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Bioinformatics analysis identifies a key 
gene HLA_DPA1 in severe influenza-associated 
immune infiltration
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Abstract 

Background Severe influenza is a serious global health issue that leads to prolonged hospitalization and mortality 
on a significant scale. The pathogenesis of this infectious disease is poorly understood. Therefore, this study aimed 
to identify the key genes associated with severe influenza patients necessitating invasive mechanical ventilation.

Methods The current study utilized two publicly accessible gene expression profiles (GSE111368 and GSE21802) 
from the Gene Expression Omnibus database. The research focused on identifying the genes exhibiting differential 
expression between severe and non-severe influenza patients. We employed three machine learning algorithms, 
namely the Least Absolute Shrinkage and Selection Operator regression model, Random Forest, and Support Vec-
tor Machine-Recursive Feature Elimination, to detect potential key genes. The key gene was further selected based 
on the diagnostic performance of the target genes substantiated in the dataset GSE101702. A single-sample gene set 
enrichment analysis algorithm was applied to evaluate the participation of immune cell infiltration and their associa-
tions with key genes.

Results A total of 44 differentially expressed genes were recognized; among them, we focused on 10 common 
genes, namely PCOLCE2, HLA_DPA1, LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, S100P, RAP1GAP, and CA1. To 
ensure the robustness of our findings, we employed overlapping LASSO regression, Random Forest, and SVM-
RFE algorithms. By utilizing these algorithms, we were able to pinpoint the aforementioned 10 genes as poten-
tial biomarkers for distinguishing between both cases of influenza (severe and non-severe). However, the gene 
HLA_DPA1 has been recognized as a crucial factor in the pathological condition of severe influenza. Notably, 
the validation dataset revealed that this gene exhibited the highest area under the receiver operating characteristic 
curve, with a value of 0.891. The use of single-sample gene set enrichment analysis has provided valuable insights 
into the immune responses of patients afflicted with severe influenza that have further revealed a categorical correla-
tion between the expression of HLA_DPA1 and lymphocytes.

Conclusion The findings indicated that the HLA_DPA1 gene may play a crucial role in the immune-pathological 
condition of severe influenza and could serve as a promising therapeutic target for patients infected with severe 
influenza.
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Background
Despite advances in biomedicine, the incidence of hos-
pitalization and mortality rates elicited by influenza, a 
profoundly contagious respiratory disease, persistently 
exhibit an upward trend [1, 2]. The global prevalence of 
symptomatic flu is estimated to range from 10 to 20% 
annually, affecting a substantial portion of the popula-
tion. However, the chronic manifestation of this disease 
afflicts approximately 3–5 million individuals worldwide. 
Tragically, influenza-related mortality rates vary between 
290,000 and 650,000 deaths [3]. Furthermore, the clinical 
manifestations of influenza encompass a diverse array of 
symptoms, from acute upper respiratory tract infections 
to the development of severe pneumonia [4]. Conversely, 
some patients afflicted with severe influenza frequently 
exhibit respiratory dysfunction, as evidenced by reduced 
arterial pressure of oxygen to a fraction of the inspired 
oxygen ratio (≦ 200 mmHg). Consequently, these patients 
rely on IMV for respiratory support, and critical patients’ 
death rate reaches about 50–80% [5, 6]. The detailed 
mechanisms governing the pathological condition of 
severe influenza remain elusive.

Previous studies reported that immune cells and path-
ways are pivotal to the occurrence and progression of 
severe influenza [7, 8]. Reliable immunological biomark-
ers are urgently required to prevent and treat patients 
with severe influenza infections. Microarray technolo-
gies and bioinformatic analyses have been widely used to 
identify disease-specific biomarkers [7, 9]. However, due 
to the presence of sample heterogeneity and variations 
in sampling methods, as well as the utilization of diverse 

technology platforms and analysis strategies across indi-
vidual studies, the execution of statistical analyses and 
the extraction of esteemed information pose significant 
challenges.

Hence, the integration of bioinformatics approaches 
together with expression profiling techniques presents 
an opportunity to obtain a comprehensive understand-
ing of the molecular mechanisms underlying influenza 
infection. This approach can yield valuable insights and 
facilitate the development of novel molecular signa-
tures. Here, we elucidated the key genes implicated in the 
requirement of IMV among influenza patients through 
bioinformatics analysis. Additionally, we sought to inves-
tigate the association among these genes and the levels of 
infiltrating distinct immune cells. The study design can 
be seen in Fig. 1.

Results
Cross‐platform normalization
The microarray platforms collectively identified 12,031 
genes in the two patient samples. Before applying batch-
effect removal techniques, the samples displayed clus-
tering patterns influenced by batch effects along the two 
principal component (PC) axes with the highest variance. 
These axes were determined using gene expression val-
ues that had not been normalized (Fig. 2a). The principal 
component analysis (PCA) analysis conducted after nor-
malization has validated the effective removal of batch 
effects (Fig. 2b), demonstrating the successful implemen-
tation of cross-platform normalization.

Fig. 1 The study flow chart
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DEGs identification and functional analyses
A total of 44 DEGs between both types of influenza 
(severe and non-severe) samples were identified from 
the training dataset, including six downregulated DEGs 
and 38 upregulated DEGs (Fig.  3a, b). GO and KEGG 
enrichment analyses were employed to elucidate the 
specific biological roles played by the DEGs in severe 
influenza. GO analysis suggested that the DEGs were 
associated with the process of myeloid leukocyte acti-
vation, defence response to bacteria, and regulation of 
cytokine production (Fig. 3c and Supplementary File 1). 
KEGG enrichment analysis exhibited that the DEGs were 
predominantly involved in the pathways of transcrip-
tional misregulation in cancer, neutrophil extracellular 
trap formation, and the IL − 17 signaling pathway (Fig. 3d 
and Supplementary File 2). In summary, the DEGs were 
mainly involved in immune and inflammatory responses.

Identification of the key gene for severe influenza
The ten common DEGs (PCOLCE2, HLA_DPA1, 
LOC653061, TDRD9, MPO, HLA_DQA1, MAOA, 
S100P, RAP1GAP, and CA1) that were obtained by over-
lapping genes from computing the three algorithms 
[LASSO regression (Fig.  4a, b), SVM-RFE algorithms 
(Fig. 4c, d), and RF (Fig. 4e, f ) are candidate key genes for 
severe influenza (Fig.  4g). HLA_DPA1 and HLA_DQA1 
expression was significantly lower in patients with severe 
influenza in the training dataset compared to patients 
with non-severe influenza. In contrast, PCOLCE2, 
TDRD9, MPO, MAOA, RAP1GAP, and S100P expres-
sion was higher in the severe influenza group compared 
to the non-severe influenza group in the training cohort 
(Fig. 5a-h), similar to the findings in the validation cohort 

(Fig. 6a-h). The expression of LOC653061 and CA1 was 
greater in severe influenza patients in contrast to non-
severe patients in the training dataset (Fig. 5i, j), whereas 
it was comparable in the validation dataset. In the train-
ing dataset, HLA_DPA1 and LOC653061 genes exhibited 
the highest AUC of 0.788 as depicted in Fig. 7a, b, while 
others were below 0.7 (Fig. 7c-j). Conversely, in the vali-
dation dataset, the AUCs of HLA_DPA1 and PCOLCE2 
were 0.891 and 0.838, respectively (Fig. 8a, b). The AUCs 
of all eight candidate genes were found to be less than 0.7. 
Thus, HLA_DPA1 was selected as a key gene in patients 
diagnosed with severe influenza needing IMV.

The severe influenza samples were categorized into 
two distinct groups by employing a division based on the 
median value of HLA_DPA1 expression:  HLA_DPA1low 
(n = 44) and  HLA_DPA1high (n = 45). Some genes (e.g., 
SPOCK2, ITGB7, GIMAP5, et  al.) were upregulated, 
while others (e.g., PFKFB2, IRAK3, SIPA1L2, et al.) were 
downregulated in the group of  HLA_DPA1high (Fig.  9a, 
b). The correlation between HLA_DPA1 and the other 
genes in the training dataset is shown in Fig.  9c. The 
median expression level of HLA_DPA1 from the training 
dataset in severe and non-severe influenza patients was 
9.540 and 10.572, respectively.

Identification of the key gene via GSEA and GSVA analyses
In order to understand the possible functional impor-
tance of HLA_DPA1 in the pathogenesis of severe influ-
enza, single-gene GSEA-KEGG pathway analysis was 
executed (Supplementary File 3), and the top six path-
ways enriched for HLA_DPA1 are presented in Fig. 10a. 
Overall, HLA_DPA1 was found to be involved in the 
pathological condition of severe influenza by regulating 

Fig. 2 Principal component analysis of gene expression data set. The dots in the scatter plot are based on the first two main components 
of the gene expression profile (PC1 and PC2) visualization samples: a no elimination of batch effect; b elimination of batch effect. The colors 
represent samples from two different data sets
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the immune or inflammatory responses such as KEGG_
leishmania_infection, KEGG_Toll_like_receptor_signal-
ing_pathway), carbohydrate and cofactor metabolism, 
and vitamin metabolism. The GSVA produced compara-
ble outcomes (Fig. 10b).

Analysis of infiltration of immune cells
Significance variances in the numbers of specific 
immune cell populations in whole blood samples from 
individuals with  HLA_DPA1low and  HLA_DPA1high 
were compared using ssGSEA. This approach revealed 
noteworthy suppressed adaptive immune responses in 
patients with  HLA_DPA1low. This suppression was char-
acterized by reduced levels of CD8 + T-cells, B-cells, 
two T-cell subsets (Th1-cells and Th2-cells), tumor-
infiltrating lymphocytes (TIL), T-cell co-stimulation, 
antigen-presenting cell (APC) co-stimulation, as well 

as elevated levels of regulatory T-cells (Treg) and APC 
co-inhibition (Fig. 10c and Supplementary file 4). Simi-
larly, suppressive adaptive immune responses were 
observed in patients with severe influenza, which mani-
fested as decreased levels of key lymphocyte popula-
tions, including activated CD8 + T cells, B cells, CD4 + T 
cells, and memory CD8 + T cells, B cells, and CD4 + T 
cells (Fig. 10d). In addition, subsequent correlation data 
exhibited a remarkable positive association between the 
expression of HLA_DPA1 and the abundance of these 
lymphocytes (Fig. 10e and Supplementary File 5).

Establishment of a key gene‑based ceRNA network
A comprehensive analysis was executed by intersecting 
genes from the TargetScan, miRDB, and miRanda data-
bases (Supplementary File 6) and via this approach, six 
miRNAs (hsa-miR-573, hsa-miR-1253, hsa-miR-877-3p, 

Fig. 3 Expression levels of differentially expressed genes (DEGs) in samples of severe and non-severe influenza. a Heatmap showing expression 
patterns of DEGs. b Map of DEGs. Upregulated genes are marked in light red; downregulated genes are marked in light green; the top and bottom 
10 genes are marked in yellow. The enrichment analysis for DEGs results of GO (c) and KEGG (d) pathway. Adjusted P-value < 0.05 was considered 
significant (Fisher test)
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hsa-miR-429, hsa-miR-3182, and hsa-miR-22-5p) target-
ing HLA_DPA1 were screened. Based on starBase, three 
lncRNAs (LINC00689, LINC00940, and RP1-253P7.1) 
interacted with hsa-miR-877-3p. A ceRNA network com-
prising 5 nodes and 4 edges was established (Fig. 11).

qRT‑PCR
The mRNA levels of HLA_DPA1 in blood samples from 
patients afflicted with severe and non-severe conditions 
were verified using qRT-PCR. This showed a significant 
reduction in the expression of HLA_DPA1 in patients 

Fig. 4 Identification of candidate key genes for severe influenza by three machine-learning algorithms: Least Absolute Shrinkage and Selection 
Operator (LASSO) regression (a, b), Support Vector Machine-Recursive Feature Elimination (SVM-RFE) (c, d), and Random Forest (RF) (e, f). g The 
overlapping genes of the three algorithms were identified as the candidate key genes for severe influenza

Fig. 5 The expression level of the candidate key genes, a HLA_DQA1, b HLA_DPA1, c MPO, d TDRD9, e RAP1GAP, f PCOLCE2, g MAOA, h S100P, i 
CA1, j LOC653061, in the training cohort. *p < 0.05; **p < 0.01; ***p < 0.001



Page 6 of 12Chen et al. BMC Genomics          (2024) 25:257 

afflicted with severe influenza compared to those who 
remain non-severe by infection (Fig. 12).

Discussion
Previous investigations have elucidated the host factors 
linked to the development of severe influenza. How-
ever, they have predominantly concentrated on a genetic 
event, genetic susceptibility [10–12]. Recently, transcrip-
tomic investigations have documented comprehensive 

gene expression profiles pertaining to the host’s response. 
The findings from these investigations suggest that the 
composition and functionality of gene sets deviate sig-
nificantly among patients exhibiting different degrees of 
severity [13, 14]. Nonetheless, these findings were derived 
solely from a singular cohort study, thereby necessitating 
additional clinical validation and comprehensive func-
tional analysis that needed to be explored. Thus, we have 
successfully recognized the key genes associated with 

Fig. 6 The expression level of the candidate key genes, a HLA_DQA1, b HLA_DPA1, c MPO, d TDRD9, e RAP1GAP, f PCOLCE2, g MAOA, h S100P, 
in the validation cohort. *p < 0.05; **p < 0.01; ***p < 0.001

Fig. 7 The ROC curves of the candidate key genes, a HLA_DQA1, b LOC653061, c PCOLCE2, d CA1, e HLA_DQA1, f MAOA, g RAP1GAP, h MPO, i 
S100P, j TDRD9, in the training dataset
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severe influenza in the current study by integrating mul-
tiple datasets. Consequently, the outcomes obtained are 
anticipated to offer a more comprehensive understanding 
of the subject matter. Three distinct machine-learning 
methods were employed for the screening of potential 
key genes. The LASSO is a widely recognized regression 
analysis algorithm renowned for its distinctive variable 
selection and regularization features. These attributes 
are instrumental in mitigating the risk of overfitting and 
enhancing the accuracy of predictions [15]. The Support 
Vector Machine (SVM) is a well-established supervised 
machine learning approach that is commonly employed 
for classification and regression tasks. On the other 
hand, the Recursive Feature Elimination (RFE) algo-
rithm is utilized to identify the most optimal combina-
tion of variables that maximizes the performance of the 
model [16]. Hence, the current investigation utilized the 
Support Vector Machine Recursive Feature Elimination 

(SVM-RFE) algorithm to ascertain feature biomark-
ers possessing exceptional discriminative capacity. The 
Random Forest technique is a widely used regression 
tree-based method that employs bootstrap aggregation 
and predictor randomization to attain notable predictive 
accuracy [17].

The candidate key genes obtained by overlapping the 
genes from the three algorithms exhibited higher reli-
ability. Our study’s functional enrichment analysis dis-
played that DEGs between both influenza (severe and 
non-severe) cases were primarily associated with path-
ways with immune response and inflammation-related 
pathways. Moreover, the ICI analysis revealed a nota-
ble impairment in adaptive immune responses among 
patients afflicted with severe influenza, consistent with 
prior scientific findings [13, 18, 19]. Nguyen et  al. [13] 
conducted a longitudinal study on patients hospitalized 
with acute influenza and found that a higher SOFA score 

Fig. 8 The ROC curves of the candidate key genes in the validation dataset. Only HLA_DPA1 (a) and PCOLCE2 (b) had a AUC above 0.7

Fig. 9 Two groups based on the median value of HLA_DPA1 expression. The volcano map (a) and heatmap (b) of expression patterns of genes 
between HLA_DPA1high and HLA_DPA1low groups. Upregulated genes are marked in light red; downregulated genes are marked in light green. c 
The Pearson correlation of these genes



Page 8 of 12Chen et al. BMC Genomics          (2024) 25:257 

was associated with lower adaptive-producing CD8 + T 
cell responses. Dunning et al. [18] reported that patients 
with the most severe illness exhibited a notable reduc-
tion in interferon (IFN)-related transcripts. The precise 
mechanisms responsible for inhibiting adaptive cellu-
lar immune responses during severe influenza infection 
remain poorly elucidated. The occurrence and progres-
sion of adaptive cellular immunosuppression may involve 
various mechanistic events, including directive killing, 
disruption of antigen presentation, apoptosis, abortive 

infection of primary human T cells, and T cell exhaustion 
or paralysis induced by viruses and cytokines [20–22].

From the candidate genes, HLA_DPA1 was selected 
as the key gene for patients with severe influenza requir-
ing IMV, which showed the best differential performance 
in both the training and validation cohorts. Functional 
enrichment analysis suggested that HLA_DPA1 mainly 
participates in regulating immune and inflammatory 
pathways. HLA_DPA1 was significantly and positively 
associated with lymphocytes; thus, the patients with 
 HLA_DPA1low often showed deficient adaptive immunity 
and were more likely to be classified as critically ill. HLA_
DPA1 is a major histocompatibility complex (MHC) class 
II-related gene [23]. HLA-DP-restricted T-cells and anti-
microbial immune responses have also been identified 
[24, 25]. HLA-DPA1 polymorphism is a major determi-
nant of hepatitis B virus clearance [26, 27]. A previous 
study reported that downregulation of HLA_DPA1 is 
associated with immunosuppression and increased mor-
tality in sepsis [28–30]. In the context of severe infection, 
some inflammatory mediators are possibly  involved in 
the down-regulation of the gene expression of MHC II 
[31–34]. For example, interleukin-10 (IL-10) can reduce 
the membrane expression of MHC II in monocytes. 
This reduction is attributed to the internalization and 

Fig. 10 Functional analysis of HLA_DPA1. a Single-gene GSEA-KEGG pathway analysis in HLA_DPA1. b High- and low-expression groups based 
on the expression level of HLA_DPA1 with GSVA method. c The boxplots of the differences in immune cells infiltration between HLA_DPA1high 
and HLA_DPA1low groups. d The boxplots of the differences in immune cells infiltration between patients with severe and non-severe influenza. e 
Correlation analysis between HLA_DPA1 expression and the proportion of immune cells

Fig. 11 ceRNA network based on HLA_DPA1
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sequestration of mature MHC II molecules within the 
intracellular compartments [31, 32]. In an in vitro study, 
transforming growth factor-1 (TFG-1) downregulates 
MHC II mRNA expression by suppressing transcrip-
tion factor class II transactivator (CIITA) mRNA tran-
scription, while prostaglandin E2 was found to suppress 
MHC II mRNA expression in macrophages [33, 34]. The 
downregulation of MHC II leads to defective antigen 
processing, presentation, and as well as the proliferation 
of lymphocytes [35, 36]. The immunosuppressive state 
of the immune system significantly impedes the patient’s 
ability to eliminate the primary influenza virus infection 
and enhances vulnerability to subsequent opportunistic 
infections, thereby resulting in many detrimental clinical 
outcomes in patients afflicted with influenza infection.

The present study has several noteworthy constraints. 
First, we must recognize the complex pathology of severe 
influenza, which is not driven by a single gene. Neverthe-
less, it can be asserted with a certain degree of certainty 
that the HLA_DPA1 gene exerts a pivotal influence on 
the progression of severe influenza and therefore merits 
prioritization in subsequent investigations. Second, the 
sample size was comparatively small despite our efforts 
to retrieve all the online data. Hub gene-encoding protein 
tests revealed a correlation between hub genes and dis-
ease severity. Furthermore, it is noted that the association 
between hub genes and immune cells is based on statis-
tical correlation rather than establishing a causal rela-
tionship. Lastly, identifying DEGs in patients with both 
types of influenza has shed light on potential host factors 

associated with the chronicity of infection. However, the 
specificity of these factors to severe influenza infection 
has yet to be determined. Additional cell culture and ani-
mal studies are necessary to investigate these hub genes’ 
roles and underlying mechanisms in severe influenza.

Conclusions
In conclusion, the findings of our investigation declare 
that the HLA_DPA1 gene act as a crucial role in the 
immunopathological condition of severe influenza. Fur-
thermore, because of the high discrimination potency 
and cost-efficient property of HLA_DPA1, its clinical 
assessment may provide an accurate and early diagnosis 
of severe influenza. Therefore, it is a promising candidate 
for targeted interventions for the management and pre-
vention of severe influenza cases necessitating IMV.

Materials and methods
Data source
The National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) database, 
accessible at (http:// www. ncbi. nlm. nih. gov/ geo) serves 
as a comprehensive repository for mRNA expression 
data pertaining to patients affected with influenza. The 
selection criteria employed in this study were as follows: 
I) Influenza infection was confirmed through the appli-
cation of reverse transcription polymerase chain reac-
tion (RT-PCR) methodology, which involved the analysis 
of respiratory tract samples; and ii) the disease severity 
classification was generally similar. In this investigation, 

Fig. 12 The mRNA levels of the HLA_DPA1 in blood samples from 10 pairs of severe and non-severe influenza patients

http://www.ncbi.nlm.nih.gov/geo
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the classification of severe influenza was established 
depending on the criterion of patients necessitating IMV; 
iii) Influenza patients were ≧ 16 years old, and intubated 
patients were included. Three datasets were obtained: 
GSE21802, GSE111368, and GSE101702. The GSE21802 
microarray data consisted of blood samples obtained 
from 20 patients with severe influenza and 16 patients 
diagnosed with non-severe influenza, and the GSE111368 
dataset comprised 69 samples of severe and 160 samples 
of non-severe influenza cases. The dataset GSE101702 
included blood samples obtained from 107 individuals, 
consisting of 44 patients diagnosed with severe influenza 
and 63 with non-severe influenza. After the elimination 
of mRNA probes from the GSE21802 and GSE111368 
datasets, the gene expression analysis was consolidated 
into a unified file, serving as the training dataset.

Data processing and screening of differentially expressed 
genes
The integration of genomic data batches to increase 
statistical power is often hindered by batch effects or 
unwanted variation in data caused by differences in tech-
nical factors across batches. To remove the batch effect 
from different platforms and batches, the R sva package 
(https:// bioco nduct or. org/ packa ges/ sva/) was employed 
to mitigate batch effects. Before conducting cross-plat-
form normalization, the expression values of individual 
datasets underwent log2 transformation. Expression val-
ues obtained from various platforms or sample batches 
were subjected to normalization via the ComBat method. 
Principal component analysis was executed to validate 
the successful removal of batch effects. We used specific 
criteria to identify DEGs among both types of influenza 
(severe and non-severe) cases. The threshold points for 
selection were set at a significance P < 0.05 level and a 
minimum log fold change (logFC) > 1. The experimental 
findings were graphically represented using a volcano 
plot.

Functional enrichment analyses
The enrichment analyses for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were executed via the R package ’clusterprofiler’. The 
significance threshold for these analyses was set with 
an adjusted FDR (false discovery rate) (FDR < 0.05) and 
P-value < 0.05. GO terms were categorized into three 
main classes: biological process (BP), molecular function 
(MF), and cellular component (CC). In this study, we pre-
sented the top 10 enriched terms.

Candidate key genes identification
Three machine learning algorithms, least absolute shrink-
age and selection operator (LASSO), Random Forest 

(RF), and Support Vector Machine (SVM), were utilized 
in this study to detect significant diagnostic genes for 
severe influenza. The LASSO is a regression analysis algo-
rithm, which is characterized by variable selection and 
regularization. It helps avoid overfitting and improves the 
prediction accuracy. RF uses different independent deci-
sion trees to predict the classification or regression. The 
SVM is a supervised machine learning technique widely 
used in classification and regression. The recursive fea-
ture elimination (RFE) algorithm is employed to acquire 
the optimal combination of variables that maximizes the 
performance of the model. Therefore, this study utilized 
the SVM-RFE algorithm to identify potent biomarkers 
with superior discriminative ability. Thus the candidate 
genes will have higher reliability as they are identified by 
overlapping genes via three algorithms. To validate their 
expression levels in severe influenza samples, the dataset 
GSE101702 was utilized.

Diagnostic performance examination
To assess the predictive efficiency of the candidate key 
genes for severe influenza, an ROC curve was plotted 
using the mRNA expression data obtained from patients 
diagnosed with influenza (severe and non-severe), 
sourced from both the training and validation datasets. 
The gene exhibiting the highest area under the ROC 
curve within the validation cohort was identified as a key 
gene.

Patients with key gene expression values above the 
median for all severe influenza patients were categorized 
as the  genehigh group. In contrast, those with values below 
the median were assigned to the  genelow group. The dif-
ferential expression of the key gene was determined using 
analysis of an unpaired t-test, with a significance level 
of P < 0.05. A fold change (FC, log2) threshold of > 0.5 
or < -0.5 was also applied.

Pathway evaluation by single‑gene gene set enrichment 
analysis
The R GSEA package was utilized to conduct GSEA to 
identify the pathways linked to the key genes. This was 
achieved by assessing the correlations between the key 
genes and all other genes in the training dataset.

These genes were then ranked based on the strength 
of their correlative relationships. The “c2.cp.kegg.
Hs.symbols” gene set was downloaded from the MSigDB 
database for GSEA analysis and an |NES|> 1, normalized 
p-value < 0.05, and FDR q-value < 0.25 denoted statisti-
cal significance. The genes were subsequently ranked 
according to the magnitude of their correlative associa-
tions. The gene set "c2.cp.kegg.Hs.symbols" was obtained 
from the Molecular Signatures Database (MSigDB) to 
conduct GSEA. Statistical significance was determined 

https://bioconductor.org/packages/sva/
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based on the criteria of an absolute Normalized Enrich-
ment Score |NES|> 1, a normalized p-value < 0.05, and an 
FDR q-value < 0.25.

Single‑gene gene set variation analysis of key genes
The GSVA analyses of key genes were executed using the 
R GSVA package, with the KEGG pathway gene set as the 
background. Using the Limma package, a comparison 
of the GSVA scores for marker genes between the low- 
and high-expression groups was conducted. Significance 
variations between groups were evaluated via a threshold 
of |t|> 2 and a level of significance (P < 0.05). A positive 
value of t > 0 indicated pathway activation in the high-
expression group, while a negative value of t < 0 indicated 
pathway activation in the low-expression group.

Correlation between the key gene and infiltrating immune 
cells
The calculation of relative ICI levels in the training data-
set was executed utilizing a ssGSEA algorithm. Immune 
cell enrichment levels were quantified using ssGSEA 
scores for each sample. Differential expression patterns 
of immune-infiltrating cells between the key  genehigh and 
key  genelow groups, and patients with both cases of influ-
enza (severe and non-severe), were monitored via violin 
plots. The Spearman correlations between ICI and the 
key gene were assessed via the ’ggplot2’ package in the R 
programming language.

Development of ceRNA network
The identification of miRNAs that interact with key genes 
was performed using the StarBase computational tool. 
The mRNA sequences of these genes were obtained from 
NCBI. Human miRNA sequences were acquired from 
miRbase. Subsequently, the TargetScan, miRDB, and 
miRanda databases were employed to forecast the target 
genes of miRNA. StarBase was used to conduct screening 
for interactions between mRNA-lncRNA. This facilitated 
the establishment of a comprehensive network involving 
mRNA, microRNA (miRNA), and lncRNA.

qRT‑PCR
Total RNA content was extracted from a set of 10 paired 
severe and non-severe influenza samples by the reagent 
of TRIzol (Life Technologies, Carlsbad, CA, USA) as per 
the manufacturer’s protocol guidelines. The reverse tran-
scription process was executed via PrimeScript RT Mas-
ter Mix (Takara in Tokyo, Japan). The resulting cDNA 
was amplified using the ABI 7700 system (Applied Bio-
systems in CA, USA). β-lactin was employed as house-
keeping control to evaluate the relative expression levels. 
It was assessed by utilizing the 2-ΔΔCt method. The fol-
lowing primer sequences were used for the qRT-PCR:

Forward: 5’-CTG CCC AGA ACA GAT TAC AGC-3’,
Reverse: 5’-ACA GTC TCC GTT GTC TCA GG-3’

Data analysis
The statistical analyses were executed by applying R soft-
ware (version 4.2.0). Statistical analysis was performed 
using an unpaired t-test for variables that revealed a normal 
distribution. At the same time, the Mann–Whitney U test 
was utilized for variables that displayed a non-normal dis-
tribution. Spearman’s correlation coefficient was employed 
to conduct the correlation analysis. Statistical significance 
was determined by assessing differences with a p < 0.05.
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