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of Enterococcus faecalis with RNA-seq and Tn-
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Zhanyi Chen'?3", Chenguang Niu'?", Lifan Wei'** Zhengwei Huang'**" and Shujun Ran'*"

Abstract

Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide
range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of

E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study,
we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively
understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products
are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed
under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the
cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to
neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a
network of E. faecalis genes necessary for its survival under acid conditions.

Importance

As a serious nosocomial pathogen, Enterococcus faecalis was considered responsible for large numbers of infections.
Its ability to survive under stress conditions, such as acid condition and nutrient deficiency was indispensable for its
growth and infection. Therefore, understanding how E. faecalis survives acid stress is necessary for the prevention
and treatment of related diseases. RNA-seq and TIS provide us a way to analyze the changes in gene expression
under such conditions.
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Introduction

Enterococci, which occur widely in the human and ani-
mal gastrointestinal tracts, have been previously linked
to infections of the skin and soft tissues, especially
endocarditis and urinary tract infections [1]. Enterococ-
cus faecium and Enterococcus faecalis are the species of
enterococci most strongly associated with disease and are
responsible for 97% of infective endocarditis, predomi-
nantly affecting the elderly and patients with comorbidi-
ties [2]. As well as the infections mentioned above, E.
faecalis plays a significant role in persistent periapical
periodontitis [3]. Recent metagenomic sequencing of
intraradicular infectious microorganisms also showed
that E. faecalis, Streptococcus gordonii, Actinomyces naes-
lundii, and Lactobacillus acidophilus are most frequently
detected in secondarily infected root canals [4-6].
Therefore, E. faecalis is considered as a major pathogen,
causing various community infections and endodon-
tic failures. The important role of E. faecalis in various
infection diseases is attributed to its strong resistance to
many antibiotics [7]. As well as resistance to the antimi-
crobial drugs used for treatment, E. faecalis has evolved
tolerance for various environments, especially its adapta-
tion to withstand various pHs [8, 9]. Macrophages play
a crucial role in bacterial infections, but E. faecalis sur-
vives well after its internalization in macrophages [10].
Bacteria are internalized by phagocytes and form early
phagosomes, and phagosomal acidification creates a
high-stress environment and impedes microbial growth
[11]. The pH value of phagosome is about 5.5-6.0 and
the luminal pH can reach as low as 4.5 after phagosome
fused with lysosomes and generated phagolysosome [11].
However, E. faecalis is resistant to low pH in vivo and is
capable of surviving within macrophages for long periods
[12]. Thus, E. faecalis contributes to chronic local or sys-
temic infection diseases. Therefore, elucidating the sur-
vival mechanism of E. faecalis under low-pH conditions
is the key to combating the infectious diseases caused by
E. faecalis.

As lactic acid bacteria (LAB), the enterococci also
have the characteristics common to all LAB. They are
Gram-positive, non-spore-forming, microaerophilic or
anaerobic bacteria that produce lactic acid as the major
end product of sugar fermentation [13]. Therefore, the
physiology of enterococci under stress is similar to that
of other LAB. The genes encoding ClpP and Clp ATPase
are by far the best studied streptococcal stress genes in
terms of their virulence potential. In S. mutans, which
directly links low pH with dental caries, Clp is considered
to play an important role in the acid stress response [14].
According to previous studies [15, 16], E. faecalis has
strong resistance to high-pH stress according to ATPase
activity. It carries genes encoding ClpP, ClpB, ClpC,
ClpE, and ClpX, but the involvement of ClpP and Clp

Page 2 of 10

ATPase in resistance to acid stress has not been studied
extensively in E. faecalis.

To identify genes potentially involved in essential bac-
terial survival or growth under various conditions, trans-
poson insertion sequencing (TIS) has been optimized for
many different bacterial species [17].

In this study, we used T1IS to analyze E. faecalis strain
OGIRF to identify genes related to its acid tolerance
mechanism. Collectively, our findings show that meta-
bolic adaptations are essential for the acid tolerance of E.
faecalis.

Methods

Bacterial culture

Enterococcus faecalis strain OG1RF was used through-
out this study. It was cultured in M9 broth (SIGMA, St.
Louis, MO, USA) at pH 5 or pH 7 (M9 represent pH7-M9
if not specifically labeled in this article) at 37 °C in an aer-
obic atmosphere. The pH of the M9 broth was adjusted
with HCI or NaOH. Samples (14 mL) of M9 broth (pH 7
and pH 5) were inoculated with 10® colony-forming units
(CFUs)/mL E. faecalis OG1RF, which were cultured at
37 °C until stationary phase.

RNA-seq

After 12 h of cultivation, the cultures were centrifuged
at room temperature at 2000 rpm for 15 s, and the pel-
lets were flash frozen in liquid N, before RNA extraction,
which was performed as described previously [18]. The
ScriptSeq Complete Kit (Bacteria) (Epicentre Biotech-
nologies, Madison, WI, USA) was used to remove ribo-
somal RNA (rRNA) and to construct a strand-specific
library. Briefly, rRNA was removed from 2.5 ug of total
RNA. To generate strand-specific RNA-seq data, approx-
imately 100 ng of rRNA-depleted RNA was fragmented
and reverse transcribed with random primers containing
a 5’ tagging sequence, followed by 3’ end tagging with a
terminal-tagging oligonucleotide to yield dual-tagged,
single-stranded cDNA. After magnetic-bead-based puri-
fication, the dual-tagged cDNA was amplified with PCR
(15 cycles) using ScriptSeq Index PCR Primers (Epicentre
Biotechnologies). The amplified RNA-seq libraries were
purified with the AMPure XP system (Beckman Coulter,
San Jose, CA, USA) and sequenced as 100-bp paired-end
reads on the Illumina HiSeq 2500 platform (University of
Edinburgh, UK). The data were analyzed was with Rock-
hopper [19], using the default settings for strand-specific
analyses.

TIS

A transposon insertion mutant library of E. faecalis
OGI1RF was constructed with a mariner transposon, as
described by Wei et al. [20]. Briefly, the transposon was
delivered by pZXL5 plasmid carrying a chloramphenicol
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(Cm)-resistance gene. The pZXL5 plasmid was loaded
into E. faecalis OGIRF with electroporation, and the
transformants were cultivated BHI agar plates (contain-
ing both gentamicin and chloramphenicol) at 28 °C over-
night. Then the bacteria carrying pZXL5 were incubated
in pH5-M9 or M9 at 42 °C for 24 h. The mutant library
was amplified in BHI medium with gentamicin at 37 °C.

To identify the genes essential for the survival of E.
faecalis in pH5-M9, high-throughput sequencing and
analysis was performed according to previous studies
[21, 22]. The bacteria from the input and output libraries
were collected, and genomic DNA were extracted with
the Bacterial Genomic DNA Extraction Kit (Takara). The
DNA was fragmented by sonication, end-repaired with A
tailing and addition of adaptors and P5 and P7 sequences
by two cycles of PCR. Three replicates of the input and
output libraries were sequenced with high-throughput
sequencing on the Illumina HiSeq 2500 platform. The
sequence reads were mapped to the genome, and the
mapped read-counts were then tallied for the analysis
of the essentiality of the genes in the E. faecalis OG1RF
genome. The read counts for each locus were normal-
ized among the three libraries according to the sequenc-
ing depth. The fold change of each locus was generated
by comparing the output read counts with the input
read counts. The essential loci were determined with the
HMM module of EL-ARTIST [23].
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Fig. 1 Transcriptomic analysis of E. faecalis. The y-axis of each track indi-
cates read coverage and is represented on a log scale, ranging from 0 to
10,000. The x-axis represents the genomic location. The blue (M9-1) and
red (pH5-1) tracks correspond to sequencing reads for E. faecalis cultured
at different pHs, and a, b and ¢ represent three replicates. The orange
(RNAseq diff Exp) track corresponds to genes differentially expressed be-
tween two groups, and the heights of the bars indicate expression levels.
The yellow (Tn-seq) and dark green (Tn-seq intergenic) tracks represent
genes and intergenic regions detected with Tn-seq, respectively. The RNA-
seq experiments were performed with three biological replicates
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Data analysis

The raw Illumina MiSeq sequencing data were split,
based on their barcodes, using the Galaxy platform, and
16-nt fragments of each read that corresponded to an
OGIRF sequence were mapped to the OGIRF genome
with Bowtie 2 [24]. Reads that mapped to the final 10%
of genes were discarded because such insertions may not
inactivate the gene function. Feature Counts were used
to determine the read counts of the transcripts. The read
counts per gene were then normalized to the total num-
ber of reads that mapped to the genome in each repli-
cate, by calculating the normalized reads per kilobase per
million input reads (RPKM) with the following formula:
RPKM = (number of reads mapped to a gene x 10°)/(total
mapped input reads in the sample x gene length in kbp)
[25]. Statistical analysis of the differences in the RPKM
values under each experimental condition was performed
with Cyber-T [26]. A difference analysis of the groups was
performed with DEseq2. Genes were deemed to contrib-
ute significantly to bacterial growth when the Benjamini—
Hochberg-corrected P value was <0.05 and the difference
in abundance of the transposon mutant during growth
in M9 and in serum was >2 [25]. Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
[27-29] enrichment analyses were performed with the R
package. Other statistics were calculated and plots drawn
with Perl and Python scripts.

The M9 group was used as the control for both RNA-
seq and TIS. For RNA-seq, differential genes were filtered
with |log,FC|, i.e., a gene change was deemed reliable at
|log,FC| > 1 and adjusted P<0.05. For TIS, expression
changes were deemed reliable at adjusted P<0.05 only.

Results
RNA-seq and TIS data analyses
To identify the genes of E. faecalis required for growth in
acid environments, TIS of cultures of E. faecalis grown
in M9 broth at pH 7 and pH 5 was performed. To ensure
that E. faecalis was able to survive and multiply when
incubated at pH 5, the transcriptional profile of the strain
was determined during exponential growth phase in M9
broth and M9 broth at pH 5. The read count values of
two groups and three replicates are shown in Fig. 1. The
|log,FC| of RNA-seq differential expression, TIS gene
and TIS intergenic were presented.

The upregulated and downregulated genes detected
with RNA-seq and TIS are shown in Fig. 2. A total of 364
genes were upregulated and 615 were downregulated.

Upregulated genes detected with RNA-seq

Multiple aspects of function were identified among the
364 upregulated genes detected with RNA-seq (Fig. 3).
The results of a GO analysis indicated that the genes that
conferred acid tolerance on E. faecalis included those in
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Fig. 2 Crosslink analysis to determine the genes required for the acid tolerance of E. faecalis. Bubbles represent genes, and their sizes indicate fold-
changes in their expression compared with their expression in E. faecalis in M9 broth. The x-axis shows the genomic locations of the genes. The y-axis
showed the —log10(q), representing the degree of variance. Significantly differentially expressed (q < 0.05) genes are labeled with their names in different
colors, indicating whether they were upregulated or downregulated on RNA-seq or Tn-seq
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the categories “biological process’,
and “cellular component”

The genes categorized in “biological process” included
some involved in carboxylic acid metabolic processes
and oxoacid metabolic processes (OGIRF_11855, argS,
carA, folA, folE, gdhA, etc.). Other genes involved in cel-
lular amino acid metabolic processes and organonitro-
gen compound metabolic processes (serS2, srpG2, thiN,
thrB, thrS, valS, etc.) also accounted for a large propor-
tion of differentially expressed genes. In the “molecu-
lar function” category, a number of genes associated
with enzyme activity were upregulated, mainly ligases,
catalytic enzymes, and especially those forming car-
bon-nitrogen bonds, etc., indicating an increase in the
metabolic rate when E. faecalis encountered an acid
environment. Among the genes mentioned above, ligase-
activity-related genes were significantly more enriched
than other differentially expressed genes. However, the
enrichment of plasma-membrane-associated genes sur-
passed that of others genes in the “cellular component”
category. Other genes linked to the plasma membrane
and DNA polymerase were also enriched, indicating a
potential association between acid tolerance and both the
plasma membrane and gene repair.

In a KEGG analysis (Fig. 4), the pathways associ-
ated with alanine, aspartate, and glutamate metabolism,
purine metabolism, and the biosynthesis of amino acids

molecular function’,

showed significant enrichment (q<0.05), and pathways
involving aminoacyl-tRNA biosynthesis, carbon fixation
in photosynthetic organisms, the biosynthesis of second-
ary metabolites, ABC transporters, and quorum sensing
were also enriched (p<0.05).

Downregulated genes detected with RNA-seq

In the GO and KEGG analyses, the downregulated genes
were categorized in the same three categories as the
upregulated genes (Figs. 3 and 4).

Genes involved in the processes of “cellular protein
metabolism’, “cellular amide metabolism’ and “pep-
tide biosynthesis and metabolism” were predominantly
enriched. This suggests that cellular amino acids were
taken up and metabolized to neutralize the excess hydri-
ons in the acid environment. In terms of “molecular func-
tion”, proteins involved in the transmembrane transport
of hydrions and other cations were also categorized, sug-
gesting that the cation transportation capacity was down-
regulated, probably to balance the potential difference
across the membrane. In terms of “cellular components’,
the expression of genes involved in non-membrane-
bounded organelles were mainly downregulated.

A KEGG analysis showed that the downregulated genes
were involved in the pathways: “ribosome’, “inositol
phosphate metabolism’, “pantothenate and CoA biosyn-
thesis”, and “oxidative phosphorylation”.
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Fig. 3 Upregulated and downregulated genes detected with RNA-seq, according to GO enrichment. (a) Upregulated genes involved in “cellular com-
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genes involved in “biological progress”. (e) Upregulated genes involved in “molecular function”. (f) Downregulated genes involved in “molecular function”
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Differentially expressed genes detected with both RNA-seq
andTIS

When the differentially expressed genes detected with
RNA-seq or TIS were compared, those detected with
both analyses were identified and are shown in Figs. 5 and
6. Seventeen differentially expressed genes were analyzed
with GO and KEGG. The genes were divided into three
categories according to function. The GO enrichment
identified oppIC, OGIRF_11718, folE, OGIRF_12404,
hexB, etc. in the “cellular component” and “molecular
function” categories, and the KEGG analysis identified
opplC, opplD, and oppIF as associated with the ABC
transporter pathway, consistent with the GO analysis.

All 17 genes, (oppIC, opplD, opplF, copY, gldA2,
ubiD, ubiD2, folE, lyzl6, hexB, gnd2, OGIRF_11464,
OGIRF 11718, OGI1RF_12453, OGIRF 10680,
OGIRF_10635, and OGIRF_12404) are mainly involved
in functions that allow survival under stress condition, as
further analyzed in discussion part.

Discussion

To understand acid resistance and its mechanism in
microorganisms requires the investigation of how they
interact with their environments and the adaptive modi-
fications that allow them to do so. Species such as Esche-
richia coli and Salmonella enterica are highly resistant to
acid conditions and can survive at very low pHs, includ-
ing in the mammalian stomach [30]. The acid-resistance
mechanisms of microorganisms allow them to survive
extreme acid pressure. One of these mechanisms involves
the manipulation of the H transport system to maintain
a lower intracellular concentration of protons. Other bac-
teria resist acid stress by synthesizing alkaline products
that neutralize environmental acids [31]. Their activities

of sensing, response, and adaptation to acid stress are
involved in the acid tolerance response.

In this study, acid stress was applied by the direct addi-
tion of HCIl to the culture medium to reduce the pH, after
which we investigated the genes help E. faecalis to sur-
vive in acid conditions. To identify such genes, we used
both RNA-seq and TIS. Among the genes differentially
expressed under acid conditions, oppIC was enriched in
the “cellular component” category. Oppl acts as a metal
transporter in Staphylococcus aureus, transporting cobalt
and nickel together in the ABC transporter system [32].
The transportation of metal cations may contribute to
the balance of the transmembrane potential, maintain-
ing a rising concentration of potential to prevent excess
acidification.

The differentially expressed genes in the “molecu-
lar function” category included OGIRF_ 11718, folE,
OGIRF 12404, and hexB. The folE gene encodes zinc-
dependent GTP cyclohydrolase IA in Bacillus subti-
lis, which participates in folate biosynthesis from the
metabolism of GTP [33]. This suggests that an acid envi-
ronment encourages microbes to produce folate to deal
with the consequent impairment of genes. The repair
function of the mismatch elimination protein HexB has
been studied in S. pneumoniae [34], and may co-operate
with other pathways to guarantee DNA stability in E.
faecalis. According to our GO analysis, OGIRF_11718
is related to lysozyme activity, and OGIRF_12404 may
be associated with nicotinamide adenine dinucleotide
(NAD) binding and oxidoreductase activity, acting on the
CH-OH group of donors. A previous study showed that
lysozyme bound RisV of E. faecalis, triggering a signal
transduction cascade that reduced the activation of extra-
cytoplasmic function (ECF) o factor ¢', thus regulating
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Fig. 5 Upregulated and downregulated genes detected with both RNA-seq and Tn-seq according to GO enrichment. (a) Upregulated genes involved in
“molecular function”detected with both RNA-seq and Tn-seq. (b) Downregulated genes involved in “molecular function”detected with both RNA-seq and
Tn-seq. (c) Upregulated genes involved in “biological progress”detected with both RNA-seq and Tn-seq. (d) Downregulated genes involved in “biological

progress” detected with both RNA-seq and Tn-seq

the lysozyme resistance of the bacterium [35]. The upreg-
ulation of lysozyme may be useful in consuming the
excess cations present in an acid environment. NAD and
NADP are closely associated with nitroreductase, a mem-
ber of the oxidoreductase family, which reduces nitro
compounds, ultimately to amino compounds [36]. There-
fore, OG1RF_12404 probably contributes to amino acid
metabolism and the further neutralization of acid. Also,
the down-regulation of clpX showed its consistency with
previous study [14]. clpX encoded a protein that inter-
act with clpP to function. The deletion of clpX caused an
enhanced resistance to acid killing in S.mutans, which
may be attributed to the dysfunction of clpPX and its
downstream regulatory protein, and its slower metabo-
lism affected by clpX [14]. And the down-regulation of
clpX in OGI1RF functioned probably the same.

The biological processes affected by acid stress
included “cell-wall macromolecule catabolic processes’,

“aminoglycan catabolic processes’, and “mismatch repair”.
When the genes shown to be upregulated with both
RNA-seq and Tn-seq were considered, we concluded that
macromolecule catabolism may involve the metal cat-
ion transporter Oppl, the ABC transporters, and other
unknown proteins that function in defensive mecha-
nisms. OG1RF_12404 is probably involved in aminogly-
can catabolism, whereas FolE and HexB are involved in
mismatch repair. In our KEGG analysis, oppIC, opplD,
and oppIF were linked with ABC transporters, con-
sistent with the GO analysis. The glutathione-metabo-
lism-related gene gnd2 encodes a 6-phosphogluconate
dehydrogenase, which catalyzes the conversion of glu-
cose 6-phosphate to ribulose 5-phosphate [37]. There-
fore, Gnd2 is involved in the generation of NADPH and
other metabolisms of reduction progress.

The significantly differentially expressed genes detected
with both RNA-seq and Tn-seq are discussed above.
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with KEGG. (c) Map of genes and pathways upregulated in the KEGG analysis. Purple indicates pathways and pink indicates genes; larger circles indicate

lower p values

However, other genes also play a part in acid tolerance.
CopY is a copper repressor in the copper export system
(cop operons), suggesting a function similar to that of
Opp1C [38]. Research into gldA in E. coli may clarify its
role in E. faecalis [39]. The gldA gene encodes glycerol
dehydrogenase, which converts glycerol to dihydroxy-
acetone (DHA), and regulates the intracellular levels of
DHA, further affecting metabolism. The ubiD and ubiD2
genes encode UbiD enzymes, which activate (hetero)aro-
matic C—H decarboxylation under ambient conditions,
providing a route to the corresponding acids and deriva-
tive compounds [40].

In conclusion, we used RNA-seq and Tn-seq to iden-
tify the genes in E. faecalis required for its acid tolerance,

highlighted genes like oppIC, copY, gnd2, gldA, ubiD,
ubiD2, folE and hexB, implicating a possible network of
co-operating factors described above in its resistance to
acid environments. Based on these results and previous
reports [32, 38], we speculated that the high H+concen-
tration activates the expression of opplC and copY to
maintain the balance of the transmembrane potential by
importing metal irons and regulating hydrion concentra-
tion. And gnd2 regulate the generation of NADPH and
OGIRF_12404 probably regulates aminoglycan metabo-
lism via NAD binding, together ensuring the adequate
neutralization of excess acids. In addition, folE up-regu-
lates folate biosynthesis and hexB helps with mismatch
elimination protein, enhancing the genetic stability of
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E. faecalis in acidic environments. Further studies are
needed to prove the specific role of the identified genes in

surviving in acid stress.
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