatic and even terrestrial environments 
globally, from aphotic groundwater aquifers and hadal 
depths to freshwater streams and lakes in temperate and 
tropical forests, among other habitats [41, 42]. Several 
studies have demonstrated the genetic basis of subterra-
nean adaptation in several taxa, including dytiscid diving 
beetles [43], cave dwelling-cyprinid fishes [44, 45], anchia-
line cave shrimps [46], and cave isopods [47]. However, we 
still have a limited understanding of the mechanisms of 
subterranean adaptations in amphipods. Although physi-
ological adaptations to challenging environments like cave 
and groundwater ecosystems have been well-studied in 
amphipods [13, 16], no studies to date have addressed the 
selective pressures and the molecular evolution mecha-
nisms of mitochondrial energy metabolism loci in amphi-
pods occupying caves and other subterranean habitats. 
Subterranean amphipods likely experience different evo-
lutionary pressures on energy management due to lower 
levels of predation, lower food resources, and more sta-
ble environments compared to surface-dwelling taxa that 
generally experience higher levels of predation and energy 
resources [48, 49].

In this study, we compared the mitogenomes of sur-
face and subterranean amphipods, including the 13 
mitochondrial PCGs involved in the OXPHOS path-
way to understand the potential molecular mechanisms 
of energy metabolism in this diverse crustacean group. 
Our aims were to test whether the mitochondrial PCGs 
showed evidence of adaptive evolution in subterranean 
environments in amphipods. We tested the hypothesis 
that the mitogenome of surface-adapted amphipods will 
be imprinted by mitogenomic adaptations to the energy 
demanding environment with greater signal of direc-
tional selection when compared to their subterranean 
counterparts. We compared base composition, codon 
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usage, gene order rearrangement, conducted comparative 
mitogenomic and phylogenomic analyses, and examined 
evolutionary signals using publicly available amphipod 
mitogenomes. In particular, we focused on the amphipod 
family Crangonyctidae, a diverse family that comprises 
species inhabiting a variety of surface and subterranean 
habitats and for which several mitogenomes have been 
sequenced and annotated recently [50, 51].

Materials and methods
We generated new mitogenomes recently for the follow-
ing crangonyctid species: Stygobromus pizzinii, S. ten-
uis potomacus, Bactrurus brachycaudus, Stygobromus 
allegheniensis, and Crangonyx forbesi [51].

DNA extraction, library preparation, and sequencing
Whole genomic DNA from five crangonyctid species 
was isolated using the Qiagen DNA Easy Blood and Tis-
sue kit and libraries were prepared using the Illumina 
TruSeq DNA Library Prep Kit (Illumina Inc., Califor-
nia). Libraries were then paired-end sequenced (2 × 150 
bp) on an Illumina HiSeq 4000 platform at the Vincent 
J. Coates Genomics Sequencing Laboratory at the Uni-
versity of California, Berkeley. We assessed the quality 
of the raw reads using FastQC v0.11.5 [52], and the reads 
were trimmed and filtered using Trimmomatic v0.33 
[53]. De-novo assembly was carried out using NOVO-
Plasty v2.6.3 assembler [54]. We then annotated the 
protein-coding genes, transfer RNAs (tRNAs), and ribo-
somal RNAs (rRNAs) for each of the five mitogenomes 
using the mitochondrial genome annotation web server 
MITOS [55]. The secondary structures of tRNAs were 
inferred using MITFI [56], a built-in module in MITOS. 
The locations of start and stop codons of protein coding 
genes were confirmed using NCBI ORFfinder [57] and by 
visual comparison to other published amphipod mitoge-
nomes. The location of the control region was confirmed 
by the presence of a large intergenic spacer region with 
a string of thymines found immediately after rrnS and 
before trnl. We then downloaded from GenBank the 
annotated mitogenomes of 30 additional amphipod taxa 
that occupy aquatic habitats, including groundwater and 
springs, and three isopods that served as outgroups for 
comparative analyses.

Mitogenome analyses
Nucleotide composition, amino acid frequencies, and codon 
usage were calculated in PhyloSuite v1.1.15 [58, 59]. The 
web-based program CREx (http:// pacosy. infor matik. uni- 
leipz ig. de/ crex, [60]) was used to perform pair-wise com-
parison of the gene orders in the mitogenome to determine 
rearrangement events. CREx comparisons were based on 

common intervals, and it considers common rearrangement 
scenarios including transpositions, reversals, reverse trans-
positions, and tandem-duplication-random-losses (TDRLs). 
In addition, phylograms and gene orders were visualized in 
iTOL (https:// itol. embl. de/, [61]) using files exported from 
PhyloSuite. AT and GC skew of entire mitogenomes and 
individual loci were calculated in PhyloSuite using the for-
mulae: AT-skew = (A – T)/(A + T) and GC-skew = (G – C)/
(G + C). Welch two sample t-tests were performed between 
the surface and subterranean amphipods for different 
mitogenomic features, including mitogenome length, AT 
content, AT and GC skew, and rRNA length using R [62]. 
Visualization of AT-skew, GC-skew, AT-content, and amino 
acid frequencies were generated in R.

Phylogenetic inference
The amino acid sequences of 13 PCGs of the five new 
mitogenomes [51], 30 previously published amphi-
pod mitogenomes, and three isopod mitogenomes 
were aligned using MAFFT version 7 [63]. A total of 38 
sequences with 350 positions in the alignment file were 
trimmed using Gblocks version 0.91b [64] to yield 255 
positions (72%) in 6 selected blocks (parameters used: 
Supplementary Table S1). The alignment was partitioned 
by gene and then the best-fit partitioning strategy and 
evolutionary models for each partition were inferred 
using PartitionFinder v2.1.1 [65]; Supplementary Table 
S2). Phylogenetic relationships of the 35 amphipod 
mitogenomes and three isopod mitogenomes using the 
concatenated 13 PCG alignment were determined using 
Bayesian inference in MrBayes v3.2 [66]. The analyses 
contained two parallel runs with four chains each and 
were conducted for 5,000,000 generations (sampling 
every 100 generations). After dropping the first 25% 
“burn in” trees to ensure stationarity after examination of 
log-likelihood values for each Bayesian run using Tracer 
v1.7 [67], the remaining 37,500 sampled trees were used 
to estimate the consensus tree and the associated Bayes-
ian posterior probabilities. All analyses were conducted 
within PhyloSuite.

Positive selection and selection pressure analyses 
of mitochondrial PCGs
We performed base-substitution analyses on entire 
mitogenomes as well as for each of the 13 PCGs individu-
ally to compare surface versus subterranean amphipod 
taxa. The non-synonymous to synonymous rate ratio 
(dN/dS or ω) for each PCG was estimated using the free-
ratio model using the CodeML program implemented 
in PAML v4.8a [68]. The ω values were estimated for 
surface and subterranean species separately and visual-
ized in R for comparison. To estimate the probability of 

http://pacosy.informatik.uni-leipzig.de/crex
http://pacosy.informatik.uni-leipzig.de/crex
https://itol.embl.de/
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positively selected sites in each PCG across all amphi-
pod species, we implemented site models (M1 and M2, 
M8a and M8), where ω was allowed to vary among sites 
[69]. To further investigate if some lineages and sites in 
particular lineages have undergone positive selection, 
we conducted maximum likelihood analyses on all PCG 
using the branch model and branch-site model in EasyC-
odeML v1.21, a visual tool for analysis of selection using 
CodeML [70].

To determine if all 13 PCG are free of functional con-
straints in subterranean lineages, we compared alterna-
tive branch selection models on each PCG tree. First, we 
tested a model (M0) where a single ω was estimated for 
all branches. This model was compared to a model (M1) 
with two ratios, a background ω for surface branches 
and a separate foreground ω for subterranean branches. 
In addition, we included a two-ratio model where ω was 
fixed at 1.0 in subterranean branches (M1fixed) to deter-
mine if estimates of ω differed from rates of neutral evo-
lution and a model similar to the M1 model but where 
each subterranean lineage (B. brachycaudus, B. jaraguen-
sis, P. daviui, and the clade containing Stygobromus and 
Metacrangonyx) was allowed to have a separate ω (M1a). 
We also examined a saturated model (M2) where each 
branch had its own ω. Akaike’s information criterion 
(AIC) was used to compare models.

For both the branch and branch-site models, a like-
lihood ratio test (LRT) was conducted for each PCG to 
test whether ω was homogeneous across all branches. In 
the branch model, the null hypothesis assumes that the 
average ω values of branches of interest (ωF) is equal 
to that of other branches (ωB), whereas the alternative 
hypothesis assumes the opposite ωF ≠ ωB. If the alterna-
tive hypothesis is supported and ω > 1, the foreground 
lineage is under positive selection. The branch-site model 
allows ω to differ among codon sites in a foreground line-
age when compared to background lineages. We imple-
mented the branch-site model to identify sites on specific 
lineages regulated by positive selection. Selected sites 
were considered positively selected only if they passed 
a Bayes Empirical Bayes (BEB) analysis with a posterior 
probability of > 95%.

We performed selection pressure analyses on the con-
catenated 13 PCGs dataset aligned using the codon mode 
as well as on each PCG with the Bayesian topology (see 
Fig.  4) as the guidance tree using several approaches 
available from the Datamonkey Webserver [71]. First, 
we implemented aBSREL (Adaptive Branch-Site Ran-
dom Effects Likelihood), an improved version of the 
commonly used “branch-site” models, to test if positive 
selection has occurred on a proportion of branches [72]. 
We implemented BUSTED (Branch-site Unrestricted 
Statistical Test for Episodic Diversification) to test for 

gene-wide (not site-specific) positive selection by que-
rying if a gene has experienced positive selection in 
at least one site on at least one branch [73]. Finally, we 
implemented RELAX [74] to test whether the strength of 
selection has been relaxed or intensified along a specified 
set of test branches.

Results and discussion
We compared the mitogenomes for 35 surface and 
groundwater amphipods, including mitogenomes of one 
spring-dwelling and six groundwater species in the fam-
ily Crangonyctidae by Aunins et al. [50] and Benito et al. 
[51], to determine whether subterranean species show 
evidence of adaptive evolution in subterranean habitats. 
Our study examined whether features of mitogenomes 
(e.g. base composition, codon usage, gene order) differed 
in relation to dominant habitat (surface vs. subterranean) 
and inferred the evolutionary forces potentially shaping 
mitogenome evolution in amphipods, with an emphasis 
on crangonyctid species.

Mitogenome length and content
Mitogenome sizes ranged from 14,113 to 18,424 bp for 
all amphipods and 14,661 to 15,469 bp for crangonyctid 
amphipods (Table  1). Mean mitogenome size of surface 
amphipods (15,770 ± 1206 bp; mean ± 1 standard devia-
tion) was higher than that of the subterranean amphipods 
(14,716 ± 297 bp) (phylogenetic paired t-test: t = 0.586, 
df = 33, p-value = 0.562; Supplementary Figure S1). All 
crangonyctid amphipod mitogenomes possessed 13 
PCGs, two rRNA genes, 22 tRNA genes, a control region, 
and intergenic spacers of varying number and lengths 
(Supplementary Figure S2, annotations of the genomes 
are presented in Supplementary Table S3) like other 
arthropods [75]. The length of the crangonyctid mitog-
enomes was similar to lengths reported for other amphi-
pod families including Allocrangonyctidae, Caprellidae, 
Eulimnogammaridae, Gammaridae, Hadziidae, Lysia-
nassidae, Metacrangonyctidae, Micruropodidae, Pallasei-
dae, Pontogeneiidae, Talitridae. Variation in mitogenome 
length within Crangonyctidae appears to be related to 
length variation in the nad5, rrnL, and rrnS loci, which 
were all notably longer in the C. forbesi mitogenome.

Base composition and AT‑ and GC‑skews
Mitogenome AT% in all amphipods ranged from 62.2 
to 76.9% (Table  1). Mean AT% of the subterranean 
amphipods (71.8 ± 3.6%) was higher than that of the 
surface amphipods (67.6 ± 3.4%) (phylogenetic paired 
t-test: t = 0.926, df = 33, p-value = 0.361). Mean AT% 
of all 13 PCG of the subterranean amphipods was sig-
nificantly higher than that of the surface amphipods 
(Supplementary Figure S3a). Variation in AT% across 
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Table 1 Summary of mitogenomic characteristics, location, and habitat of subterranean and surface amphipods included for 
comparative mitogenome analyses

Accession 
number

Organism Family Full length 
(bp)

A + T(%) ATskew GCskew Habitat/
locality

Surface vs. 
Subterranean

References

NC_026309 Brachyuropus 
grewingkii

Acanthogam-
maridae

17,118 62.2 0.003 -0.307 Lake Baikal, 
deep-water

Surface Romanova et al. 
[76]

NC_019662 Pseu-
doniphargus 
daviui

Allocrango-
nyctidae

15,157 68.7 -0.002 -0.314 Spain, well Subterranean Bauzà-Ribot 
et al. [77]

NC_014492 Caprella mutica Caprellidae 15,427 68.0 -0.023 -0.171 Shallow 
protected bod-
ies of water 
in the Sea 
of Japan

Surface Kilpert and Pod-
siadlowski [78]

NC_014687 Caprella scaura Caprellidae 15,079 66.4 -0.015 -0.134 Western Indian 
Ocean

Surface Ito et al. [79]

MN175619 Bactrurus 
brachycaudus

Crangonycti-
dae

14,661 63.9 0.004 -0.258 Fogelpole 
Cave, Monroe 
County, Illinois,

Subterranean Benito et al. [51]

MN175623 Crangonyx 
forbesi

Crangonycti-
dae

15,469 67.9 0.061 -0.266 Unidentified 
spring, Monroe 
County, Illinois

Surface Benito et al. [51]

MN175622 Stygobromus 
allegheniensis

Crangonycti-
dae

15,164 67.2 0.020 -0.261 Caskey Spring, 
Berkeley 
County, West 
Virginia

Subterranean Benito et al. [51]

NC_030261 Stygobromus 
indentatus

Crangonycti-
dae

14,638 69.3 0.016 -0.270 Fort A.P. Hill, 
Caroline 
County, VA, 
seepage 
springs

Subterranean Aunins et al. [50]

MN175620 Stygobromus 
pizzinii

Crangonycti-
dae

15,176 68.9 0.014 -0.248 Pimmit Run 
Seepage 
Spring, Arling-
ton County, 
Virginia

Subterranean Benito et al. [51]

KU869712 Stygobromus 
tenuis poto-
macus

Crangonycti-
dae

14,915 69.1 0.020 -0.275 Fort A.P. Hill, 
Caroline 
County, VA, 
seepage 
springs

Subterranean Aunins et al. [50]

MN175621 Stygobromus 
tenuis poto-
macus

Crangonycti-
dae

14,712 69.1 0.022 -0.272 Pimmit Run 
Seepage 
Spring, Arling-
ton County, 
Virginia

Subterranean Benito et al. [51]

NC_033360 Eulimnogam-
marus cyaneus

Eulimnogam-
maridae

14,370 67.6 -0.019 -0.251 Lake Baikal, 
0–3.5 m

Surface Romanova et al. 
[76]

NC_023104 Eulimnogam-
marus ver-
rucosus

Eulimnogam-
maridae

15,315 69.0 -0.008 -0.238 Lake Baikal, 
0–12 m

Surface Rivarola-Duarte 
et al. [80]

NC_025564 Eulimnogam-
marus vittatus

Eulimnogam-
maridae

15,534 67.4 -0.015 -0.222 Lake Baikal, 
0–30 m

Surface Romanova et al. 
[76]

NC_017760 Gammarus 
duebeni

Gammaridae 15,651 64.0 -0.016 -0.223 Intertidal zone 
of the North 
Atlantic region

Surface Krebes and Bas-
trop [81]

NC_034937 Gammarus 
fossarum

Gammaridae 15,989 65.2 0.018 -0.261 Europe, fresh-
water

Surface Macher et al. 
[82]

FR872382 Bahadzia 
jaraguensis

Hadziidae 14,657 69.7 0.037 -0.431 Dominican 
Rep, cave

Subterranean Bauzà-Ribot 
et al. [77]
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crangonyctid amphipod taxa ranged 63.9–69.3%, with a 
mean of 67.9 ± 1.93% (Table 1). Across loci, AT% ranged 
from a minimum of 60.0% at the cox1 locus and a maxi-
mum of 75.5% at the nad4l locus (Fig. 1A). Variation in 
AT% across all PCGs combined ranged from 61.9% (B. 

brachycaudus) to 69.0% (S. indentatus). Genes encoded 
on the negative strand had a slightly higher AT-content 
values than those on the positive strand. The nad6 locus 
showed the greatest variation in AT-content across spe-
cies. Bactrurus brachycaudus displayed the outlier lower 

Table 1 (continued)

Accession 
number

Organism Family Full length 
(bp)

A + T(%) ATskew GCskew Habitat/
locality

Surface vs. 
Subterranean

References

NC_013819 Onisimus 
nanseni

Lysianassidae 14,734 70.3 -0.004 -0.198 Below arctic 
pack ice 
near the Sval-
bard archi-
pelago

Surface Ki et al. [83]

NC_019654 Metacrangonyx 
dominicanus

Metacrango-
nyctidae

14,543 73.6 -0.016 -0.026 Dominican 
Rep, well

Subterranean Bauzà-Ribot 
et al. [77]

NC_019655 Metacrangonyx 
goulmimensis

Metacrango-
nyctidae

14,507 69.7 -0.016 -0.028 Morocco, well Subterranean Bauzà-Ribot 
et al. [77]

NC_019656 Metacrangonyx 
ilvanus

Metacrango-
nyctidae

14,770 74.5 -0.014 -0.012 Italy, well Subterranean Bauzà-Ribot 
et al. [77]

NC_019658 Metacrangonyx 
longicaudus

Metacrango-
nyctidae

14,711 75.8 -0.014 -0.051 Morocco, well Subterranean Bauzà-Ribot 
et al. [77]

NC_013032 Metacrangonyx 
longipes

Metacrango-
nyctidae

14,113 76.1 -0.017 -0.035 Spain, Cala 
Figuera cave

Subterranean Bauzà-Ribot 
et al. [77]

NC_019659 Metacrangonyx 
panousei

Metacrango-
nyctidae

14,478 76.1 -0.012 -0.051 Morocco, well Subterranean Bauzà-Ribot 
et al. [77]

NC_019660 Metacrangonyx 
remyi

Metacrango-
nyctidae

14,787 70.8 -0.014 0.017 Morocco, 
spring at mai-
son forestière

Subterranean Bauzà-Ribot 
et al. [77]

NC_019653 Metacrangonyx 
repens

Metacrango-
nyctidae

14,355 76.9 -0.025 -0.014 Spain, well Subterranean Bauzà-Ribot 
et al. [77]

HE860513 Metacrangonyx 
sp. 1 MDMBR-
2012

Metacrango-
nyctidae

14,277 74.4 -0.019 -0.043 Not available Subterranean Bauzà-Ribot 
et al. [77]

HE860504 Metacrangonyx 
sp. 3 ssp. 1 
MDMBR-2012

Metacrango-
nyctidae

14,644 75.1 -0.062 0.120 Not available Subterranean Bauzà-Ribot 
et al. [77]

HE860498 Metacrangonyx 
sp. 4 MDMBR-
2012

Metacrango-
nyctidae

15,012 72.6 -0.009 0.005 Not available Subterranean Bauzà-Ribot 
et al. [77]

NC_019657 Metacrangonyx 
spinicaudatus

Metacrango-
nyctidae

15,037 74.8 0.010 -0.139 Morocco, well Subterranean Bauzà-Ribot 
et al. [77]

NC_033361 Gmelinoides 
fasciatus

Micruropodi-
dae

18,114 65.9 -0.001 -0.303 Lake Baikal, 
0–192 m

Surface Romanova et al. 
[76]

NC_033362 Pallaseopsis 
kessleri

Pallaseidae 15,759 63.1 0.011 -0.182 Lake Baikal, 
0–61 m

Surface Romanova et al. 
[76]

JN827386 Gondogeneia 
antarctica

Pontogeneii-
dae

18,424 70.1 -0.006 -0.290 Coast 
of Antarctica, 
seawater

Surface Shin et al. [84]

MG010370 Platorchestia 
japonica

Talitridae 14,780 72.5 0.015 -0.237 Pacific region 
esp. northeast 
Asia, terrestrial 
and supra-litto-
ral habitats

Surface Yang et al. [85]

MG010371 Platorchestia 
parapacifica

Talitridae 14,787 74.8 0.011 -0.253 Pacific region 
esp. northeast 
Asia, terrestrial 
and supra-litto-
ral habitats

Surface Yang et al. [85]
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Fig. 1 Crangonyctidae mitochondrial nucleotide composition. Box plots showing values of nucleotide composition (A + T percentage) (a), AT-skew 
(b), and GC-skew (c) across mitogenomes, protein coding genes (PCG), and ribosomal (rRNA) and transfer ribosomal (tRNA) RNA. The same features 
are shown for each protein-coding gene and pooled by codon position and coding strand. Genes coded on the (-) strand are represented by a “-“ 
sign and genes coded on the (+) strand are represented by “+” sign at the end of the gene label
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AT% values for most of the PCG (Table 2; Fig. 1A). Simi-
larly, Bactrurus brachycaudus had the lowest AT content 
(63.9%) among the crangonyctid mitogenomes, while all 
other mitogenomes had comparatively typical AT con-
tent reported for other arthropods [86, 87]. This could 
indicate that the evolution of the B. brachycaudus mitog-
enome has occurred under different evolutionary pres-
sures (adaptive or non-adaptive) than other subterranean 
crangonyctids.

Mitogenome AT-skew in all amphipods ranged from 
− 0.062 to -0.037. Mean AT-skew of the surface amphi-
pods (0.001 ± 0.02) was positive and slightly higher than 
that of the subterranean amphipods (-0.004 ± 0.02) (phy-
logenetic paired t-test: t = 0.045, df = 33, p-value = 0.965). 
Mean AT-skew of four PCG (cox1, cox2, nad2, nad3) of 
surface amphipods was significantly higher than that of 
the subterranean amphipods, whereas the mean AT-skew 
of nad4 of the subterranean amphipods was significantly 
higher than that of the surface amphipods (Supple-
mentary Figure S3b). Among crangonyctid amphipods, 
mean AT-skew was 0.022 ± 0.02 (range 0.004 to 0.061), 
with all mitogenomes displaying positive skew. Mitog-
enome GC-skew ranged from − 0.431 − 0.120. Mean 
GC-skew of the subterranean amphipods (-0.129 ± 0.15) 
was negative and higher than that of the surface amphi-
pods (-0.236 ± 0.05) (phylogenetic paired t-test: t = 0.349, 
df = 33, p-value = 0.729). Mean GC-skew of seven PCG 
(atp6, atp8, cox1, cox2, cox3, nad2, nad3) of subterra-
nean amphipods was significantly higher than that of the 
surface amphipods, whereas the mean GC-skew of nad4 
of the surface amphipods was significantly higher than 
that of the subterranean amphipods (Supplementary Fig-
ure S3c). Among crangonyctid amphipods, mean GC-
skew was − 0.264 ± 0.01 (range − 0.275 to -0.248) with all 
mitogenomes displaying negative skew (Table 1). Strand 
asymmetry is commonly observed in mitogenomes [88, 
89], however, at times it can hinder phylogenetic recon-
struction and yield false phylogenetic artefacts especially 
when unrelated taxa display inverted skews [90, 91]. 
Bactrurus brachycaudus exhibited the lowest AT skew 
among the crangonyctid mitogenomes (0.004), while S. 
tenuis had the lowest GC skew (− 0.275). Crangonyc-
tid amphipod mitogenomes exhibited positive GC-skew 
values for genes encoded on the (-) strand and negative 
GC-skew for genes encoded on the (+) strand (Fig. 1C), 
whereas all PCGs exhibited negative AT-skew values 
(Fig.  1B). Except the six loci (nad1, nad4, nad4L, nad5, 
rrnL, and rrnS) which were encoded on the (-) strand, 
most PCG had negative GC skews. Such strand bias is 
typical for most mitochondrial genomes in metazoan 
[81, 83]. This is consistent with the hypothesis that strand 
asymmetry is caused by spontaneous deamination of 
bases in the leading strand during replication [88]. All 

other mitogenomes had comparatively typical AT and 
GC skew values like other amphipod species [76, 92]. 
The only outlier to this pattern was the positive GC skew 
value of tRNAs encoded on the (+) strand of B. brachy-
caudus (0.012). In general, crangonyctid mitogenomes 
exhibited relatively consistent skews.

Rearrangements of mitochondrial genome
Comparisons of crangonyctid mitogenomes revealed at 
least six conserved gene blocks (Fig. 2B). The gene orders 
in subterranean species (genera Stygobromus and Bactru-
rus) are identical except for the transposition of tRNA-
G,W. However, a few unique gene order arrangements 
were observed in the spring-dwelling C. forbesi. The gene 
order of C. forbesi differs from the four subterranean 
species in the locations of the conserved gene blocks 
(tRNA-H-nad4-nad4l and nad6-cytb-tRNA-S2 and 
tRNA-L1-rrnL and rrnS-tRNA-I and tRNA-Y,Q), seven 
tRNAs (P,T,M,V,G,C, and W), and two protein-coding loci: 
nad1 and nad2. Compared to the conserved mitogenome 
gene orders of other crangonyctid mitogenomes, another 
unique feature in the rearranged C. forbesi mitogenome 
was the presence of at least two long (~ 50 and 70 bp) 
non-coding regions (Supplementary Table S3). The loca-
tions of rRNA genes in all crangonyctid mitogenomes are 
mostly similar compared to the pancrustacean ground 
pattern except for C. forbesi where the rRNA genes had 
altered positions (Fig. 2A and B). Rearrangements in the 
mitogenome is common especially when it involves only 
tRNA-coding genes [93]. In case of ribosomal RNA genes 
or PCGs, rearrangements occur much less frequently, 
and they are commonly referred to as major rearrange-
ments, as they might potentially affect the differential 
regulation of replication and transcription of mitoge-
nomes [94].

CREx analysis indicated that transpositions and TDRL 
may have been responsible for the evolution of mitog-
enomes in crangonyctid amphipods. Two transposi-
tions of tRNA-R,N,S1,E and two steps of TDRL from the 
ancestral pan-crustacean pattern were needed to gener-
ate the gene order observed in Stygobromus species. In 
addition to the same two transpositions, one TDRL, and 
a transposition within a second TDRL from the ances-
tral pattern were required to generate the gene order in 
Bactrurus. However, four different transpositions (tRNA-
N,S1, tRNA-T,P, tRNA-W,C and gene block tRNA-H-
nad4-nad4L-tRNA-P,T-nad6-cytb-tRNA-S2) and three 
steps of TDRL from the ancestral pattern were needed to 
generate the gene order observed in C. forbesi (Supple-
mentary Figure S4).

Similar to C. forbesi, other surface amphipods includ-
ing Gmelinoides fasciatus (Micruropodidae) and 
Onisimus nanseni (Lysianassidae) exhibited a highly 
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rearranged gene order. Other surface amphipods that 
exhibited a moderate to highly rearranged gene order 
include Gondogeneia antarctica (Pontogeneiidae), Pla-
torchestia parapacifica and P. japonica (Talitridae), 
Pallaseopsis kessleri (Pallaseidae), and the two basal 
amphipods Caprella scaura and C. mutica (Caprel-
lidae) (Fig.  2A). Interestingly, a subterranean amphi-
pod Pseudoniphargus daviui (Allocrangonyctidae) 
also exhibited a moderate rearranged gene order. The 
stark contrast between the highly conserved gene 
order in most subterranean amphipods and the highly 
volatile gene order in many of the surface amphipods 
may support the hypothesis that evolution of mitog-
enomic architecture could be highly discontinuous. 
A long period of inactivity in gene order and content 
could have been interspersed by a rearrangement event, 
this destabilized mitogenome is much more likely to 
undergo subsequent accelerated rate of mitogenomic 
rearrangements [95]. Thus, it is appealing to examine 

mitogenomes of surface amphipod families represented 
by just a single taxon in our dataset.

Codon usage and amino acid frequencies
In addition to the regular start codons (ATA and ATG) 
and uncommon start codons (ATT, ATC, TTG, and 
GTG), surface amphipods, particularly Caprella scaura, 
possessed one rare start codon CTG, whereas subter-
ranean amphipods possessed three rare start codons 
including CTG, TTT, and AAT to initiate the mitochon-
drial PCGs (Supplementary Table S4). Codon usage anal-
ysis of the five crangonyctid amphipods mitogenomes 
identified the existence of all codon types typical for any 
invertebrate mitogenome. In addition to the regular start 
codons (ATA and ATG), uncommon start codons (ATT, 
ATC, TTG, and GTG) were also present to initiate the 
mitochondrial PCG. Such unusual start codons have 
been reported previously in other arthropods [96, 97]. 
A few PCG in the crangonyctid mitogenomes possessed 

Fig. 2 Mitochondrial phylogenomics and gene orders: (a) Bayesian phylogram inferred using amino acid sequences of all mitochondrial PCGs (left) 
and gene orders (right). Three isopod outgroups are not shown. GenBank accession numbers are included as suffix next to the species names; (b) 
gene orders of mitochondrial genomes in three genera of crangonyctid amphipods, including Stygobromus, Bactrurus, and Crangonyx. Conserved 
gene clusters are indicated by different colors and gene rearrangements are highlighted by red border lines
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truncated or incomplete stop codons (TA- and T–) that 
have been described in other crustaceans (Supplemen-
tary Table S3). These are presumably completed after a 
post-transcriptional polyadenylation [98–100]. Among 
the crangonyctid mitogenomes, the most frequently 
used codons are TTA (Leu2; 5.64–8.49%) and TTT (Phe; 
5.94–6.78%). Other frequently used codons include ATT 
(Ile; 4.92–6.85%) and ATA (Met; 4.13–5.34%) (Supple-
mentary Table S5). These four codons are also among the 

most abundant in non-crangonyctid amphipods included 
in this study. This bias towards the AT-rich codons is 
quite typical for arthropods [101]. Among crangonyc-
tid amphipod mitogenomes, relative synonymous codon 
usage (RSCU) values, which is the measure of the extent 
that synonymous codons depart from random usage, 
showed a high prevalence of A or T nucleotides at third 
codon positions (Fig. 3). This trend was also observed in 
other subterranean and surface amphipods. This positive 

Fig. 3 The relative synonymous codon usage (RSCU) of the mitogenome of all crangonyctid amphipods. The RSCU value are provided on the Y-axis 
and the codon families are provided on the X-axis
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correlation between RSCU and AT content at third 
codon positions has been reported in mitochondrial 
genomes of the abalone and oyster [102–104].

In PCGs, the second copy of leucine (8.86–10.01%) 
and cysteine (0.95–1.17%) are the most and the least 
used amino acids, respectively. Amino acid frequency 
analysis of both surface and subterranean amphipods 
indicated that five amino acids (leucine, phenylalanine, 
isoleucine, methonine, and valine) account for more 
than half of the total amino acid composition and exhib-
ited greater variation among species (Supplementary 
Figure S5; Supplementary Table S6).

Transfer RNA genes
All 22 tRNA genes were identified in the mitogenomes 
of crangonyctid amphipods. However, the locations of 
tRNA genes were highly variable among these mitog-
enomes, and they also displayed altered positions relative 
to the pancrustacean ground pattern (Fig.  2; Supple-
mentary Figure S3). The secondary structures of all 
mitogenome-encoded tRNAs belonging to crangonyctid 
amphipods were predicted and ranged in length from 50 
to 66 bp. Most of the tRNAs displayed the regular clover-
leaf structures, however, a few displayed aberrant struc-
tures. The tRNA-Ser1 (UCU) lacked the DHU arm in all 
crangonyctid species. Similarly, the tRNA-Ser2 (UGA) 
lacked the DHU arm in all crangonyctid species except 
S. allegheniensis where tRNA-Ser2 (UGA) possessed the 
DHU arm. The DHU arm was also missing in the tRNA-
Cys and tRNA-Arg of B. brachycaudus and tRNA-Arg of 
C. forbesi. The tRNA-Gln lacked the TψC arm in all cran-
gonyctid species except C. forbesi where tRNA-Gln pos-
sessed the TψC arm. In addition to lacking the TψC arm, 
tRNA-Gln of B. brachycaudus lacked the acceptor stem 
as well (Supplementary Figure S6). The presence of aber-
rant structures in tRNAs have been observed in several 
other crustaceans and invertebrates [79, 105–107], which 
may be the result of replication slippage [108] or selec-
tion towards minimization of the mitogenome [109].

Ribosomal RNA genes
The length of rrnL genes in all amphipods ranged 976–
1,137 bp and that of rrnS genes ranged 618–1,631 bp. 
rrnL length of the subterranean amphipods (1,055 ± 26 
bp) was higher than that of the surface amphipods 
(1005 ± 46 bp) (phylogenetic paired t-test: t = 0.921, 
df = 33, p-value = 0.364). rrnS length of the surface amphi-
pods (738 ± 258 bp) was higher than that of the subterra-
nean amphipods (684 ± 16 bp) (phylogenetic paired t-test: 
t = -0.558, df = 33, p-value = 0.581). The length of rrnL 
genes in crangonyctid amphipods ranged 1,034–1,090 bp 
and that of rrnS genes ranged 671–695 bp. The length of 
rRNA genes in crangonyctid amphipods was similar to 

that of other amphipod mitogenomes except C. forbesi, 
which had long overhangs (~ 50 bp and ~ 25 bp) on the 
5’ end of the rrnL and rrnS genes, respectively. AT con-
tent ranged 67.8–72.8% in the rrnL genes and 71.5–77.2% 
in the rrnS genes of crangonyctid species, respectively. 
GC-skew values for rRNA genes were positive (0.259 to 
0.426) and comparable to that of PCGs encoded on the 
(-) strand (Supplementary Table S7).

Control region and intergenic spacers
In the mitogenome of S. pizzinii the putative con-
trol region (CR) was identified as a 1,021 bp sequence 
between the rrnS gene and the trnl-trnM-trnC-trnY-
trnQ-nad2 gene cluster. Similarly, CR was observed in 
the other crangonyctid mitogenomes, including S. tenuis 
(556 bp), S. allegheniensis (991 bp), B. brachycaudus (531 
bp), S. indentatus (535 bp), and S. tenuis potomacus (773 
bp). The CR was similarly located between the rrnS and 
nad2 genes in some of the other mitogenomes of non-
crangonyctid amphipods, including G. duebeni  [81], O. 
nanseni  [83], G. antarctica  [84], P. daviui  [77], and for 
the pancrustacean ground pattern. However, the adja-
cent tRNA genes were often different. In G. fasciatus, the 
CR region was located between the rrnS and nad5 genes 
[76]. In contrast, a control region 843 bp was observed in 
C. forbesi which is located between the nad1 and trnM-
trnV-nad2 gene cluster and separated by few intergenic 
spacers was identified as the CR (Supplementary Figure 
S2; Supplementary Table S3). The only other surface 
amphipod that had a similar CR location to C. forbesi was 
P. kessleri with the CR located between nad1 and nad2 
genes, although the adjacent tRNA genes were different 
[76]. Thus, the variable location of the CR in C. forbesi 
was in concordance with a few surface amphipods, while 
the subterranean amphipods mostly followed the univer-
sal pattern between rrnS and nad2 genes.

The non-coding regions or intergenic spacers identified 
in the crangonyctid mitogenomes varied in number and 
length. The number of intergenic spacers ranged from 7 
to 17 and their lengths ranged from 1 to 99 bp (mean 13.0 
bp ± 18.6). Two crangonyctid mitogenomes (S. allegh-
eniensis and C. forbesi) possessed the largest intergenic 
spacers (a total of 220 and 249 bp, respectively; Supple-
mentary Table S3). Among the non-crangonyctid amphi-
pods, G. fasciatus and G. antarctica possessed relatively 
large non-coding intergenic spacers (a total of 3,863 bp 
and 4,354 bp, respectively; [76, 84].

Phylogenetic inference
The phylogenetic analyses of the 13 concatenated PCG 
from 35 amphipod species using Bayesian Inference (BI) 
resulted in a well-supported phylogeny, with the crang-
onyctid species forming a well-supported monophyletic 
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group (Fig.  4). Within Crangonyctidae, Stygobromus 
species formed a monophyletic group sister to Bactru-
rus + Crangonyx; however, few crangonyctid taxa were 
included in our analysis. A previous study based on the 
cox1 gene found that Stygobromus was not monophy-
letic, but several relationships had low support [110]. 
Likewise, Stygobromus was recovered as polyphyletic 
in a multilocus concatenated phylogenetic analysis of 
the Crangonyctidae by Copilaş-Ciocianu et al. [111]. In 
addition, several well-supported clades were recovered 
within Crangonyctidae but relationships among these 
clades had low support. Other past studies have not 
supported monophyly of the widespread genera (i.e., 
Crangonyx, Stygobromus, and Synurella) in the family 
based on either morphological [112] or molecular data 
[113, 114]. A comprehensive phylogenomic study with 
robust taxonomic sampling is greatly needed to better 
elucidate evolutionary relationships and test biogeo-
graphic and ecological hypotheses regarding the origin 
and diversification of this diverse family of subterra-
nean and surface-dwelling amphipods.

Selection in PCGs
Most of the energy required for active movement to 
escape predation and meet energy demands is sup-
plied by the mitochondrial electron transport chain [99, 
100. Mitochondrial genes encode for all of the protein 
complexes related to oxidative phosphorylation except 
for succinate dehydrogenase (complex II) [115–117]. 
Because of their importance in oxidative phosphorylation 
during cellular respiration, it is unsurprising that many 
studies have shown evidence of purifying (negative) 
selection in mitochondrial PCG [29, 118, 119]. While we 
found strong evidence for purifying selection in amphi-
pod mitochondrial PCGs in our selection analyses, we 
also found signatures of positive selection in a few of the 
mitochondrial PCGs in the surface amphipods.

Using a free-ratio model (M2; [27]), we calculated the ω 
values for the 13 PCGs for the terminal branches to esti-
mate the strength of selection between different primary 
habitats (i.e., subterranean vs. surface). The cox2 locus 
significantly differed in ω values between the amphipods 
of the two habitat types (p = 0.020), with higher ω values 
for the surface amphipods. Similarly, cox1 and cox3 genes 

Fig. 4 Bayesian phylogeny of aligned protein-coding loci (3,607 amino acids) for five new amphipod mitogenomes (Stygobromus allegheniensis, 
S. pizzinii, S. tenuis potomacus, Bactrurus brachycaudus, and Crangonyx forbesi) in addition to 30 additional amphipod mitogenomes available 
on Genbank. The three isopods Ligia oceanica, Limnoria quadripunctata, and Eophreatoicus sp.14 FK-2009 are included as an outgroup to root 
the phylogeny. New mitogenomes generated in this study are highlighted. GenBank accession numbers are included as suffix next to the species 
names. Values at nodes represent posterior probabilities
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also exhibited a similar trend (p = 0.095 and p = 0.057, 
respectively) (Fig.  5). This could be because the rate at 
which slightly deleterious mutations (ω) responsible for 
the mitochondrial gene evolution accumulates compara-
tively faster in cox gene family of the surface lineages. 
However, this result is quite contradictory to previous 
studies showing higher functional constraint and con-
served pattern in the genes coding for cox proteins than 
in other mitochondrial genes [119, 120].

To test if the 13 PCGs in subterranean lineages evolve 
at different relative rates compared to surface lineages, we 
compared a series of ML branch-based selection models 
(Table 3). For all PCG loci except atp8, nad3, and nad4l 
the saturated model (M2) where each branch had its own 
ω was favored. For atp8, nad3, and nad4l the best mod-
els were the M0 (single ω for all branches) and M1 (two 
ω model with one for surface and one for subterranean 
linages). In addition, the M1a model (six ω model with 
one for surface and one for each subterranean linage) was 
included in the set of best models for the atp8 and nad4l 
loci. To further test if specific branches have undergone 
variable selective pressures, especially those amphipod 
branches adapted to surface habitats, we employed the 
two-ratio branch model. When the ω values for each 
PCG were compared between each amphipod terminal 

branch and the other 34 amphipod taxa, several loci in 
surface amphipod mitogenomes were found to be under-
going positive selection (ω1 > ω0; Fig.  6; Supplementary 
Table S8). This suggests that many surface amphipods 
have experienced directional selection in their mitochon-
drial loci perhaps due to high energy demands and was in 
accordance to previous studies in other arthropods [19, 
32, 121, 122]. In contrast, several loci in subterranean 
amphipod mitogenomes have undergone purifying selec-
tion (ω1 < ω0). Surprisingly, a few loci in subterranean 
taxa displayed positive selection (ω1 > ω0; Fig.  6; Sup-
plementary Table S8). To test if individual gene codons 
were subject to positive selection, we implemented two 
pairs of site models (M1a vs. M2a and M8a vs. M8). The 
M8 model identified one positively selected site on the 
atp8 locus (37 N; p = 0) and one positively selected site 
on the nad5 locus (482 Q; p = 0). Similarly, The M2a 
model identified two positively selected sites (37 N & 31 
S; p = 0.0194) on the atp8 locus (Table 4).

Similar to flying grasshoppers that have evolved to 
adapt to increased energy demands to maintain the 
flight capacity [32], the mitochondrial loci of surface 
amphipods may have evolved mechanisms to meet 
increased energy demands due to predation, dispersal, 
and other factors. Although surface amphipods appear 

Fig. 5 Ratio of non-synonymous to synonymous substitutions (ω) in the 13 PCGs of subterranean (coral color) and surface (cyan color) amphipods 
based on the free-ratio model. Boxes include 50% of values; ω is not significantly different between subterranean and surface amphipods for any 
gene except cox2* (P value = 0.02)
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to be evolving under selective pressures different from 
those of the subterranean taxa and their mitochondrial 
loci have accumulated more nonsynonymous than syn-
onymous mutations compared to subterranean taxa, 
the branch model tests did not clearly support positive 
selection on these branches, and we cannot rule out the 
influence of relaxed selection. Previous studies have 
demonstrated that positive selection will act on only a 
few sites for a short period of evolutionary time, and 
a signal of positive selection often is overwhelmed by 

continuous negative selection that sweeps across most 
sites in a gene sequence [123].

In contrast to branch models where ω varies only 
among branches, branch-site models allow selection to 
vary both among amino acid sites and lineages. Thus, 
branch-site models are considered quite useful in dis-
tinguishing positive selection from relaxed or purifying 
selection [123]. Using the more stringent branch-site 
model, we detected positive selection in 14 branches 
and 12 loci with a total of 308 amino acid sites under 

Table 3  AIC scores and ω estimates for various branch-based selection models for the 13 PCGs (one ω for all branches (M0), two-
ratio model with background (surface) ω and single ω for subterranean branches (M1), two-ratio model with background (surface) ω 
and single ω for subterranean branches fixed at neutral evolution (ω = 1) (M1fixed), six-ratio model with background (surface) ω and a 
single ω for each subterranean lineage, B. brachycaudus (C1), Stygobromus clade (C2), B. jaraguensis (C3), Metacrangonyx clade (C4), P. 
daviui (C5) (M1a), and ω for each branch (M2)). The best-fit model(s) for each PCG is highlighted in red color
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Table 4 Evidence of positive selection on the mitochondrial PCGs of subterranean and surface-dwelling amphipods based on site model

* highlights a statistically significant (LRT P-value < 0.05) positively selected site (BEB: P ≥ 95%)
** highlights a statistically significant (LRT P-value < 0.05) positively selected site (BEB: P ≥ 99%)

Model np Ln L Estimates of parameters Model compared LRT P‑value Positive sites Gene

M2a 72 -4021.125381 p: 0.32097 0.56570 0.11334 M1a vs. M2a 0.019437929 31 S 0.977*, 37 N 0.997** atp8

ω: 0.09324 1.00000 2.44333

M1a 70 -4025.065910 p: 0.37651 0.62349

ω: 0.09961 1.00000

M8 72 -3950.635672 p0 = 0.85323 p = 0.54776 q = 3.55619 M8a vs.M8 0.000013424 37 N 0.875

(p1 = 0.14677) ω = 1.00000

M8a 71 -3941.161040 p0 = 0.97880 p = 0.73512 q = 3.74996

(p1 = 0.02120) ω = 1.00000

M2a 72 -42238.654620 p: 0.85660 0.08524 0.05815 M1a vs. M2a 1.000000000 482 Q 0.524 nad5

ω: 0.07211 1.00000 1.00000

M1a 70 -42238.654620 p: 0.85660 0.14340

ω: 0.07211 1.00000

M8 72 -40545.492521 p0 = 0.98460 p = 0.53211 q = 7.22545 M8a vs.M8 0.000000000 482 Q 0.856

(p1 = 0.01540) ω = 1.00000

M8a 71 -40454.428911 p0 = 0.99711 p = 0.50047 q = 6.79227

(p1 = 0.00289) ω = 1.00000

Fig. 6 Results of selective pressure analysis of mitochondrial PCGs with LRT P-value < 0.05 in subterranean and surface-dwelling lineages of amphipods 
based on branch 2 vs. 0 model. Different colored shapes represent different mitochondrial genes. Squares represent purifying selection and circles 
represent positive selection. Surface amphipod branches are colored blue and subterranean amphipod branches are colored red
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positive selection. Among them, 80 amino acid sites in 
seven loci (atp6, atp8, cox3, nad2, nad3, nad4, and nad5) 
were identified on the subterranean terminal branches, 
whereas 228 amino acid sites in 10 loci (atp6, atp8, cox1, 
cox2, cytb, nad1, nad2, nad3, nad5, and nad6) were iden-
tified on the surface terminal branches. Nearly three 
times as many positively selected amino acid sites were 
detected on surface branches compared to subterranean 
branches. Most of the positively selected loci on surface 
branches were found in C. forbesi with 114 sites (Fig. 7; 
Supplementary Table S9). In total, eight positive selected 
loci (atp6, atp8, cox1, cox2, cytb, nad1, nad4, and nad5) 
were identified by the branch-site model and by at least 
one other model on the surface branches, whereas only 
four positive selected genes (atp6, atp8, cox3, and nad5) 
were identified on the subterranean branches.

The identification of many positively selected amino 
acid sites suggests that episodic positive selection has 
acted on mitochondrial PCGs of surface amphipods. In 

addition, we also identified a few positively selected sites 
on subterranean branches primarily in B. brachycaudus 
with 39 sites and P. daviui with 25 sites (Supplementary 
Table S9). Bactrurus brachycaudus is usually associated 
with springs and caves [124], while P. daviui is associated 
with groundwater wells [77].

Direction and magnitude of selection pressures
Given the crucial role played by the mitochondrial 
genome in metabolic energy production [125], we 
hypothesized that the mitogenome of surface amphi-
pods may show evidence of adaptation (directional selec-
tion) to life in surface habitats where energy demand is 
higher relative to subterranean habitats. We found sup-
port for directional selection in surface lineages based on 
three different selection analyses (RELAX, aBSREL, and 
BUSTED). In summary, all tests confirmed the existence 
of a moderate signal of positive or diversifying selec-
tion, as well as signal for significant relaxed purifying 

Fig. 7 Evidence of positive selection on the mitochondrial PCGs (LRT P<0.05) and positively selected site (BEB: P≥95%) in subterranean 
and surface-dwelling lineages of amphipods based on branch-site models. Different colored circles represent different mitochondrial loci. The 
number within each circle represents the number of positive selection sites detected for the locus. Surface amphipod branches are colored blue 
and subterranean amphipod branches are colored red
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selection in the mitogenome of surface amphipods. This 
supports a previous study by Carlini and Fong [126] who 
reported evidence for relaxation of functional evolution-
ary constraints (positive or diversifying selection) in the 
transcriptome of a subterranean amphipod Gammarus 
minus.

We implemented aBSREL on the concatenated 13 
PCG dataset comprising all 35 species as test branches 
and detected episodic diversifying selection in seven 
species: P. daviui (p = 0), O. nanseni (p = 0.0008), G. fas-
ciatus (p = 0.0298), G. fossarum (p = 0.045), B. jaraguen-
sis (p = 0.0016), C. forbesi (p = 0), and B. brachycaudus 
(p = 0.0001). We then used aBSREL to conduct independ-
ent tests for the crangonyctid species as the test branch 
and the remaining species as reference branches. We 
detected evidence of episodic diversifying selection in C. 
forbesi (p = 0) and B. brachycaudus (p = 0.0001) (Table 5). 
Using BUSTED, which provides a gene-wide test for 
positive selection, we detected evidence of episodic 
diversifying selection in three of the surface species: C. 
forbesi (p = 0.011), G. fasciatus (p = 0.033), G. antarc-
tica (p = 0.009), whereas evidence of gene-wide episodic 

diversifying selection was found in just one of the sub-
terranean species, P. daviui (p = 0.020) (Table  5). Using 
RELAX, which tests whether the strength of selection 
has been relaxed or intensified along a specified set of 
test branches, we detected selection evidence of relaxed 
selection in C. forbesi (p = 0) and other surface species, 
including O. nanseni, G. fasciatus, G. fossarum, G. antarc-
tica, and P. kessleri. Contrastingly, evidence of intensifica-
tion of selection was detected in subterranean species, 
including S. tenuis (p = 0), S. allegheniensis (p = 0.0025), 
S. indentatus (p = 0), and S. pizzinii (p = 0). Surprisingly, a 
few of the surface species including C. mutica (p = 0.015), 
E. cyaneus (p = 0), and P. japonica (p = 0) exhibited inten-
sification of selection and subterranean species including 
P. daviui (p = 0) and M. dominicanus (p = 0.015) exhibited 
relaxation of selection (Table 5).

In addition to the concatenated 13 PCG dataset, we also 
conducted selection analyses for each PCG to determine 
which genes might be evolving under unique selection 
pressures. We found evidence of directional selection 
in atp8 of C. forbesi (p = 0.026) and nad3 of S. pizzinii 
(p = 0.041) using aBSREL and cox3 of B. brachycaudus 

Table 5  Selection signals in the mitogenomes of amphipods inferred using aBSREL, BUSTED, and RELAX algorithms. The dataset 
comprising all 13 concatenated protein-coding genes with 3,607 amino acid sites in the alignment. K column: a statistically significant 
K > 1 indicates that selection strength has been intensified, and K < 1 indicates that selection strength has been relaxed. LR is likelihood 
ratio and D indicates the direction of selection pressure change: intensified (I) or relaxed (R), where * highlights a statistically significant 
(p < 0.05) result. Mitogenomes with significant LRT P -value < 0.05 are highlighted in red color
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(p = 0.029) using BUSTED. Atp8 of the surface amphipod 
C. forbesi exhibited strong evidence of directional selec-
tion, which was quite surprising as atp8 is a small locus 
sometimes missing from metazoan mitogenomes and 
normally evolves under highly relaxed selection pressures 
[127]. RELAX analyses uncovered five loci (cox1, cox3, 
cytb, nad1, and nad3) that exhibited relaxed selection and 
one gene (atp6) that exhibited intensification of selection 
in C. forbesi. Similarly, three loci (cox3, nad5, and nad6) 
in B. brachycaudus showed evidence of relaxed selec-
tion. Several loci in other subterranean species, includ-
ing S. tenuis, S. allegheniensis, and S. pizzinii, exhibited 
varying levels of intensification of selection, whereas 
none exhibited relaxed selection (Table 6). Some of these 
outliers were expected, as nad5 and nad6 are known to 
evolve faster among the mitochondrial loci [128]. Also, 
evidence for relaxation of functional evolutionary con-
straints (positive or diversifying selection) has been 
reported in the nad family of subterranean Gammarus 
species adapted to the subterranean environment [126]. 
Although this may explain outliers in the subterranean 
B. brachycaudus mitogenome, it remains unclear why 
cox3 exhibited signatures of relaxed selection. This gene 
is generally one of the most conserved mitochondrial 
loci in animals [92, 129, 130], and high levels of purify-
ing selection has been observed in the cox family in other 
amphipod species [29]. In C. forbesi, atp6 showed signa-
tures of positive selection, which contrasted most other 
PCGs in its mitogenome that exhibited relaxed selection. 

Overall, in accordance with the results obtained using the 
concatenated dataset, individual mitochondrial loci of 
subterranean amphipods mostly exhibited varying levels 
of purifying selection, whereas surface amphipods pre-
dominantly exhibited more relaxed selection.

To provide further evidence of positive selection, we 
implemented the RELAX, aBSREL, and BUSTED algo-
rithms on the branch, branch-site, and site models. Eight 
loci (atp8, cox1, cox2, cytb, nad1, nad4, nad5, and nad6) 
all involved in the OXPHOS pathway were under positive 
selection in surface branches by at least two methods. 
The loci nad1, nad4, nad5, and nad6 encode the subu-
nits of NADH dehydrogenase, also called Complex I, that 
initiates the oxidative phosphorylation process. Complex 
I is the largest and most complicated proton pump of 
the respiratory chain and is involved in electron transfer 
from NADH to ubiquinone to supply the proton motive 
force used for ATP synthesis [131], Complex I plays a 
key role in cellular energy metabolism by pumping gra-
dient of protons across the mitochondrial membrane 
producing more than one-third of mitochondrial energy 
[132]. Genes cox1 & cox2 encode the catalytic core of 
Cytochrome c oxidase also called Complex IV. Complex 
IV is directly involved in electron transfer and proton 
translocation [133]. Gene atp8 encodes a part of ATP 
synthase, also called Complex V, and plays a major role 
in the final assembly of ATPase [133]. In summary, our 
selection analyses revealed signals of positive selection in 
several mitochondrial genes of surface amphipods, which 

Table 6  Selection signals in the mitochondrial PCGs of crangonyctid amphipods sequenced in this study inferred using aBSREL, 
BUSTED, and RELAX algorithms. K column: a statistically significant K > 1 indicates that selection strength has been intensified, and K < 1 
indicates that selection strength has been relaxed. LR is likelihood ratio and D indicates the direction of selection pressure change: 
intensified (I) or relaxed (R), where * highlights a statistically significant (p < 0.05) result. PCGs with significant LRT P -value < 0.05 are 
highlighted in red color
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may be associated with increased energy demands in sur-
face environments. In contrast, subterranean amphipods 
showed signatures of purifying selection, which may be 
related to maintaining efficient energy metabolism in 
subterranean habitats.

Conclusion
In this study, we compared mitogenome features includ-
ing AT/GC-skew, codon usage, gene order, phyloge-
netic relationships, and selection pressures acting upon 
amphipods inhabiting surface and subterranean habi-
tats. We described a novel mitochondrial gene order for 
C. forbesi. We identified a signal of directional selection 
in the protein-encoding genes of the OXPHOS pathway 
in the mitogenomes of surface amphipods and a signal 
of purifying selection in subterranean species, which 
is consistent with the hypothesis that the mitogenome 
of surface-adapted amphipods has evolved in response 
to a more energy demanding environment compared 
to subterranean species. Our comparative analyses of 
gene order, locations of non-coding regions, and base-
substitution rates points to habitat as an important fac-
tor influencing the evolution of amphipod mitogenomes. 
However, the generation and study of mitogenomes 
from additional amphipod taxa, including other cran-
gonyctid species, are needed to better elucidate phyloge-
netic relationships and the evolution of mitogenomes of 
amphipods, as mitogenomes are available for just a tiny 
fraction of the more than 10,000 described amphipods. 
In addition, more evidence is needed to further validate 
our inferences, such as studying the effects of amino 
acid changes on three-dimensional protein structure 
and function. Nevertheless, our study provides a neces-
sary foundation for the study of mitogenome evolution in 
amphipods and other crustaceans.
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