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Abstract
Climate change is a threat to sustainable livestock production and livelihoods in the tropics. It has adverse impacts 
on feed and water availability, disease prevalence, production, environmental temperature, and biodiversity. 
Unravelling the drivers of local adaptation and understanding the underlying genetic variation in random 
mating indigenous livestock populations informs the design of genetic improvement programmes that aim to 
increase productivity and resilience. In the present study, we combined environmental, genomic, and phenotypic 
information of Ethiopian indigenous chickens to investigate their environmental adaptability. Through a hybrid 
sampling strategy, we captured wide biological and ecological variabilities across the country. Our environmental 
dataset comprised mean values of 34 climatic, vegetation and soil variables collected over a thirty-year period for 
260 geolocations. Our biological dataset included whole genome sequences and quantitative measurements (on 
eight traits) from 513 individuals, representing 26 chicken populations spread along 4 elevational gradients (6–7 
populations per gradient). We performed signatures of selection analyses (FST  and XP-EHH) to detect footprints of 
natural selection, and redundancy analyses (RDA) to determine genotype-environment and genotype-phenotype-
associations. RDA identified 1909 outlier SNPs linked with six environmental predictors, which have the highest 
contributions as ecological drivers of adaptive phenotypic variation. The same method detected 2430 outlier SNPs 
that are associated with five traits. A large overlap has been observed between signatures of selection identified 
byFST and XP-EHH showing that both methods target similar selective sweep regions. Average genetic differences 
measured by FST  are low between gradients, but XP-EHH signals are the strongest between agroecologies. Genes 
in the calcium signalling pathway, those associated with the hypoxia-inducible factor (HIF) transcription factors, 
and sports performance (GALNTL6) are under selection in high-altitude populations. Our study underscores the 
relevance of landscape genomics as a powerful interdisciplinary approach to dissect adaptive phenotypic and 
genetic variation in random mating indigenous livestock populations.
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Background
The genetics of local adaptation and climate resilience in 
livestock has become more relevant in the face of climate 
change [1–4]. Local adaptation refers to the response of 
individuals to differential selective pressure leading to 
higher genetic fitness in their environment than indi-
viduals from elsewhere [5, 6]. Resilient animals have 
the capacity to be minimally affected by environmen-
tal disturbances (e.g., temperature stress, disease pres-
sure, introduction to a new habitat) if they occur, or can 
return rapidly to the state pertained before exposure to 
the disturbance [7, 8]. Animals that combine high pro-
duction potential with resilience to external stressors in 
a wide variety of environmental conditions are regarded 
as ‘robust’ [9].

Phenotypic differentiation represents the fraction of 
phenotypic variance between populations over the total 
phenotypic variance and helps understand evolutionary 
processes shaping populations [10–12]. Environmental 
differences acting as a natural selective force can result 
in exceptionally strong genetic differentiation in genomic 
regions containing loci subjected to selection [13]. Phe-
notypic and genetic differentiation along environmen-
tal gradients, or across contrasting habitat types, can be 
indicative of local adaptation [6, 14, 15]. For instance, 
alleles providing adaptation to high elevation are found 
in high frequency in populations at high elevation but in 
low frequency in populations at low elevation in humans 
[16, 17], in chickens [16, 18, 19], in pigs [20, 21], and 
small ruminants [22].

Understanding the genetic basis of phenotypic varia-
tion and local adaptation in livestock in response to 
environmental variation helps to enhance productivity 
and mitigate climate change [2, 23–25]. Randomly mat-
ing indigenous livestock populations are raised in stress-
ful environmental conditions for many generations and 
harbour genomic regions conferring local adaptation that 
need to be exploited [26, 27]. Once identified, beneficial 
alleles/variants in indigenous chickens can be introduced 
into commercial chickens through breeding programmes 
[28, 29] or genome editing [30–32] to develop animals 
with desirable phenotypic attributes.

The effects of environmental selective pressures as 
drivers of local adaptation and specially their influences 
on phenotypic and genetic differentiation in Ethiopian 
chicken populations have not been investigated enough 
to shape our understanding of environmental adapta-
tion. Ethiopian indigenous chickens also called local, vil-
lage, scavenging, backyard, or family chickens are widely 
adapted, random mating, nondescript domesticated 

chicken populations. They are managed in extensive 
(low-input) systems in their natural environment, with-
out selective breeding programmes in place [33]. Ethiopia 
has one of the earliest evidences for chicken domestica-
tion and dispersal in Africa [34]. Ethiopian chickens are 
distributed in all agroecologies [33] and show substantial 
phenotypic and genetic diversity [35–39]. Large genetic 
diversity of present-day Ethiopian chicken populations 
might be attributed to their multiple waves of introduc-
tion into the country [40, 41] and the presence of highly 
diverse environment (e.g., climate, vegetation, elevation) 
[42]. As such, the country can be considered an ideal 
place for studying adaptive phenotypic and genetic varia-
tion in chickens.

Certain phenotypes in Ethiopian indigenous chickens 
(e.g., comb shape, parasitic resistance) are related with 
local adaptation [26]. Genomic regions conferring adap-
tation to environmental challenges (e.g., elevation, tem-
perature, water scarcity, and feed availability) have been 
identified among African indigenous chickens [43–45]. 
Important insights on local adaptation of Ethiopian 
indigenous chickens were obtained in previous stud-
ies: the association between environmental predictors 
and phenotypic differentiation in quantitative traits was 
reported as an evidence for adaptative variation [46]. 
Another important study claimed that environmental 
conditions may have driven genomic variation in indig-
enous chicken populations [47].

At an interface between ecology and population genet-
ics, landscape genomics provides an analytical frame-
work useful to investigate the underlying evolutionary 
processes behind phenotypic and genetic differentiation 
of random mating populations raised in heterogenous 
environments. Landscape genomics seeks to understand 
the influences of geographic and environmental features 
on selectively neutral and adaptive loci, and underly-
ing micro-evolutionary processes such as gene flow, 
selection, and genetic drift [48, 49]. Landscape genomic 
approaches were followed in studies of adaptive genetic 
variation in different farm animal species animals includ-
ing chickens, sheep, goats, swine, and cattle [45, 50–57].

Popular tools being used in landscape genomic stud-
ies include species distribution modelling, signatures of 
selection analyses, and genotype-environment analyses. 
Multivariate methods that simultaneously account for 
multiple drivers of phenotypic and environmental diver-
gence, are recently being applied in landscape genomic 
studies to identify quantitative trait loci (QTL) associated 
with environment predictors [58–61] and with pheno-
typic variables [60, 62–65].
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Species distribution models (SDMs), also known as 
environmental (ecological) niche models (ENMs) or hab-
itat distribution models [66], use computer algorithms to 
analyse environmental data and to predict the distribu-
tion of a species across geographic space and time. SDMs 
are a popular tool in quantitative ecology because of their 
low data requirement, availability of many software pack-
ages and guidelines, and their higher predictive abilities 
[67, 68]. The central concept in SDMs is the niche theory 
[69, 70], which delineates the environment into funda-
mental and realized niches. In recent years, the concep-
tual framework for SDMs has been extended by livestock 
scientists and used to identify environmental predictors 
associated with habitat suitability and local adaptation 
[45, 46, 56, 71, 72].

Signatures of selection analysis are useful to identify 
regions of the genome that have differentiated between 
populations, possibly in response to selective pressure 
[73, 74]. Positive selection leaves conspicuous footprints 
or selective sweeps on the genome that can be detected 
using several approaches ranging from summary sta-
tistics such as Tajima’s D, to maximum likelihood and 
machine learning [75]. Cross-population Extended 
Haplotype Homozygosity (XP-EHH) detects differen-
tial selection between two populations [76]. Pairwise 
comparison of fixation index (FST ) reveals differentia-
tion of populations in different environments due to dif-
ferences in evolutionary history [77]. FST and XP-EHH 
approaches are complementary to each other and lead 
to a more comprehensive understanding of signatures 
of selection. FST is more suited for detection of positive 
selection in the distant past [78] while XP-EHH is more 
useful for detection of entirely or approximately fixed loci 
[76].

Another statistical method that is being used in land-
scape genomics is Redundancy Analysis (RDA). RDA 
is useful to investigate association between genomic 
and environmental variability. RDA combines regres-
sion and principal component analysis (PCA) and it is 
an extremely powerful tool for ecologists to model mul-
tivariate response data [79, 80]. RDA determines how 
groups of loci covary in response to the multivariate 
environment, and can better detect processes that result 
in weak, multilocus molecular signatures relative to uni-
variate tests [81]. It accounts for population structures, 
demographic histories, and polygenic interactions [59, 
82]. Multivariate methods like RDA, that simultaneously 
account for multiple drivers of phenotypic and environ-
mental divergence are being used to identify quantitative 
trait loci (QTL) associated with environment predictors 
[58–61]. Multivariate ordination methods such as RDA 
have outperformed mixed-model-based methods and 
machine learning-based methods (e.g., Random Forest) 
in detecting loci associated with environmental variation 

[59, 82]. Despite its ability to investigate genotype-phe-
notype associations RDA is mostly neglected in GWAS 
studies in livestock, while it became a standard in gen-
otype-environment association studies in wildlife [62, 
83]. In the present study we follow a landscape genomic 
approach to dissect adaptive genetic and phenotypic vari-
ation in Ethiopian indigenous chickens. We use SDMs 
to identify the most relevant environmental predictors 
driving local adaptation and produce habitat suitability 
maps. We perform signatures of selection analyses (FST  
and XP-EHH) to detect genetic differentiation between 
populations and selective sweeps. RDA is applied to iden-
tify outlier SNPs associated with environmental and phe-
notypic variation. Together, we explain variations in the 
genome by using key environmental drivers and identify 
candidate genes and genomic regions linked with envi-
ronmental adaptation in Ethiopian indigenous chickens.

Materials and methods
Sampling strategy
Sampling design is a fundamental aspect of landscape 
genomic studies. As such, we implemented a robust sam-
pling strategy, considering environmental gradation (e.g., 
elevational clines) and geographic (latitudinal and longi-
tudinal) variation in the country [46] to avoid biases in 
discovery of genomic regions under selection. A hybrid 
strategy combines maximization of geographic distance 
(based on coordinates) and climatic distance between 
chosen sites. The landscape is divided into distinct envi-
ronmental regions before choosing sites within each 
region that maximizes spatial distance [84]. A hybrid 
sampling strategy ensures environmental and geographic 
representativeness of sampling sites and increases statis-
tical power by reducing false discovery rates of statisti-
cally significant loci in signatures of selections analysis 
and genome wide association studies [84–86]. The strat-
egy also prevents the sampling of neighbouring sites with 
similar conditions and avoids the superposition between 
adaptive and neutral genetic variation [87].

The spatial distribution of our samples considered envi-
ronmental (e.g., geography, climate) and biotic processes 
(e.g., domestication, routes of introduction) influencing 
the chicken populations. A total of 513 chickens were 
sampled from four environmental gradients (gradient-I, 
-II, -III, and -IV) with a minimum distance between gra-
dients of 500 km. Environmental or ecological gradients 
refer to gradual changes in abiotic environmental factors 
(such as elevation, temperature, soil, vegetation, and pre-
cipitation) with consequences on the species’ distribu-
tion and local adaptation [88]. Gradient-I stretches from 
the Rift valley lowlands of northeastern Ethiopia along 
the territories of Afar region to the highlands of Wollo 
province within Amhara region. Gradient-II, starts from 
the Rift valley lowlands in central Ethiopia, crosses the 
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highlands of Hararghe, including Mount Gara Muleta, 
and stretches to eastern Ethiopia within Oromia region. 
Gradient-III stretches from the highlands of northwest-
ern Ethiopia and goes down to the lowlands along the 
Ethiopian-Sudanese border within Benishangul-Gumuz 
region. Gradient-IV extends from the highlands of west-
ern Ethiopia in Oromia region to the lowlands along 
the Ethiopian-Kenyan border in Southern region. Areas 
around the national borders of Ethiopia have low eleva-
tion, which gradually culminates to highland plateau in 
the center of the country creating a striking contrast in 
agroecology.

Each gradient comprised three environmental clus-
ters or agroecologies, primarily delineated based on 
elevation in meters above sea level (m.a.s.l). These are 
lowland (400–1800 m.a.s.l); midaltitude/midland (1800–
2400 m.a.s.l.); and highland (2400–3500 m.a.s.l.) accord-
ing to the conventional agroecological classification in 
Ethiopia [89, 90]. Clusters within a gradient were distant 
by at least 100  km and farmers keeping target chicken 
populations within a cluster visited separate livestock 
markets. Each cluster along the spatial gradient consti-
tuted of 2–3 populations. In the context of the present 
study, a population of Ethiopian indigenous chickens 
refers to individuals that are kept within a specific geo-
graphic area (at village level) and which are assumed to 
be similarly influenced by environmental (ecological) and 
socio-economic factors. A village (kebele) is the small-
est administrative unit in Ethiopia. The metadata of 513 
individual samples representing 26 chicken populations 
is presented in Supplementary Table 1 The topographic 
map of Ethiopia showing the Ethiopian indigenous sam-
ple populations and their environmental gradients is pre-
sented in Fig. 1.

The chicken populations from different geographies of 
Ethiopia may be the result of different evolutionary histo-
ries. We controlled for the potential confounding effects 
between demographic processes (e.g., domestication his-
tory, migration) and adaptive variation in our analysis by 
performing signatures of selection analyses at three dif-
ferent analytical layers (layer-I, layer-II, and layer-III). 
Figure  2 shows the sampling and analytical framework 
used in the present study.

Environmental data
For every population, a single geographic coordinate was 
taken at the center of the village during sampling of chick-
ens. Coordinates from nine additional grids (1.44km2), 
covering a total of 12.96 km2, were then drawn around a 
recorded location and extracted using Google Earth Pro 
v 7.3.2 to ensure high representation of environmental 
variability affecting the population. The total number of 
‘presence’ or ‘occurrence’ points used in SDMs for the 
26 sample populations comprised 260 coordinates. Out 

of 34 environmental predictors, 9 predictors identified 
through SDMs for their association with habitat suitabil-
ity and adaptive evolution of chickens in Ethiopia [46] 
were included in the present study for genotype-environ-
ment association analysis with RDA. The 9 predictors are 
isothermality, temperature seasonality, mean tempera-
ture of the coldest quarter, precipitation of the warmest 
quarter, precipitation of the coldest quarter, solar radia-
tion of the month of May, water vapour pressure of the 
month of May, water vapour pressure of the month of 
August, and soil clay content (Supplementary Table 2). 
Values for bioclimatic variables (temperature, precipi-
tation, soil radiation, and water vapour pressure) in dif-
ferent seasons were obtained from WorldClim database 
(http://www.worldclim.org/; version 2) at a spatial reso-
lution of 30 s (~1 km2) [91] based on mean values of 30 
years (1970–2000). Additionally, considering the impor-
tance of elevation in the conventional definition of agro-
ecologies in Ethiopia [33], its link with certain adaptive 
traits in chickens [92], and our sampling design that takes 
into account elevational clines, we incorporated elevation 
as a tenth environmental predictor. All the ten predictors 
were used to produce habitat suitability maps for the 26 
sample chicken populations with MaxEnt computer algo-
rithm (version 3.4.1) [93]. Configuration of model param-
eters for MaxEnt was set based on a previous study [46].

Quantitative trait data
Collection of phenotypic data was performed on adult 
chickens (about 20 chickens sampled from each of the 
26 villages). These chickens were selected randomly by 
walking along a defined path (transect) across an admin-
stative village and sampling one chicken from each 
farming household until a total of 15 hens and 5 cocks 
(roosters) were measured. The age of the chickens was 
estimated by interviewing owners to confirm that females 
were in their second clutch (7 to 8 months-of-age) and 
males were above 12 months-of-age. The researchers 
also visually appraised roosters for the presence of well-
developed spurs. To minimize the risk of inbreeding, one 
chicken was sampled per household. Under rare circum-
stances (n = 9), two chickens were sampled per household 
when farmers expressed that their animals have no family 
relationship, for instance when they were obtained from 
different sources (e.g., one is hatched at home while the 
other was bought from the market). 19 quantitative traits 
were initially measured on each of the 513 adult chick-
ens. Out of these 19 quantitative traits, we used the five 
traits identified by [46] for their putative roles in local 
adaptation and usefulness in phenotypic classification 
of Ethiopian chicken populations (Supplementary Table 
3). These are live body weight, beak length, comb width, 
wattle width, and earlobe width. Live body weight (total 
mass of an individual in grams before slaughter) was 

http://www.worldclim.org/
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taken using a digital scale in the morning when the ani-
mal was fasting i.e., before it was released to scavenge 
in the backyard. The phenotypic measurements for the 
other traits were read from pictures of individual chick-
ens and analysed using ImageJ software (version 1.52a) 
[94]. To reduce systematic error, the same operator mea-
sured all chickens, which were held in the same position 
by a technician. A steel ruler was placed in every picture 
as a distance reference.

Blood sampling
Whole blood samples were taken from the wing vein of 
individual chickens in line with standard procedures [95]. 

A volume of 50–250  µl of whole blood with anticoagu-
lant (K2EDTA) per sample was put into a cryo-tube filled 
with 1.5 ml absolute ethanol (100%). Samples were pre-
served at -200C until DNA extraction and processing.

Whole genome sequence and data processing
WGS data was generated on Illumina HiSeq2000 plat-
form in paired-end mode with a read length of 150  bp. 
Reads were quality trimmed using Trimmomatic (Ver-
sion 0.39) (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 
MINLEN:36) [96]. The average depth of coverage was 
8.63 (range: 5.47–14.12) with an average mapping rate of 

Fig. 1 Topographic map of Ethiopia depicting the 26 Ethiopian indigenous chicken sample populations and their environmental gradients. Range of 
numbers with different colours in the legend indicate elevation (m.a.s.l.)
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99.2% (97.05–99.6) and a mapping quality of 33.6 (28.77–
34.45) to the GRCg6a reference assembly (Ensemble Gal-
lus_gallus.GRCg6a.dna.toplevel.fa). Genomic analysis 
was performed on autosomes and non-autosomes.

Freebayes variant calling was run on processed bam 
files (alignment data) to generate VCF file with the 
following setting: min-base-quality 10 --min-alter-
nate-fraction 0.2 --haplotype-length 0 --ploidy 2 --min-
alternate-count 2 [97]. The ‘min-base-quality 10’ specifies 
the minimum base quality required for a base to be con-
sidered during variant calling. The ‘min-alternate-frac-
tion 0.2’ sets the minimum fraction of reads to 20% 
supporting the alternate allele for a variant to be called. 
The ‘haplotype-length 0’ disables the haplotype exten-
sion feature, ensuring that all reads are considered inde-
pendently during variant calling. The ’ploidy 2’ defines 
the ploidy of the organism being analysed, with a value 
of 2 indicating diploid. The ‘min-alternate-count 2’ estab-
lishes a minimum number of 2 observations supporting 
an alternate allele required for a variant to be called.

Post processing was performed in BCFtools [98] using 
vcffilter module of with the setting‘-f ‘QUAL > 20’’. SNPs 
with low phred quality score (< 20), low call rate (< 0.7), 
and those within 3  bp of an insertion-deletion (indel) 
were discarded. Filtering of genotypes was performed 
[99] prior to downstream analyses to improve data 
quality. Genotypes were filtered for SNPs not in Hardy-
Weinberg equilibrium (p < 5 × 10− 6), with minor allele 
frequency (MAF) < 5%. After applying stringent quality 
filtration on genomes of 513 individuals, we used a clean 

dataset of 25  M (autosomal and non-autosomal SNPs) 
from 466 individuals for all downstream analyses (see 
Materials and Methods). Information on genome cover-
age, mapping rate and quality of samples is presented in 
Supplementary Table 4.

Population structure analysis
PCA was performed using the Eigenstrat method, with 
the smartpca function from Eigensoft v 6.1.4 software 
[100, 101] to understand the structure of the 26 popula-
tions. The VCF files containing the found variants were 
converted to the eigenstrat format with a python script 
(https://github.com/CarolinaPB/Bioinfo_scripts/blob/
main/vcf2eigenstrat.py).

Signatures of selection analysis (SSA)
The search for signals of positive selection (FST  or XP-
EHH) was carried out on SNP data (n = 25 M) that were 
obtained from WGS after stringent quality filtering. Hap-
lotypes were phased using FastPhase software [102] prior 
to signatures of selection analyses. To identify candidate 
loci and genomic regions linked with local adaptation, we 
performed signatures of selection analyses (FST and XP-
EHH) at three different analytical layers (Fig. 2).

In layer-I, we classified the indigenous chicken popu-
lations into four gradients (without regard to their 
agroecologies) and analysed them to detect genetic dif-
ferentiation between them. The populations across 
gradients (-I, -III, and -IV) were then categorized by 
agroecology and analysed (lowland, midaltitude, and 

Fig. 2 Sampling and analytical framework in landscape genomics study to detect adaptive phenotypic and genetic variation in Ethiopian indigenous 
chicken populations LL = lowland; MA = midaltitude; and HL = highland. Adaptive loci are the result of natural selection and contribute to fitness while 
neutral loci are due to other evolutionary process (e.g., gene flow, genetic drift, demographic history)
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highland) in layer-II. Chickens have a complex history of 
introduction and dispersal in Africa at large and in Ethio-
pia in particular through multiple maritime and/or ter-
restrial routes [40]. Considering the geographic closeness 
of gradient-II to the Arabian Peninsula, we analysed pop-
ulations from this gradient (layer-III) separately by agro-
ecology (lowland, midaltitude, and highland) to account 
for possible differences in evolutionary processes from 
the other three gradients.

Fixation test (FST ) analysis was conducted using 
VCFtools v0.1.16, [103], to identify regions of increased 
genomic differentiation between the classifications 
defined in the analytical layers. FST  value of 0 indicates 
no differentiation between populations while a value of 
1 indicates complete differentiation. Previous works in 
diverse species including chicken suggest that sliding-
window analyses between 20 kb (with 10 kb overlap) and 
400 kb (with 200 kb overlap) have considerable power to 
detect changes in allele frequencies and genomic regions 
with significant divergence between populations in signa-
tures of selection analysis [104, 105].

We calculated the average FST values with overlapping 
windows of 50 kb (25 kb overlapping). We calculated the 
average XP-EHH values for the classifications defined in 
each of the analytical layers. Analysis of genomic regions 
with signs of recent positive selection with XP-EHH was 
based on the concept of extended haplotype homozygos-
ity (EHH) [76, 106] and was performed on phased hap-
lotypes using R package rehh (Version 3.2.2) [107]. First, 
the data2haplohh function was used to convert the VCF 
files to a suitable format to be used to compute XP-EHH. 
Then, XP-EHH was calculated with the ies2xpehh func-
tion from the same package.

The same size of overlapping bins (50 kb) was used for 
XP-EHH analysis to allow comparison with FST .  First, 
the average (FST  or XP-EHH) values for all bins in each 
pairwise comparison in an analytical layer were sorted 
on their significance. Empirical p-values were calcu-
lated for both FST  and XP-EHH by ranking the windows 
based on each metric and dividing the rank by the total 
number of windows. The same approach was used by a 
previous study on Ethiopian chickens [45]. Only the 1% 
most significant windows (p < 0.01 FST  or XP-EHH) were 
retained as significant. Significant windows which were 
commonly identified by the two methods were counted 
as overlapping.

Pathway enrichment analysis
We used ShinyGO with chicken as background to per-
form pathway enrichment analysis and identify genes 
that are under selection in specific agroecologies [108].

Association analyses
Association analyses in RDA were performed with the 
R package ‘vegan’ using RDA function [109] to identify 
environmental predictors and quantitative traits associ-
ated with genomic variation. RDA is a multivariate mul-
tiple regression followed by a PCA of the table of fitted 
values and presents relationships between variables in 
two-dimensional space using ordination plots [80, 110, 
111]. Environmental predictors and quantitative traits 
were analysed separately according to [112].

RDA was performed using a set of genome-wide LD-
pruned SNPs to keep a subset of SNPs that are nearly 
uncorrelated with each other and keep a subset of mark-
ers that are in approximate linkage equilibrium. Prun-
ing of genotypes for high LD reduces redundant loci and 
improves efficiency of models in association analysis 
[113]. The cleaned dataset with 25  M SNPs filtered for 
SNPs not in Hardy-Weinberg equilibrium (p < 5 × 10− 6) 
and MAF < 5%, was LD pruned using PLINK [114]. We 
used the following setting for pruning: plink2 --vcf --set-
all-var-ids @:# --chr-set 38 --allow-extra-chr --indep-
pairwise 100 10 0.5 --maf 0.05 --recode vcf-iid --out 
--indep-pairwise. The ‘100 10 0.5’ instructs PLINK to 
perform LD pruning by evaluating LD in sliding windows 
of 100 variants, removing variants within each window if 
more than 10 are correlated, and considering variants to 
be correlated if their LD correlation (r2) exceeds 0.5. The 
‘--recode vcf-iid’ modifier produces sample IDs in the last 
header row of VCF file. The LD pruning resulted in a sub-
set of markers comprising 1,070,305 SNPs from 466 indi-
viduals, which was large enough for RDA. The dataset 
was structured as a matrix of 466 chickens by ~ 1 million 
SNP markers.

Genotype-environment association (GEA) analysis with 
RDA
Correlated predictors cause problems for regression-
based models like RDA and variable reduction was done 
when correlation coefficients between ecological pre-
dictors exceeded and an acceptable threshold (r >|0.7|) 
[115]. We fitted partial RDA with the 10 selected envi-
ronmental predictors conditioned on (i.e., controlling for 
the effects of ) geography as explanatory variables and the 
genetic dataset as response variable [81]. SNPs exhibiting 
RDA loadings greater than 3.5 standard deviations (two-
tailed p-value = 0.0005) from the mean were identified as 
selection signals This threshold is very conservative and 
helps to identify loci under strong selection (i.e., mini-
mizes false positive rates) [59]. After a visual inspection 
of the scree plots, we extracted SNP loadings from the 
first three canonical axes.
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Genotype-phenotype association analysis with RDA
We fitted partial RDA with the five least correlated and 
most explanatory quantitative traits selected by correla-
tion analysis. The RDA were fitted with the quantitative 
traits as explanatory variables, conditioned on geography, 
and the genetic dataset as response variable. SNPs exhib-
iting RDA loadings greater than three and half standard 
deviations from the mean were identified as association 
signals [59]. After a visual inspection of the scree plots, 
we extracted SNP loadings from the first three canonical 
axes.

Results
Habitat suitability
The suitability of an environmental niche for a population 
depends on which environmental predictors are influenc-
ing the species. The habitat suitability maps produced 
by SDMs suggests that the 26 populations have different 
niches (Fig. 3).

Genomic diversity of Ethiopian indigenous chickens
PCA based on the filtered variants provides informa-
tion on the structure and relatedness of the 26 Ethiopian 
indigenous chicken sample populations (Figs.  4, 5 and 
6). The PCA shows no clear separation among popula-
tions (n = 20) sampled from gradient-I, III, and gradient-
IV, while populations (n = 6) sampled from gradient-II 
have distinctly separated from the other three gradients 
(Fig. 4).

The PCA based on gradients (Fig.  5) illustrates clear 
separation between chickens sampled from gradient-II 
and the other three gradients. Admixture is seen between 
gradients-I and -IV, and between gradients-III and -IV.

Chicken populations sampled from the three agroecol-
ogies (lowland, midlatitude, and highland) did not clearly 
differentiate except in gradient-II where populations 
sampled from the lowlands were distinct from those 

sampled from the midlands and highlands of the same 
gradient (Fig. 6).

After carefully looking at the three PCA plots and 
understanding the genetic structure (Figs. 4, 5 and 6) of 
Ethiopian chickens, we decided that the sampled popu-
lations from gradient-II should not be analysed together 
with populations from the other three gradients.

Signatures of selection for environmental adaptation
Genetic differentiation between gradients
The mean FST values between any two gradients was 
low (Table  1). This suggests that genetic differentia-
tion between geographies among Ethiopian indigenous 
chicken populations is very little. A complete list of 
significant genes (p < 0.01) from overlapping windows 
jointly identified by FST  and XP-EHH in each gradient-
wise comparisons is presented in Supplementary Table 5.

The Manhattan plots of FST analyses show pairwise 
comparison between populations sampled from environ-
mental gradients-I, -III, and -IV (Supplementary Fig.  1). 
Some regions of the genome show genetic differentiation 
across gradients.

Genetic differentiation between agroecologies across 
gradients
The mean FST values between any two agroecologies 
across gradients was lower than values obtained for com-
parisons between any two gradients (Table 2). The Man-
hattan plots on FST and their scores for comparisons 
across agroecologies (Supplementary Fig. 2; Supplemen-
tary Table 6) show very low values across the genome. 
The FST scores for comparisons between agroecologies 
within gradient-II(Table 2, Supplementary Fig. 3, Supple-
mentary Table 6) are relatively higher than between agro-
ecologies across gradients, owing to differences in genetic 
background evidenced by the population structure analy-
sis, Figs. 4, 5 and 6.

Fig. 3 Habitat suitability maps of the 26 Ethiopian chicken populations. Colours towards red spectrum indicate more suitable conditions
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Selection signatures between agroecologies across 
gradients
We performed XP-EHH analysis to identify genomic 
loci associated with high-altitude adaptation. Figure  7 
shows the most significant selective sweeps for highland 
vs. lowland populations. All SNPs with a -log (p-value) 
above 2 or below − 2 from the green line are signifi-
cantly selected (p < 0.01) in one agroecology but not in 
the other. The most significant window under selection 
in the highland populations was found on chromosome 
four, overlapping the GALNTL6 gene (XP-EHH = 4.16). 
Variants in this gene have been associated with power 
performance in humans [116] possibly by showing a posi-
tive effect on anaerobic metabolism. In addition, several 
genes under selection (XP-EHH > 2.7) are part of the cal-
cium signalling pathway which has been associated with 
high altitude adaptation and hypoxia in previous studies 
including Tibetan chickens [19]. The genes identified in 
this pathway include ERBB4 [117], PLCB2, STIM2 [118], 
and GNAS [119]. The MOAA and MOAB genes are also 
under strong selection in the high altitude populations 

(XP-EHH > 3.5), these genes correlate with the expres-
sion of HiF-1α and with transcription factors Sp1 and 
Sp3 which are master regulators of the cellular and devel-
opmental response to hypoxia [120]. Other genes under 
selection include the RIPPLY2, associated with body 
length [121], the SGCZ gene which response to the HIF-1 
transcription activity during hypoxia [122], the SPNS2 
gene that regulated hypoxia-inducible factor 2alpha 
[123], and the BRINP3 gene under selection in high-alti-
tude Andeans [124]. A complete list of genes from over-
lapping windows jointly identified by FST  and XP-EHH 
in agroecological comparisons in lowland vs. highland, 
lowland vs. midland, and midland vs. highland respec-
tively across the three gradients (layer-II) are presented 
respectively in Supplementary Table 7. XP-EHH scores 
for comparisons between different agroecologies across 
the three gradients (layer-II) and between gradients are 
presented in Supplementary Tables 8 and Supplementary 
Table 9 respectively.

Fig. 4 PCA plots of 26 Ethiopian indigenous chickens by population based on 25 million autosomal SNPs
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Selection signatures between agroecologies within 
gradient-II (analytical layer-III)
Figure 8 shows the most significant selective sweeps for 
highland vs. lowland populations within gradient-II. The 
most significant window was found on chromosome 
3 overlapping the follicle stimulating hormone recep-
tor (FSHR) gene, which is an activator of the hypoxia-
inducible factor-1 protein [125], a key regulator of oxygen 
homeostasis. The second strongest signal is found on 
chromosome 6 overlapping the CHAT gene which has 
a direct interaction with the hypoxia-inducible factor 
(HIF)-1α protein [126]. Interestingly, the third stron-
gest peak overlaps with the RYR2 gene. This gene is well 
known to be associated with high altitude adaptation in 
Tibetan chickens [19]. Other notable genes under selec-
tion include HIGD1A (hypoxia inducible domain family, 
member 1 A), IGFBP1 (insulin like growth factor), CAP2, 
and HERC4, of which the latter two have been found to 
be differentially expressed under hypoxic environments 
[18].

There is no significant enrichment for the highland 
genes found. However, the genes under selection in the 
lowland populations are enriched for the ECM-receptor 
interaction and focal adhesion which serve as an impor-
tant role in tissue and organ morphogenesis and in the 
maintenance of cell and tissue structure and function 
[127].

A significant overlap (13.4%) was observed between 
significant windows (p < 0.01) identified by FST and XP-
EHH analyses in the pairwise agroecological comparisons 
across gradients and within gradient-II (20.9%), indicat-
ing that the two methods target the same regions and 
hence are good predictors of selection signatures. Addi-
tional details are given under Supplementary Fig.  5 for 
overlaps between the two methods across gradients and 
under Supplementary Fig.  6 for overlaps within gradi-
ent-II. Complete list of genes from overlapping windows 
jointly identified by FST  and XP-EHH in agroecological 
comparisons across gradients and within gradient-II are 
also presented in Supplementary Table 10 A–C and Sup-
plementary Table 10D–F, respectively.

Fig. 5 PCA plots of 26 Ethiopian indigenous chickens by gradient based on 25 million autosomal SNPs
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Pathway enrichment analysis
We assessed whether the genes under selection in the 
highland population are enriched for specific KEGG 
pathways. In total 150 bins have a XP-EHH value greater 
than 2.7 (p < 0.01). These bins include a total of 95 genes. 
Only the “Calcium signalling pathway” was signifi-
cantly enriched (q-value < 0.1) and in which five genes 
were found (ERBB4, GRIN2A, STIM2, GNAS, PLCB2) 
to be under selection in the highland populations. Sev-
eral candidate genes in the calcium-signalling pathway 
were found to be under directional selection in adapta-
tion to the hypoxia experienced by two Tibetan chicken 
populations [19], suggesting a potential genetic mecha-
nism underlying high altitude adaptation to be similar in 
Ethiopian highland chicken compared to Tibetan chick-
ens [19]. Ca2+ are signalling molecules that regulate the 
response to hypoxia, which modulates cell contraction, 
cell proliferation and growth [128, 129]. Moreover, cal-
cium signalling stimulates the translation of HIF-alpha, a 
transcription factors that mediates adaptation to hypoxia 
[130]. The candidate selected genes identified in this 

Table 1 MeanFST  scores between chicken populations 
sampled from different gradients
Between gradients (layer-I)

Mean FST

I vs. III 0.021
I vs. IV 0.028
III vs. IV 0.021

Table 2 MeanFST  scores between chicken populations 
sampled from different agroecologies
Between agroecologies

MeanFST  between 
agroecologies across 
gradients
(layer-II)

MeanFST  
between 
agroecolo-
gies within 
gradient-II 
(layer-III)

Lowland-Midland 0.009 0.021
Lowland-Highland 0.004 0.018
Midland-Highland 0.011 0.009

Fig. 6 PCA plots of 26 Ethiopian indigenous chickens by agroecology based on 25 million autosomal SNPs
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study, and their variants, may be useful targets for clari-
fying our understanding of high-altitude adaptation in 
chicken. In addition, the “ribosome pathways” is enriched 
for windows under selection in the lowland populations 
(XP-EHH < -2) from a total of 212 windows and 112 
genes.

XP-EHH detected signatures of selection between 
populations sampled from any two gradients were also 
strong (Supplementary Fig.  4.). However, they were not 
as strong as signatures detected across agroecologies.

Pathway enrichment analysis
We assessed whether the genes under selection in the 
highland population are enriched for specific KEGG 

pathways. In total 150 bins have a XP-EHH value 
greater than 2.7 (p < 0.01). These bins include a total of 
95 genes. Only the “Calcium signalling pathway” was 
significantly enriched (q-value < 0.1) in which five genes 
were found (ERBB4, GRIN2A, STIM2, GNAS, PLCB2) 
to be under selection in the highland populations. Sev-
eral candidate genes in the calcium-signalling pathway 
were found to be under directional selection in adapta-
tion to the hypoxia experienced by two Tibetan chicken 
populations [19], suggesting a potential genetic mecha-
nism underlying high altitude adaptation to be similar in 
Ethiopian highland chicken compared to Tibetan chick-
ens [19]. Ca2+ are signalling molecules that regulate the 
response to hypoxia, which modulates cell contraction, 

Fig. 8 XP-EHH plot for highland vs. lowland in gradient-II. All SNPs with a -log (p-value) above 2 or below − 2 from the green line are significantly selected 
(p < 0.01) in one agroecology but not in the other. Positive XP-EHH values indicate positive selection in the highland populations while negative values 
indicate selection in lowland populations. Genes indicated in bold have been associated with the hypoxia related pathways

 

Fig. 7 XP-EHH plots for overlapping bins of 50 kb indicating positive selection in the highland populations while negative values indicating selection in 
lowland populations of Ethiopian indigenous chicken populations sampled across three gradients (-I,-III, and -IV). All SNPs with a -log (p-value) above 2 or 
below − 2 from the green line are significantly selected (p < 0.01) in one agroecology but not in the other. Genes indicated in bold have been associated 
with the calcium signalling pathway or hypoxia
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cell proliferation and growth [128, 129]. Moreover, cal-
cium signalling stimulates the translation of HIF-alpha, a 
transcription factors that mediates adaptation to hypoxia 
[130]. The candidate selected genes identified in this 
study, and their variants, may be useful targets for clari-
fying our understanding of high-altitude adaptation in 
chicken. In addition, the “ribosome pathways” is enriched 
for windows under selection in the lowland populations 
(XP-EHH < -2) from a total of 212 windows and 112 
genes.

XP-EHH detected signatures of selection between pop-
ulations sampled from any two gradients were also strong 
(Supplementary Fig. 4). However, they were not as strong 
as signatures detected across agroecologies.

Genotype-environment associations (GEA)
Of the ten predictors identified through MaxEnt-based 
SDMs for their association with habitat suitability of 
chickens [46] and elevation (added as a tenth predictor), 6 
less correlated (r≤|0.7|) predictors were retained for RDA 
(Supplementary Fig. 5). These predictors were: precipita-
tion of the warmest quarter, precipitation of the coldest 
quarter, solar radiation of May, elevation, soil clay con-
tent and temperature seasonality. We had as many RDA 
axes as we had predictors (n  = 6) in our model. The first 
three RDA axes explained more than half (68.1%) of the 
variance in the environmental predictors (Supplementary 
Table 11). The significance of models in RDA is based on 
F-statistics [131].The adjusted R2 considering the number 
of environmental predictors was 0.02, meaning that our 
constrained ordination explains about 2% of the varia-
tion or that 2% of the SNP variation is associated with the 
environmental predictors. Based on the magnitude of the 

arrows in PCA plots based on RDA axes 1 and 2 (Supple-
mentary Fig.  8) elevation, precipitation of the warmest 
quarter, and soil clay content had the highest contribu-
tions to genotypic variation, while temperature seasonal-
ity and solar radiation had the lowest contributions.

The SNP loadings for environmental predictors on each 
of the three RDA axes show a relatively normal distribu-
tion (Supplementary Fig.  9). The 1,909 SNPs from the 
two extreme ends of the loading distribution with stan-
dard deviation > 3.5 (two-tailed p-value = 0.0005) for each 
significant axis were taken as outlier SNPs that are asso-
ciated with environmental variation. The list of candidate 
SNPs which have significant association (p < 0.001) with 
the six environmental predictors and considered to be 
under selection are presented in Supplementary Table 12. 
SNPs associated with the combined set of environmental 
predictors in gradients -I, III, and -IV do not show a clear 
clustering but are more or less evenly spread across the 
genome (Fig. 9).

Some of the highest -log10 (p-values) are found on 
chromosomes 1 and 3 (Fig. 9). Only the peak on chromo-
some 1 shows additional significant SNPs near the top 
SNP. The significant candidate SNPs (n = 1,909) that are 
associated with the combined set of environmental pre-
dictors are assigned to individual predictors based on 
the correlation values estimated by partial RDA analysis 
(Fig. 10). Most candidate SNPs (942 or 49.3%) have their 
highest correlation with elevation. Elevation has also the 
highest number (n = 321 or 57.4%) of the moderately to 
highly associated SNPs (n = 559) (0.3 < r < 0.6). The second 
environmental predictor most associated with candidate 
SNPs is precipitation of the warmest quarter. It has cor-
relation with 410 candidate SNPs (21.47%). The other 4 

Fig. 9 Manhattan plot of RDA showing the association of SNPs with the combined set of six environmental predictors in the three gradients (-I, -III, and 
-IV) as explanatory variables. The y-axis indicates -log 10 (p-value). Horizontal blue line indicates the significance threshold (p < 0.001)

 



Page 14 of 20Kebede et al. BMC Genomics          (2024) 25:284 

environmental predictors have the highest correlation for 
a smaller number of SNPs (n = 557 or 29.17%), but for all 
predictors, a considerable number of SNPs (n = 59) are 
found with correlations above|0.3| and only two SNPs 
have correlations above|0.4|.

Genotype-phenotype association
Out of a total of 8 phenotypic variables identified 
through MaxEnt-based SDMs for their utility in pheno-
typically discriminating study populations [46], five least 
correlated (|r| ≤ 0.72) quantitative traits were selected 
to be used for RDA (Supplementary Fig. 10). These five 
traits were live body weight, beak length, comb width, 
wattle width and earlobe width. The correlation between 
comb width and wattle width was 0.72 which is slightly 
higher than the common threshold (|r| > 0.7) used to 
reduce variables However, we decided to keep both traits 
because of their adaptive roles documented in literature 

related with thermoregulation in tropical chickens. The 
first three RDA axes explained most of the variance 
(62.1%) in the phenotypic predictors (Supplementary 
Table 13). The adjusted R2 for the partial RDA was 0.002. 
This shows that only 0.2% of the SNPs variation is associ-
ated with quantitative traits.

The SNP loadings for quantitative traits on each of the 
three RDA axes show a relatively normal distribution 
(Supplementary Fig. 11). Based on the magnitude of the 
arrows in the PCA plots based on RDA axes 1 and 2 (Sup-
plementary Fig. 12), comb width, wattle width and body 
weight were most useful in explaining SNP variation. 
SNPs associated with the combined set of quantitative 
traits in gradients -I, -III, and -IV show strong support-
ive peaks on chromosomes 1,3, 4, 7,8, 13, 15, and 29 indi-
cating probable regions of quantitative trait loci (QTL) 
associated with phenotypic variation (Fig. 11). The picks 
were more diffused across the genome for the Manhattan 

Fig. 11 Manhattan plot of RDA showing the association of SNPs with phenotypic variation in the five quantitative traits in gradients -I, -III, and-IV. The 
y-axis indicates -log 10 (p-value). Horizontal blue line indicates the significance threshold (p < 0.001)

 

Fig. 10 Number of significant candidate SNPs (p < 0.001) that are most correlated with each of the six selected environmental predictors grouped by 
absolute magnitude of their correlation
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plot showing association between SNPs and quantitative 
traits for populations sampled from gradient-II (Supple-
mentary Fig. 13).

A stacked bar chart showing the number of outlier 
SNPs (p < 0.001) that are most correlated with each of the 
five quantitative traits is presented in Fig. 12. The signifi-
cant candidate SNPs (were assigned to individual traits 
based on correlation values estimated by partial RDA 
analysis. Partial RDA identified 1340 candidate SNPs 
that have significant association with the five quantita-
tive traits (Supplementary Table 14). A total of 19 SNPs 
show moderate to high correlation with body weight 
(0.3 < r ≤ 0.6). Most candidate SNPs, 39%, were associated 
with comb width (n = 519) and 27% with body weight 
(n = 360) (Fig.  12 and Supplementary Table 13. Higher 
association was also seen between comb width and can-
didate SNPs for populations sampled from gradient-II 
(Supplementary Fig. 14).

The list of significant (p < 0.001) candidate SNPs identi-
fied by RDA and their respective FST and XP-EHH values 
across gradients are presented in Supplementary Tables 
15 and in Supplementary Table 16.

Discussion
Adverse effects of climate change and increasing demand 
for animal source proteins, particularly in the tropics 
(particularly in Africa and Southeast Asia), necessitate 
that we properly understand the genetic architecture of 
environmental adaptation and develop productive and 
environmentally resilient breeds [132, 133]. Investigation 
of molecular pathways indicate that indigenous chick-
ens are more adapted to the environment in which they 
live compared to specialized chickens [132]. Important 

insights were obtained from earlier studies on local adap-
tation of African chickens [45, 134, 135] by applying 
SDMs and signatures of selection analyses. However, pre-
vious studies did not adequately relate genomic variation 
with environmental and phenotypic variation. Analysing 
genomic data without relating it environmental and phe-
notypic variation does not provide a complete picture of 
adaptive variation.

In the present study, we followed a landscape genomic 
approach to study adaptive and phenotypic variation 
among Ethiopian chickens. We applied an environmen-
tal-gradation approach to survey chicken populations 
across all possible agroclimatic clines in the country. Our 
sample size of 513 animals from four environmental gra-
dients was large enough to capture adaptive variation 
across populations. For species with limited dispersal, 
sample sizes above 200 units are generally sufficient to 
detect most adaptive signals in landscape genomics, 
while in random mating populations this threshold 
should be increased to 400 units [84]. After applying 
stringent quality filtration, we had 25 M SNPs (autosomal 
and non-autosomal) and 466 individuals for downstream 
genomic analyses. The dataset used in the present study 
is substantially larger than previous genomic studies on 
Ethiopian chickens (which sampled a maximum of 225 
birds per study) [45, 136, 137].

We combined different techniques including SDMs, 
genetic differentiation test (FST ) , cross-population 
Extended Haplotype Homozygosity (XP-EHH), and 
RDA.

SDMs were used in our study to identify the most 
relevant environmental predictors influencing habitat 
suitability for chickens. The environmental predictors 

Fig. 12 Number of significant candidate SNPs (p < 0.001) that are most correlated with each of the five quantitative traits, grouped by absolute magni-
tude of their correlation
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identified in the present study (related with elevation, 
precipitation, soil clay content, solar radiation, and tem-
perature) were reported in earlier studies for their influ-
ences on availability of feed, productivity, prevalence of 
diseases and parasites [26, 46, 138, 139]. The habitat suit-
ability maps produced by SDMs suggest that the 26 Ethi-
opian indigenous chicken sample populations may have 
gone through different environmental selective pressures 
which give rise to phenotypic and genetic differentiation.

The gradients and agroecologies show low differentia-
tion, as evidenced by the low FST  values. Lower level of 
genetic differentiation was also detected among Ethio-
pian chickens by [45]. In contrast to the FST  results, 
strong signals of selection (p < 0.01) were detected by XP-
EHH in pairwise agroecological comparisons. XP-EHH 
results show that selective pressure in Ethiopian chickens 
is stronger between agroecologies.

A large overlap was observed between significant win-
dows identified by FST and XP-EHH analyses, suggest-
ing that both methods identified similar regions in the 
genome are under selection. The overlap betweenFST and 
XP-EHH analyses ranged from 13.4 to 20.9% between 
agroecologies which is considerably higher than the 
4.9% overlap reported by [45] betweenFST and XP-EHH 
for Ethiopian chickens. The large overlap between FST

and XP-EHH in the present study might be due to our 
sampling strategy. Firstly, the sampling design captured 
a wide range of geographic and environmental variation 
and helped to survey most of the ecotypes and agro-
ecologies in the country. Secondly, the design may have 
minimized confounding between neutral and adaptive 
processes which result from mixing of populations that 
have different demographic histories. By classifying the 
populations by gradients, we controlled for the effects 
of population genetic structure associated with specific 
geographies. For instance, a very high overlap between 
theFST and XP-EHH results was found in agroecological 
comparisons within gradient-II. The decision to analyse 
this gradient on its own was informed by PCA, which 
clearly separated populations of gradient-II from the 
other three gradients (-I, -II, and -III). Gradient-II repre-
sents chicken populations from eastern parts of Ethiopia 
which have a distinct evolutionary history and route of 
introduction into the country [38, 40, 136], in contrast 
to populations representing the other three gradients. 
Combining gradient-II with the other three would have 
reduced the overlap of FST and XP-EHH results.

Our results based on XP-EHH show that genes in the 
calcium signalling pathway are under selection in high-
altitude adapted Ethiopian chicken populations as well as 
genes associated with the hypoxia-inducible factor (HIF) 
transcription factors. The gene under strongest selec-
tion is the GALNTL6 gene associated with sports perfor-
mance in multiple human studies. It is hypothesized that 

this gene is expressed in the gut microbiome regarding 
regulation of short-chain fatty acids and their anti-inflam-
matory and resynthesis functions causing a positive 
effect on anaerobic metabolism. The ERBB4 gene, found 
to be under selection in high altitude Ethiopian chicken 
populations, is also under selection in human Tibetan 
populations [117]. ERBB4 is strongly associated with vas-
cular wall stability, and possibly with the production of 
erythrocytes and belongs to the epidermal growth fac-
tor receptor subfamily. We also identified the MAOB 
and MAOA genes to be under selection, where MAOB 
has been shown to be correlated with HiF-1α (tumour 
grade and hypoxia-inducible transcription factor) [120]. 
Inhibition of MAOA in cells may exert antitumour activ-
ity in the treatment of prostate cancer [140]. The roles of 
MAOA and MAOB genes in local adaptation of chicken 
need to be further investigated.

Results from signatures of selection analyses with the 
two methods (FST  and XP-EHH) can be used comple-
mentarily with RDA to shed light on the relationship 
between genomic, phenotypic, and environmental varia-
tion in local adaptation studies in indigenous chickens. 
With RDA, we identified 83 candidate SNPs in regions 
on chromosomes 1,3, 4, 7,8, 13, 15, and 19 that have a 
moderate to high correlation (0.3 < r < 0.6) with live body 
weight. Conventional GWAS studies in the past identified 
body weight associated SNPs and QTLs on chromosomes 
1,4, 8, 11, 19 in Chinese, Rwandan, and Ethiopian chicken 
breeds [27, 141–144]. Our results demonstrate that RDA 
can be used as an alternative approach to GWAS in ran-
dom mating, indigenous livestock populations which 
have sufficiently interacted with the environment.

Candidate SNPs associated with the six SDM-identified 
environmental predictors contributing to habitat suit-
ability were identified by RDA. The RDA found only 2% 
of the SNP variation to be associated with the six envi-
ronmental predictors. This is a small value but not unex-
pected because most of the SNPs are under neutral and 
therefore not show a relationship with the environmental 
predictors. SNPs that do show association with the envi-
ronmental predictors are likely to be under selection. This 
selection can be in response to these selected predictors 
that were used in the model or some other environmental 
variable that is correlated with these predictors.

Candidate SNPs associated with environmental pre-
dictors (Fig.  9) were evenly spread across the genome 
without obvious overlap with the peaks from genotype-
phenotype association Fig.  11). Genotype-phenotype 
associations had very distinct suggesting that phenotypic 
variation is present among populations for selection 
to act on it. The environmental drivers could increase 
haplotypes related to adaptive phenotypic plasticity and 
morphological variation in indigenous chickens. The 
pea-comb, a dominant mutation in chickens, drastically 
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reduces the size of the comb and wattle, decreasing heat 
loss and making the chicken less susceptible to frost 
lesions [145]. Histological section analysis of dermal 
papillary layer has revealed that red earlobes have many 
more blood vessels and were associated with thinner skin 
than that of white earlobes [146] indicating the role of 
earlobes in thermoregulation. The total amount of SNP 
variation associated with phenotypic variation was only 
0.2%, in contrast with 2% of the SNP variation associated 
with environmental variation. The underlying mecha-
nisms of genotype-phenotype associations are well stud-
ied and understood in livestock, but this is not the case 
for genotype-environment associations. Finding 2% of 
SNP variation related to environment variation is prom-
ising for further investigation of the mechanisms leading 
to these associations.

In summary, in this manuscript we reported the first 
study integrating phenotypic, genomic, and environ-
mental information on Ethiopian indigenous chickens. 
Our findings on genomic and phenotypic variability 
associated with environmental adaptation (e.g., genes 
selected in highland populations, genes associated with 
body weight and ecological variables) are useful in the 
design of breeding programmes aiming at developing 
more productive and resilient chicken strains (lines) suit-
able for smallholder systems in the face of climate crisis. 
The landscape genomic approach followed in the pres-
ent study can also be used to study adaptive variation in 
other random mating indigenous livestock populations 
that are managed extensively to better understand organ-
ismal response to environmental variables and develop 
better breeding strategies.
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