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Abstract
Background Microbial genomes are largely comprised of protein coding sequences, yet some genomes contain 
many pseudogenes caused by frameshifts or internal stop codons. These pseudogenes are believed to result from 
gene degradation during evolution but could also be technical artifacts of genome sequencing or assembly.

Results Using a combination of observational and experimental data, we show that many putative pseudogenes 
are attributable to errors that are incorporated into genomes during assembly. Within 126,564 publicly available 
genomes, we observed that nearly identical genomes often substantially differed in pseudogene counts. Causal 
inference implicated assembler, sequencing platform, and coverage as likely causative factors. Reassembly of 
genomes from raw reads confirmed that each variable affects the number of putative pseudogenes in an assembly. 
Furthermore, simulated sequencing reads corroborated our observations that the quality and quantity of raw data 
can significantly impact the number of pseudogenes in an assembler dependent fashion. The number of unexpected 
pseudogenes due to internal stops was highly correlated (R2 = 0.96) with average nucleotide identity to the ground 
truth genome, implying relative pseudogene counts can be used as a proxy for overall assembly correctness. 
Applying our method to assemblies in RefSeq resulted in rejection of 3.6% of assemblies due to significantly elevated 
pseudogene counts. Reassembly from real reads obtained from high coverage genomes showed considerable 
variability in spurious pseudogenes beyond that observed with simulated reads, reinforcing the finding that high 
coverage is necessary to mitigate assembly errors.

Conclusions Collectively, these results demonstrate that many pseudogenes in microbial genome assemblies are 
actually genes. Our results suggest that high read coverage is required for correct assembly and indicate an inflated 
number of pseudogenes due to internal stops is indicative of poor overall assembly quality.

Keywords Genomics, Error correction, Misassembly

Many purported pseudogenes in bacterial 
genomes are bona fide genes
Nicholas P. Cooley1 and Erik S. Wright1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10137-0&domain=pdf&date_stamp=2024-4-12


Page 2 of 12Cooley and Wright BMC Genomics          (2024) 25:365 

Background
Microbial genomes often harbor pseudogenes that are 
remnants of previously functional coding sequences. 
Pseudogenization is a step toward gene removal and 
may result from the absence of selective pressures that 
maintain a functioning gene product [1]. As such, pseu-
dogenes sometimes comprise a substantial portion of 
the genome of obligate symbionts that no longer require 
functions provided by the host [2]. Bacteria also use 
pseudogenization as a means of regulation, wherein a 
subset of the population contains a frameshift that dis-
ables a protein’s function [3]. The number of pseudogenes 
can vary enormously in genomes from the same species, 
suggesting pseudogenization is a major mode of evolu-
tion. However, pseudogenes can also result from errors 
in genome sequencing or assembly, and it is presently 
unclear how many pseudogenes are spurious pseudo-
genes that are technical artifacts of genome sequencing 
and assembly.

Most pseudogenes are defined by only a single muta-
tion [4], suggesting they have not had time to degrade 
further, are adaptive variants [5, 6], or resulted from 
technical artifacts introduced during the sequencing and 
assembly process. Pseudogenes offer a potential means to 
interrogate assembly fidelity, because many errors would 
result in the false appearance of gene degradation. For 
example, short insertions and deletions (indels) that are 
not a multiple of three in length result in frameshifts that 
may create a defective or truncated protein product [7]. 
Similarly, incorrect base calls may appear as nonsense 
mutations that split a real gene into separate fragments. 
The presence of an elevated number of pseudogenes 
therefore implies a reduced (or reversed) selection pres-
sure on the maintenance of genes [8] and/or errors in the 
genome assembly. Disentangling these two possibilities 
is difficult because there is no clear signature of genuine 
versus spurious pseudogene mutations. Nevertheless, 
the number of pseudogenes has important implications 
for our understanding of genome evolution, and study-
ing pseudogenes may reveal best practices for acquiring 
genomes with high fidelity.

During routine experiments with a strain of E. coli in 
our laboratory, Sanger sequencing revealed that sev-
eral (6 of 10 selected) pseudogenes were actually errors 
in a public genome sequence (Fig. S1). Therefore, we set 
out to more broadly determine the extent and causes of 
false pseudogenes in publicly available genomes. To this 
end, we developed approaches for discerning real from 
spurious pseudogenes, which we show can result from 
assembly of low coverage or low quality sequencing data. 
Our analysis was facilitated by the NCBI’s Prokaryotic 
Genome Annotation Pipeline (PGAP) that identifies 
pseudogenes through homology searches [9]. We focused 
on pseudogenes arising from frameshifts and internal 

stops because they permit us to differentiate indels from 
base miscalls, respectively. Using a combination of obser-
vational and experimental data, we were able to identify 
multiple causes of elevated pseudogene counts in pub-
licly available genomes.

Results
Indirect evidence that some pseudogenes are artifactual
We rationalized that as two genomes approach 100% 
average nucleotide identity (ANI) their number of pseu-
dogenes should also approach equality. To investigate 
this, we randomly selected 100 genome assemblies 
from all 121 bacterial genera in RefSeq with at least 
100 assemblies. For every assembly, we determined its 
nearest neighbor within the same genus according to 
ANI. We then clustered all coding sequences in each 
pair of genomes with at least 90% nucleotide similarity. 
We defined the fraction of incongruent pseudogenes as 
the count of pseudogene/gene pairs divided by the total 
number of pseudogene/pseudogene and pseudogene/
gene pairs, where the pair partners each originated from 
the two different assemblies. Figure 1 shows that as ANI 
approaches 100%, the fraction of incongruent pseudo-
genes between genome pairs decreases. Yet, there were 
many genome pairs having a nearest neighbor with very 
high ANI (~100%) and a high fraction of incongruent 
pseudogenes. We estimated that pairs of nearly identi-
cal genomes differed on average by 8.2% of pseudogenes 
attributed to internal stops and 21.6% of pseudogenes 
attributed to frameshifts. This result implies there is a 
source of stochasticity in the number of pseudogenes, but 
it does not reveal the source.

Technical variables are observationally implicated in the 
number of pseudogenes
It is notoriously difficult to discern causation from 
observational data because of confounding factors. In 
an attempt to address this difficulty, we used the fast 
causal inference algorithm in the causal discovery pro-
gram Tetrad [10] to infer variables that causally influence 
the number of pseudogenes observed in 126,564 RefSeq 
assemblies with associated metadata. Tetrad predicted 
that the sequencing platform (100% confidence) and read 
coverage (62% confidence) were causal predictors of the 
number of pseudogenes due to internal stops, or there 
existed an unmeasured confounding factor (Fig.  2A). 
Only read coverage was predicted to potentially causally 
influence the number of pseudogenes due to frameshifts, 
albeit with low confidence (37%). To further investi-
gate these factors, we focused on E. coli since it was the 
genus with the most assemblies. Genome assemblies 
derived from Illumina reads generally had the fewest 
pseudogenes attributed to internal stops or frameshifts 
(Fig.  2B). There was also a difference in the number of 
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pseudogenes due to reported assembler. Statistically sig-
nificant variation (Table S1) in the number of pseudo-
genes held for the four most commonly observed species 
in RefSeq (Fig. S2). Nevertheless, these results are based 

on observational data and controlled experiments are 
required to validate potential causal factors underlying 
elevated pseudogene counts.

Assembler choice causally influences the number of 
pseudogenes
We next sought to investigate the role of variables that 
were observationally implicated in the number of pseu-
dogenes. To this end, we reassembled genomes belonging 
to Neisseria gonorrhoeae, a species known to use phase 
variation to regulate gene expression in a population by 
means of frameshifting [11] and likely to include many 
legitimate pseudogenes. We used four different assem-
blers to reassemble Illumina reads in the Short Read 
Archive (SRA) associated with N. gonorrhoeae genomes 
and annotated the resulting genomes with PGAP. We 
used Clusterize [12] to match coding features across 
assemblies of the same genome. The assembler had a sub-
stantial influence over the number of pseudogenes attrib-
uted to internal stops or frameshifts (Fig. 3). Only about 
70% of pseudogenes were shared by assemblies from all 
four assemblers. MEGAHIT [13] created the most pseu-
dogenes and also the most pseudogenes not found by any 
other assembler, while SKESA [14] generated the fewest 
pseudogenes. SPAdes [15] and Unicycler [16] had the 
most overlap, which was expected given that Unicycler 
relies on SPAdes for assembly. However, there was no 
way for us to determine the true number of pseudogenes 
and, therefore, this controlled experiment only permitted 
us to validate a causal effect of assembler on pseudogene 
counts.

Sequencing platform and run causally influence 
pseudogene counts
Having explored the influence of assembler, we next 
investigated the role of sequencing platform and run on 
pseudogene counts. To do so, we on the fact that some 
genomes are sequenced more than once on the same or 
different sequencing platforms and the resulting reads 
are separately deposited in the SRA under the same Bio-
Sample accession. This enabled us to control for the effect 
of organism on the number of pseudogenes. We reassem-
bled all reads corresponding to BioSamples with two or 
more SRA accessions (i.e., runs) belonging to the same 
genome using Unicycler, because it can assemble both 
short and long reads. Assemblies of Illumina reads from 
independent SRA accessions showed very little varia-
tion in pseudogene counts (Fig.  4). In contrast, assem-
blies from all other sequencing platforms showed greater 
variation between runs, particularly for pseudogenes 
attributed to frameshifts. Also, assemblies from Illumina 
reads typically resulted in fewer pseudogenes than other 
sequencing platforms, especially relative to assemblies 
exclusively derived from long reads (Fig. 4). These results 

Fig. 1 Pseudogene discrepancies do not converge to zero near 100% ANI. 
The percentages of frameshifts (top) and internal stops (bottom) that are 
incongruent (pseudogene/gene) pairs are shown for 10,362 genomes and 
their nearest neighbor in RefSeq. Up to 100 genomes were randomly se-
lected from each genus in RefSeq and coding sequence pairs were identi-
fied with Clusterize at ≥ 90% similarity. Each point represents the nearest 
genome by average nucleotide identity (ANI) scaled to the number of 
matched pseudogenes. Spline fits (curves) show that disagreement in 
whether a coding sequence is a gene or pseudogene does not converge 
to zero as two genomes approach identity. Inset legends show the scaling 
of point sizes based on the total number of congruent or incongruent 
pseudogene pairs shared by both assemblies
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Fig. 2 Potential causes of variability in pseudogene counts. (A) Reported (blue) and automatic (green) metadata may affect the number of putative 
pseudogenes (red) in a genome assembly. Arrows represent causal connections predicted by Tetrad between metadata variables for available RefSeq 
genomes. Sequencing platform and read coverage were predicted to have a potential causal influence over observed pseudogene counts. (B) Cumula-
tive distributions of average pseudogene density per assembly identified by PGAP in publicly available E. coli assemblies. Some reported assemblers and 
sequencing platforms were associated with unusual numbers of frameshifts (left) and internal stops (right). However, this observational dataset cannot 
do more than suggest hypotheses as to the causes of variability in pseudogene counts. Inset legends are ordered from most to least frequently observed 
assembler (top row; n = 7480 total) or sequence platform (bottom row; n = 10,170 total)
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demonstrate that sequencing platform has a substantial 
influence over the number of pseudogenes, but do not 
definitively reveal which sequencing platform results in 
the most correct pseudogenes since the correct number 
is unknown.

Simulated reads reveal the direct effect of variables on 
pseudogenes
Having established that assembler and sequencing tech-
nology causally influence the number of pseudogenes, 

we next sought to quantify the influence of variables 
on the generation of spurious pseudogenes. To this 
end, we used the ART read simulator [17] to gener-
ate reads of known coverage and quality from an exist-
ing genome. We decided to use the E. coli K-12 genome 
(GCF_000005845.2) because it has been extensively 
studied and is well-annotated. Replicate batches of sim-
ulated Illumina reads were generated at varying quali-
ties and coverages broadly encompassing the typical 
ranges observed in the SRA. We used three different 

Fig. 3 Choice of assembler causally influences pseudogene counts. Cumulative distributions for frameshifts per Mbp (top left) and internal stops per 
Mbp (top right) for reassembled N. gonorrhoeae genomes with available Illumina reads (n = 242). Pseudogenes were matched across the four reassemblies 
of each genome at ≥ 90% similarity with Clusterize. Venn Diagrams show the overlap in frameshifts (bottom left) and internal stops (bottom right) for the 
reassembled genomes. Overall, only about 70% of pseudogenes were shared by all four assemblers
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error profiles representing the HiSeq X, HiSeq 2500, and 
MiSeq Illumina platforms. Single-end and paired-end 
reads were then assembled with four different assem-
blers. The resulting assemblies were annotated with 
PGAP and coding features were mapped to the origi-
nal E. coli assembly using Clusterize [12]. We also used 
PBSIM3 [18] to simulate long reads at 20-fold coverage 
and standard quality to use with Unicycler in creating 
hybrid assemblies. Finally, we fit a binomial model to the 
normalized number of spurious pseudogenes per assem-
bly as a function of coverage and quality (Fig. S3).

As shown in Fig. 5, no spurious frameshifts or internal 
stops were created when assembling paired-end reads 
at ≥ 200-fold coverage or hybrid assemblies (i.e., long 
and short reads) at ≥ 50-fold short read coverage. How-
ever, assembling long reads with short reads generated 
many more spurious pseudogenes at low coverage (< 20) 
than short reads alone, presumably due to over-reliance 
on lower quality long reads. Low quality reads primar-
ily increased the number of internal stops rather than 
frameshifts (Fig. S4). Single-end reads required 1000-fold 
coverage to largely eliminate spurious pseudogenes (Fig. 
S5). Sequencing platform affected the number of pseu-
dogenes in a repeatable way across assemblers, with the 
MiSeq platform resulting in more spurious pseudogenes. 
Choice of assembler influenced the number of pseudo-
genes in a quality and coverage dependent manner, with 
some assemblers performing better at low coverage and 
worse at high coverage relative to others.

When placed in context of reported bacterial assem-
bly coverages in GenBank (Fig. 5), these results imply the 
existence of many publicly available bacterial genomes 
containing pseudogenes that are bona fide genes. In fact, 
8% of GenBank assemblies with associated Illumina reads 
have 10-fold or less reported coverage, wherein we would 
expect at least one spurious pseudogene per million base 

pairs (Mbp) even under favorable simulation conditions. 
Only 67.2% of GenBank assemblies have associated SRA 
reads, and 98.9% of those are from the Illumina platform. 
Assemblies linked to Illumina SRA reads tended to have 
higher coverage than GenBank overall, and our simula-
tion results suggest these assemblies are possibly higher 
quality.

An elevated number of pseudogenes is indicative of 
problematic assemblies
There is considerable need to identify and filter prob-
lematic assemblies given the anticipated abundance of 
errors in public genome repositories. Genome comple-
tion is typically quantified by the number of contigs or 
N50, although completeness is not the same as correct-
ness. Recently, it was suggested to use deviation from 
the expected distribution of coding sequence lengths 
to identify anomalous assemblies [19]. We found that 
the number of contigs, N50, and deviation in coding 
sequence length all were weakly correlated or uncorre-
lated with ANI (Fig. S6) between the reassembled and 
original E. coli assemblies. In contrast, absolute differ-
ence in the number of pseudogenes attributed to inter-
nal stops was highly correlated (R2 = 0.961) with overall 
ANI. These results suggest the relative number of inter-
nal stops between a genome and a highly similar neigh-
bor is a good proxy for overall assembly error. Notably, 
even though some reassembled genomes had no pseu-
dogene differences from the original E. coli genome, no 
reassembled genome perfectly recapitulated the original. 
This implies the relative number of internal stops is a rea-
sonable proxy for overall assembly quality, but its reso-
lution is insufficient to distinguish two almost identical 
genomes.

Given that the number of pseudogenes attributed to 
internal stops was a good proxy for ANI, we considered 

Fig. 4 Replicate sequencing runs often differ in pseudogene counts. Cumulative distributions of the differences between frameshift (left) and internal 
stop (right) counts per Mbp for BioSamples with at least two unique sequencing runs deposited in the SRA. While Illumina sequencing runs of the same 
genome were highly repeatable, other sequencing technologies sometimes resulted in dramatic variability in pseudogene counts
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how this number could be used to filter anomalous 
assemblies. As shown in Fig.  1, the deviation in incon-
gruent internal stops trended sharply downward as ANI 
approached 100%. Therefore, for each assembly with 
a nearest neighbor having at least 99.9% ANI, we fil-
tered the assembly if its number of pseudogenes was 

statistically significantly greater than its neighbor. This 
approach effectively accounts for the role of taxa on the 
number and type of pseudogenes. Specifically, we per-
formed a binomial test of whether each assembly’s num-
ber of pseudogenes due to internal stops was greater than 
the 99th percentile expected for a genome with its num-
ber of coding sequences but its nearest neighbor’s rate 
of pseudogenes due to internal stops. Applying this test 
resulted in the rejection of 3.6% of assemblies in RefSeq 
having a nearest neighbor with at least 99.9% ANI.

Real reads show greater variance in spurious pseudogenes 
than simulated reads
Our results using simulated reads implicated low cov-
erage assemblies as a major source of spurious pseu-
dogenes. However, these results could not explain the 
existence of high coverage assemblies with elevated pseu-
dogene counts. We reasoned that taxonomy or other 
factors uncaptured by our simulations may contribute 
to spurious pseudogenes. We asked whether very high 
coverage assemblies could be used to explore the effect 
of these variables. Doing so requires assuming that very 
high coverage assemblies provide a baseline for com-
parison to lower coverage genomes. To this end, we 
randomly subsampled replicate sets of reads at multiple 
coverages and compared them to the assembly generated 
from reads at ~1000-fold coverage. This allowed us to fit 
a binomial model to the difference in pseudogenes as a 
function of coverage, as in our simulated experiments 
(Fig.  5). From this model, we predicted two values: the 
expected difference in pseudogene density at 50-fold cov-
erage and the coverage required to achieve only a single 
pseudogene difference per Mbp.

As shown in Fig. 6, real reads resulted in more variation 
than simulated reads, both within and across taxa. While 
50-fold coverage was largely sufficient with simulated 
E. coli paired-end reads, much higher coverages of real 
reads were required to mitigate spurious pseudogenes in 
some cases. This result held across different read sources, 
including hybrid (short and long) read assemblies. The 
high degree of variability within each species implies the 
existence of additional factors beyond those tested here, 
which may include strain-level differences, DNA extrac-
tion protocols, sequencing machines [20], or interactions 
among error sources [21]. Hence, it is difficult to establish 
a single threshold for sufficient coverage or use coverage 
as a surrogate for assembly error, but higher coverage 
assemblies should generally be expected to contain fewer 
pseudogenes than lower coverage assemblies.

Discussion
Pseudogenes have been extensively studied for their 
roles in evolution [22–24]. To our knowledge, this study 
is the first to examine pseudogenes as artifacts of the 

Fig. 5 Modeled pseudogene deviation as a function of read cover-
age. Curves show the binomial model fits of the absolute difference in 
frameshifts (center) and internal stops (bottom) per Mbp relative to the 
representative E. coli genome for assemblies generated from simulated Il-
lumina reads with an average Q-score of 35. Pseudogene differences gen-
erally increase rapidly with decreasing read coverage. However, the rate of 
change depends markedly on the combination of sequencing platform 
and assembler. Reported fold-coverage for 1,661,482 prokaryotic GenBank 
assemblies (top) imply that many publicly available assemblies were gen-
erated from reads with insufficient coverage to achieve low pseudogene 
error
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sequencing and assembly process. We showed that spuri-
ous pseudogenes arise from low quality or low coverage 
reads at a rate that is dependent on the sequencing plat-
form and method of assembly. Our results imply that the 
relative number of pseudogenes can be used as a proxy 
for overall assembly quality and indicate high coverage 
is critical for minimizing spurious pseudogenes. How-
ever, in no instance did we go full circle from a known 

genome back to the same genome via simulated sequenc-
ing followed by reassembly. This result is consistent with 
recent work showing that it remains difficult to assemble 
an error free bacterial genome [25–27]. Genomes should 
therefore be expected to contain errors beyond those 
captured by filtering on the number of pseudogenes.

The main strength of our study is the variety of 
approaches we used to investigate spurious pseudogenes. 

Fig. 6 Fitted deviations in pseudogene differences for high-coverage assemblies. Reads corresponding to very high coverage (≥ 1000-fold) assemblies 
were reassembled with Unicycler to explore the effect of taxonomy and coverage on the generation of spurious pseudogenes. Reassemblies differed 
considerably in the density of spurious pseudogenes at 50-fold coverage (top row) and the coverage required to reach only a single pseudogene differ-
ence per Mbp (bottom row). This result implies considerable variability in spurious pseudogene counts in real data beyond that observed for simulated 
reads, which are shown by the leftmost points. Only species with at least 13 independent read sets (n) are shown, with the remainder merged into the 
“Other” category (rightmost points)
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However, our study is not without limitations. First, 
we relied exclusively on PGAP for annotation of pseu-
dogenes. Different annotation programs find alterna-
tive numbers of pseudogenes in the same genome [28, 
29], indicating pseudogene detection is somewhat pro-
gram dependent. Second, in some cases we focused on 
select taxonomic groups, and these findings may have 
been taxon-specific. Third, it is impossible to know the 
true number of pseudogenes in a genome, so we relied 
partly on simulated reads to validate our observational 
conclusions. Simulations necessitate many assumptions 
and cannot holistically account for all variability in real 
sequencing data. We would expect true reads to encom-
pass other error modes not captured in simulations [20, 
30, 31]. Therefore, we suspect our simulation results 
represent a low estimate of the number of spurious 
pseudogenes, as confirmed by the reassembly of high-
coverage genomes. Fourth, we focused on pseudogenes 
due to internal stops and frameshifts, although PGAP 
also reports pseudogenes due to unexpectedly truncated 
coding sequences. We chose to ignore truncations since 
these pseudogenes can result from incomplete assem-
blies. Notwithstanding these limitations, we anticipate 
that our main results are generalizable because of their 
repeated observation across multiple approaches.

We did not assess the presence of pseudogenes in 
metagenome-assembled genomes (MAGs), which is a 
type of assembly recently added to RefSeq.  There are 
many programs specific to metagenome assembly [32] 
and error detection or correction [33–35], which is well-
known to be a difficult task [36, 37]. Similarly, assemblies 
exclusively from long reads are likely to become more 
common as their error rates improve [38, 39], although 
we did not include solely long read assemblies in our 
simulations due to their high simulated error rates [40]. 
The increasing number of deposited genomes assembled 
exclusively from long reads further intensifies the need to 
control for assembly error in publicly available genomes. 
We anticipate the relative number of pseudogenes being 
a useful proxy for overall assembly quality as genome 
repositories continue to diversify. Excluding genomes 
assembled from low coverage reads and reads exclusively 
from error prone sequencing platforms is an important 
first step in limiting errors. Our results reinforce calls to 
carefully follow potential errors through analysis pipe-
lines as errors continue to accrue in public datasets [41].

This study highlights the importance of depositing raw 
sequencing reads and clearly connecting them to exist-
ing assemblies, which unfortunately was not the case for 
many genomes currently available. We believe that access 
to raw reads is critical for transparency and confidence in 
the quality of data present in genome repositories. Raw 
reads permit reassembly with different assemblers and 
allow the verification of support for specific mutations. 

Studies of pseudogenes would be wise to verify the 
existence of frameshifts and internal stops using raw 
sequencing data and, ideally, resequencing. At the time 
of this study, less than half of prokaryotic assemblies in 
RefSeq had associated reads deposited in the SRA, and 
in some cases there were insufficient metadata to explain 
which of multiple sequencing runs were used to produce 
an assembly. Enforcing the collection of this informa-
tion is currently a missed opportunity for public genome 
repositories such as GenBank.

Conclusions
In this study, we found that many bacterial pseudogenes 
are, in fact, bona fide genes and care should be taken 
when drawing conclusions from pseudogenes. The num-
ber of spurious pseudogenes due to internal stops or 
frameshifts was influenced by the sequencing technol-
ogy, read coverage, read quality, and assembler. We found 
that the number of pseudogenes relative to other highly 
similar genomes can serve as a proxy for differences in 
overall assembly quality and potentially be used to filter 
anomalous assemblies. The results of this study imply 
that there are many errors incorporated in publicly avail-
able genomes and the accumulation of assembly errors 
may result in over-estimation of genetic diversity across 
organisms. Compensating for these errors necessitates 
that depositing raw sequencing reads becomes common-
place and public genome repositories should continue to 
work toward this goal. Achieving this goal may enable 
repositories such as RefSeq to reassemble genomes from 
their raw reads to provide standardized assemblies. Addi-
tionally, we highly recommend repositories consider 
using pseudogene counts as another way to flag poten-
tially anomalous assemblies. Certainly many pseudo-
genes are not artifactual and pseudogenes will continue 
to play an important role in microbial evolution. Never-
theless, our results strongly caution against lending too 
much credence to pseudogenes found in public assem-
blies without alternative evidence for their veracity.

Methods
Acquisition of genome assemblies and associated 
metadata
Edirect (v19.1) tools were used to acquire assembly meta-
data from RefSeq release 212 and GenBank release 255. 
Database queries are provided in the GitHub reposi-
tory associated with this study. To exclude assemblies 
with previously known issues, the results were filtered 
to assemblies that were not flagged by NCBI as par-
tial, anomalous, and failing taxonomy check. Metadata 
included the FtpPath_RefSeq, BioSampleAccn, Assem-
blyStatus, SubmissionDate, Taxid, SpeciesName, Con-
tigN50, ScaffoldN50, Coverage, and total_length. General 
feature format (gff) files were parsed to extract feature 
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locations and pseudogene types. Each assembly’s assem-
bly_stats file was parsed to extract reported assemblers 
and sequencing technology. Metadata, including Run, 
LibraryStrategy, LibrarySelection, LibrarySource, Plat-
form, Model, and BioSample, was collected for each 
BioSample record associated with an assembly’s SRA 
identifier. The RefSeq dataset contained 226,398 assem-
blies with 111,431 SRA runs, and the GenBank dataset 
contained 1,661,482 assemblies with 1,130,514 SRA runs. 
Assemblies and annotations were downloaded using the 
FtpPath_RefSeq metadata, while runs were downloaded 
as reads using the SRAtoolkit (v3.0.5) with the ‘split-3’, 
‘skip-technical’, ‘read-filter pass’, and ‘clip’ arguments.

Comparison of paired assemblies
Bacterial genera (n = 121) with at least 100 members, 
including Candidatus genera, were used to quantify the 
relationship between genome similarity and pseudogene 
counts. Each genus was randomly subset to 100 distinct 
assemblies for computing pairwise ANI with the ANI 
calculator [42]. Related coding sequences were identi-
fied with the Clusterize function in the R [43] pack-
age DECIPHER (v2.28.0) [12] at a nucleotide similarity 
threshold of at least 90%. Clusters containing more than 
two sequences, suggesting the existence of paralogous 
gene copies, were excluded from analysis. The percent-
age of incongruent pairs (Fig.  1) was then calculated as 
the number of clustered pairs containing a pseudogene 
(from one genome) and a gene (from the other genome) 
normalized by the number of pairs containing two pseu-
dogenes (i.e., congruent) or a pseudogene and a gene (i.e., 
incongruent). Spline fits in Fig.  1 were made with the 
smooth.spline function in R while weighting each point 
by the number of congruent plus incongruent pseudo-
gene pairs.

Causal modeling of pseudogene counts using assembly 
metadata
RefSeq metadata was encoded for causal modeling by 
removing ‘Candidatus’ from genus names, as well as 
integer encoding assembly status, assembler, technol-
ogy, and genus. Additional columns were added to the 
dataset for submission year, N50 normalized by total 
assembly length, and pseudogenes per Mbp due to inter-
nal stops, frameshifts, or incompleteness (i.e., partial). 
Assemblies with missing or aberrant (e.g., zero coverage) 
metadata were excluded from analysis. Genera, submis-
sion years, assemblers, and technologies with fewer than 
1,000 entries were excluded. Causal edges among vari-
ables under the submitter’s control were forbidden (e.g., 
assembler cannot cause genus). Causal inference was 
conducted with Tetrad (v1.3.0) using the fast causal infer-
ence algorithm [10].

Reassembly of Neisseria gonorrhoeae genomes with 
different assemblers
To elucidate the effect of assembler on pseudogenes, we 
focused on the species N. gonorrhoeae owing to its use of 
phase variation, abundance of BioSamples, and relatively 
unskewed distribution of pseudogene counts. BioSamples 
with associated paired-end Illumina reads correspond-
ing to RefSeq assemblies with at least 100-fold reported 
coverage were selected from the SRA metadata. Adapter 
sequences were removed with fastp and quality trimmed 
with the TrimDNA function in DECIPHER [12]. Assem-
bly was performed with SKESA (v2.5.1), SPAdes (v3.15.5) 
with ‘--isolate’ and ‘--cov-cutoff auto’ arguments, Unicy-
cler (v0.5.0), and MEGAHIT (v1.2.9). Successful assem-
blies were annotated with PGAP and pseudogene types 
were extracted from the resulting gff files. Pseudogenes 
were tabulated by type and assembler before creating a 
Venn diagram using the VennDiagram package in R.

Contrasting independent sequencing runs of the same 
sample
A total of 11,577 BioSample records had at least two 
associated sequencing runs that could be used to com-
pare run-to-run variability. Assembly was performed 
using Unicycler defaults with a minimum contig length 
of 200 nucleotides. Any assembly shorter than 95% or 
longer than 105% of the original RefSeq assembly was 
omitted from analysis to reject pairs of assemblies from 
read sets that may have included a failed sequencing run. 
Successful assemblies were annotated with PGAP (build 
6021) [9] by supplying the original assembly’s genus and 
species identifiers. Features and pseudogene types were 
extracted from the resulting gff files. Only BioSample 
records with exactly two successful re-assemblies were 
analyzed to avoid cases where the same BioSample may 
not correspond to the same genome (e.g., evolve and 
resequence experiments).

Simulated sequencing of an E. coli genome followed by 
assembly
To investigate spurious pseudogenes under controlled 
conditions, we generated simulated sequencing reads 
starting from the NCBI’s reference E. coli K12 MG1655 
genome (GCF_000005845.2) reannotated with PGAP. 
Replicate batches (n = 3 per condition) of short reads 
were simulated using the ART (version MountRain-
ier-2016-06-05) [17] simulator under a wide range of 
coverage depths and qualities. Long reads were simulated 
with PBSIM3 (v3.0.0) [18] with default quality distribu-
tions at fixed 20-fold coverage. All assemblies were gen-
erated with Unicycler and annotated with PGAP. Coding 
sequences were grouped between the assembly and ref-
erence genomes with Clusterize using a similarity cutoff 
of at least 90% nucleotide identity. Spurious pseudogenes 
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were categorized as pseudogenes in the reassembly that 
were clustered with genes in the reference genome. 
Only a single pair of nearest neighbors were retained in 
each cluster with the objective of excluding potentially 
paralogous coding sequences. The number of spurious 
pseudogenes due to internal stops or frameshifts were 
normalized by the total number of coding sequences in 
each assembly. We fit binomial models to predict this 
value from simulated coverage and quality. The binomial 
model assumes spurious pseudogenes are sampled from 
a finite pool of possible coding features at a rate that is 
dependent on coverage and/or quality. Model fitting was 
performed with the glm function in R (v4.2.1). Whole 
genome alignment was performed using DECIPHER to 
verify that no reassemblies exactly recapitulated the orig-
inal assembly.

Reassembly using subsampled reads from very high 
coverage genomes
Available SRA runs were subset to single Illumina 
sequencing runs with more than 1000-fold coverage 
and less than 10,000-fold coverage. Where available, we 
included single Oxford-Nanopore or Pacific Biosciences 
sequencing runs with more than 80-fold coverage and 
less than 1000-fold coverage. Matching BioSamples were 
further randomly subsampled to at most 100 represen-
tatives of each Illumina sequencing model or combina-
tion of short and long read sequencing models. Read sets 
were reassembled at ~1000-fold coverage with Unicycler 
to obtain a point of reference that was assumed to be the 
correct assembly. Reads were randomly subsampled in 
triplicate to target coverages of 5, 10, 25, 50, 100, 250, and 
500-fold for short reads, as well as 20-fold coverage for 
long reads when available. Subsampled reads were reas-
sembled with Unicycler, and contigs shorter than 200 
base pairs were dropped before annotation with PGAP.

Successfully reassembled read sets (BioSamples) were 
further subset to those with at least one completed rep-
licate at all target coverages greater than 5-fold, total 
assembly size between 80% and 120% of the source 
assembly size, observed coverages between 80% and 
120% of the target coverage, and an alignment frac-
tion (i.e., shared gene content) with the source assembly 
greater than 80%. These filters were imposed to ensure 
reasonably complete reassemblies were obtained. Devia-
tion in pseudogene counts from the point of reference 
(1000-fold coverage) assembly and fitting of binomial 
models were performed in the same manner as for the 
simulated E. coli reads. Since target coverages were inex-
act, actual coverages calculated by the SAMtools (v1.18) 
depth function were used for model fitting. We used each 
fitted model to predict the expected deviation in pseudo-
genes at 50-fold coverage and the coverage required for a 
single pseudogene difference per Mbp.
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