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Abstract 

Background  The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Cory-
lus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destruc-
tive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited 
commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fun-
gus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency 
before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here 
we report the sequencing, annotation, and characterization of its genome.

Results  The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content 
of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% 
of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 
scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed 
evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich 
regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were 
identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence 
of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene 
and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its 
homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite 
of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 
effectors.

Conclusions  This study reveals the genomic structure, composition, and putative gene function of the important 
pathogen A. anomala. It provides insight into the molecular basis of the pathogen’s life cycle and a solid foundation 
for studying EFB.
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Background
The investigation of biotrophic fungi – pathogens that 
require living host tissue – is complex and challenging. 
Because of their dependency on the host organism, bio-
trophs are difficult to isolate and grow in artificial media. 
They often have strict nutritional requirements and may 
require certain hormones or signaling chemicals secreted 
by the host to induce spore germination [1, 2]. Satisfy-
ing these conditions complicates any form of manipula-
tion under laboratory conditions. Studies of rust fungi, 
which are basidiomycetes, and powdery mildew fungi, 
which are ascomycetes, highlight many of these chal-
lenges. Despite the significant economic impact of the 
resulting diseases, complete life cycles of these fungi have 
never been witnessed outside of their natural hosts. Con-
sequently, despite substantial effort on the parts of many 
scientists, many details of host–pathogen interactions in 
rust and powdery mildew fungi remain poorly under-
stood [3–5].

Advances in sequencing and bioinformatic tools have 
led to the rapid development of genomic techniques that 
facilitate investigation even of recalcitrant organisms. As 
the number of sequenced fungal genomes expands, pat-
terns and features that are linked to obligate biotrophy 
have emerged [6, 7]. Genomic features, including both 
coding and non-coding elements, reveal characteristics 
of lifestyle and pathogen biology [8, 9]. A large repertoire 
of species-specific secreted small cysteine-rich proteins 
that represent candidate effectors is typical of biotrophs 
that have gene specific interactions with their host [10, 
11]. Large genomes inflated with repetitive elements are 
another hallmark of biotrophic pathogens, as amplifica-
tion of such elements contributes to a flexible genomic 
landscape that is highly adaptable to the gene-for-gene 
arms race that pathogens engage in with their hosts [11–
13]. Identifying these characteristics of genomic features 
can fill in the blanks left by a lack of experimental data 
[14, 15].

One such fungal pathogen whose biology lacks 
understanding is Anisogramma anomala, an asco-
mycete within the order Diaporthales. A. anomala 
causes Eastern Filbert Blight (EFB), a devastating dis-
ease of hazelnut (Corylus spp.). The native host of A. 
anomala, American hazelnut (C. americana) tolerates 
infection, displaying mild disease symptoms and small, 
non-threatening cankers [16–18]. Both host and fun-
gus are abundant on the east coast of the U.S. How-
ever, nearly all cultivars of the commercially important 

European hazelnut (C. avellana) are highly suscep-
tible and develop severe perennial cankers that girdle 
stems, resulting in branch die-back and eventual tree 
death [19–21]. As such, EFB is the primary limiting 
factor of commercial hazelnut production in North 
America [22]. Historically, C. avellana cultivation was 
restricted to the Pacific Northwest region outside of 
the native range of A. anomala, limiting hazelnut cul-
tivation to a fraction of its potential growth range [23]. 
Today, after an inadvertent introduction in the 1960s 
[24], EFB is widespread in the Pacific Northwest where 
it significantly impacts commercial production. Disease 
management costs were alleviated only recently by the 
release of resistant cultivars [25]. Despite the economic 
importance of A. anomala and considerable efforts now 
underway to breed for resistance [26], the EFB patho-
system remains poorly understood.

To support disease management and resistance 
breeding efforts, there is a need for a better under-
standing of the biology of A. anomala and the EFB 
pathosystem. However, A. anomala is an obligate bio-
troph, presenting many of the methodological diffi-
culties as do rust fungi, powdery mildews, and other 
biotrophic pathogens [27]. The only useful source of 
tissue of A. anomala is ascospores extracted from the 
stromata of cankers of infected hazelnut, and success-
ful subculture has not been achieved. Ascospores rep-
resent the only known spore stage of A. anomala; no 
conidial stage has been documented. Ascospores, by 
nature, are sexual spores and are not isogenic. While 
A. anomala ascospores can germinate and form small, 
branching germ hyphae, the fungus cannot be grown 
continuously in culture. It is predicted that A. anomala 
exhibits some form of self-inhibition, as ascospores will 
germinate in axenic culture only with the addition of an 
adsorbent such as activated charcoal or bovine serum 
albumin (BSA) [27]. Even with these additives, germi-
nated ascospores exhibit poor growth and form small 
colonies (~ 0.25–0.5 mm in diameter) that yield little 
biomass [28]. Furthermore, the disease exhibits a com-
plex, two-year infection cycle, which normally includes 
15–18 months of latency, in which it is not feasible 
to visibly identity infected trees (Figure S1) [20, 21, 
29–31].

Despite the challenges to performing experimen-
tal host/pathogen research, we saw the importance in 
understanding more about A. anomala, both as con-
tributions to the U.S. hazelnut industry, and to plant 
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pathogen biology. Due to the lack of an experimen-
tal system by which to study A. anomala, we used a 
genomic approach to elucidate features of EFB biol-
ogy and pathogenesis. An earlier draft genome of A. 
anomala was assembled and mined for sequences 
that would be useful as simple sequence repeat (SSR) 
primers to examine population biology of the fungus 
and assist with resistance breeding [28]. That study 
revealed that the genome of A. anomala is surprisingly 
large, > 300 megabases (Mb) and consists of an abun-
dance of transposons that constitute nearly 90% of the 
genome sequence. In this study, we present an updated 
and refined draft of the A. anomala genome sequence, 
its annotation, and analysis. Genomic analysis reveals 
characteristics of biotrophy, including a massive popu-
lation of transposable elements (TEs), bimodal distri-
bution of GC content, and a cache of genes encoding 
effector molecules. We also identified a number of 
genes that code for proteins predicted to be involved 
in pathogenesis and host/pathogen interactions. The 
annotated genome of A. anomala will serve as a vital 
resource for future research on the pathogen and EFB 
disease.

Results
A. anomala has a large, gene‑poor genome
The mate-pair and paired-end reads of genomic DNA 
for Anisogramma anomala OR1 generated over 31 Gb of 
data that were assembled into a 342,525,599 nucleotide 
(nt) genome with an average 91 × coverage (Table S1). The 
final assembly was distributed across 112 scaffolds with 
a GC content of 34.46%. Four scaffolds with a combined 
length of 27,247 nt were removed from further analysis 
as contamination, resulting in a final assembly size of 
342,498,352 nt across 108 scaffolds. More than half of 
the assembly (N50) was on 5 scaffolds with an N50 scaf-
fold length of 33.3 Mb. The largest scaffold was 43.9 Mb 
(Table  1). Nineteen major scaffolds (> 1 Mb) represent 
over 99% of the genome. This demonstrates a marked 
improvement over the first version of the assembly, pub-
lished in 2013 [28] (Table S2). We identified telomere 
sequences (repeats of TTA​GGG​) on both ends of the sec-
ond  and third largest scaffolds with lengths of 40.1  and 
39.2 Mb respectively, indicating these two scaffolds rep-
resent full-length chromosomes. Telomere sequences 
were also found on one end of 10 other scaffolds. Of 
the 19 largest scaffolds, telomere sequences were found 
on one end or both ends in 10 scaffolds (Fig. 1). On the 
contig level, the N50 was 196,655 bp and the L50 was 528 
(Table 1).

To evaluate the completeness of the A. anomala 
genome assembly, we performed flow cytometry using 
nuclei released from 8-week old mycelium. Based on flow 

cytometry, the genome size of A. anomala OR1 was esti-
mated to be 370 Mb (Figure S2), slightly more than, but 
consistent with the genome assembly estimate.

Using a combination of RNA-seq evidence and ab ini-
tio gene prediction, we predicted 9,179 protein coding 
genes in the A. anomala genome. This gene set includes 
94.4% of eukaryotic benchmarking universal single-copy 
orthologs (BUSCOs) and 95.5% of fungal BUSCOs. Aver-
age gene density on major scaffolds was approximately 
25.8 genes/Mb and remained relatively consistent among 
major scaffolds (Fig. 1).

Gene models were annotated with Gene Ontology 
(GO) terms merged with InterPro IDs. Eighty-eight per-
cent of gene models had BLASTp hits against the NCBI 
nr database. Approximately 75% of gene models have 

Table 1  Table of assembly statistics and feature summary for the 
haploid genome of A. anomala 

Assembly Statistics
  Scaffold Level

    Assembly size 342,498,352 bp

    Total number 108

    Largest 43,949,127 bp

    N50 33,254,450 bp

    L50 5

    N99 1,308,775 bp

    L99 19

    # with telomere 12

    % of gap region 0.37%

  Contig Level

    Total number 3,310

    N50 196,655 bp

    L50 538

    GC content 34.46%

Annotatation Statistics
  Protein coding genes 9,179

  Average gene length 1,737 bp

  Average protein length 481 aa

  Mean exon number per gene 3.3

  Mean exon length 438 bp

  Eukaryotic BUSCOs 94.4%

  Fungal BUSCOs 95.5%

  Carbohydrate active enzymes 614

    Glycoside hydrolases 298

    Glycosyl transferases 154

    Auxillary activities 83

    Carbohydrate esterases 41

    Carbohydrate-binding molecules 28

    Polysaccharide lyase 10

Predicted secreted proteins 762

Candidate effectors 165
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been annotated by biological process and 50% with 
a molecular function (Fig.  2, Table S3). Gene models 
were also annotated with KEGG Orthology (KO) terms, 
using a combination of the KEGG Automated Annota-
tion Server and BlastKOALA. Roughly 38% of protein 
sequences were assigned KO identifiers, which make up 
99 complete or nearly complete KEGG pathways (Table 
S3).

A. anomala has large arsenal of effectors and CAZymes
To identify proteins that may be involved in virulence 
and disease, we identified genes that code for potential 

effectors, molecules that are involved in host/pathogen 
interactions. We first identified 762 proteins with signal 
peptides as evidence of a secreted protein. Those proteins 
were then analyzed with EffectorP 2.0 to further predict 
potential effector proteins. One hundred and sixty-five 
proteins (1.8% of total proteins. 21.7% of secreted pro-
teins) were predicted to be effector candidates (Table 1). 
All effector candidates were subjected to a BLASTp 
search of the NCBI nr database. Over half (55%) of can-
didate effectors returned no BLAST hit, and of those 
that did return a hit, 42% were hypothetical proteins 
or proteins with unknown function. For those effector 

Fig. 1  Repeat content and gene density distribution across major scaffolds (> 1Mb). Size of bar reflects the length of the scaffold (x-axis). Repeat 
density of dispersed repeats in bins of 100kb is represented as a heat map, ranging from white to black, the darker the color indicating higher 
repeat density. The height of each scaffold bar (y-axis) ranges from 0 to 200 genes/Mb with the average gene density of the scaffold plotted 
in orange. Gene density was calculated per 100kb and plotted along each scaffold in purple
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candidates that match a protein with a known function, 
possible roles include one glycoside hydrolase, one cuti-
nase, and two peptidases (Table S4).

Genes encoding putative effector molecules were eval-
uated for their proximity to the closest repeat element 
and the closest large RIP affected region (LRAR) as pre-
dicted by RIPPER. BUSCOs and a random subset of all 
genes were included for comparison (Fig. 3). On average, 
effectors were approximately 1.5 kb from the nearest TE 
while BUSCOs and a randomized set were 3 kb and 2.5 
kb respectively. The closest distance to LRARs for effec-
tors, BUSCOs, and the randomized set did not differ sig-
nificantly from each other and averaged at 9900 bp, 9400 
bp, and 9700 bp respectively.

In addition to effector molecules, we also identified 
carbohydrate active enzymes (CAZymes) that may play 
a role in plant pathogenesis. Using the dbCAN3 meta 
server, we identified 614 potential CAZymes. These 

proteins include 298 glycoside hydrolases, 154 glycosyl 
transferases, and 41 carbohydrate esterases (Table  1, 
Table S3). Finally, we identified biosynthetic gene clus-
ters with the fungal version of antiSMASH. Twenty-five 
biosynthetic gene clusters were predicted, including 8 
polyketide synthase (PKS), 7 terpene synthesis, 9 non-
ribosomal peptide synthetase (NRPS) clusters, and 1 
PKS/NRPS combination cluster (Table S5).

Genome and annotation statistics including genome 
size, repeat content, and different categories of protein 
coding genes (effectors, CAZymes, and biosynethetic 
gene clusters) were compared to related fungi (Table 2). 
Like other biotrophic fungi, A. anomala has a large 
genome with high repeat content (shown below). A 
large number of effectors (relative to total protein cod-
ing genes), small number of biosynthetic gene clusters 
and CAZymes are other hallmarks shared between A. 
anomala and related biotrophic fungi.

Fig. 2  Annotation of A. anomala predicted gene models by Gene Ontology (GO) categories. Functions of genes are shown by biological process 
and molecular functions

Fig. 3  A Comparison of distance of well-conserved genes (BUSCOs), predicted effectors, and a randomized set of gene models from the nearest 
repeat element or B large RIP affected region (LRAR) as predicted by RIPPER software
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A. anomala genome hosts a large population 
of transposable elements (TEs)
The A. anomala genome hosts a large population of TEs 
that accounts for approximately 88% of the final genome 
assembly (Table  3). Repeat content remained relatively 
constant at 88% across major scaffolds (Fig.  1). The TE 
population consists of 2,536 individual repeat families, 
making up over 300,000 individual interspersed elements 
(Table 3). The vast majority (90%) of repetitive sequences 
was comprised of Long Terminal Repeat (LTR) retro-
transposons, mostly Copia-like elements, which alone 
account for over half of the genome assembly. Eight of 
the ten repeat families with the highest copy numbers 
(> 7,000 members each) were identified as Copia-like 
elements.

A. anomala exhibits “two‑speed” genome
The overall distribution of GC-content across major 
scaffolds remained relatively constant at approximately 
34%. However, measurement of proportions of GC-dis-
tribution across the entire genome reveals two peaks, 
indicating a bimodal genome (Fig.  4). The first peak, at 
32.9% GC indicates AT-rich regions. This peak accounts 
for 93% of the genome and 10% (933/9,179) of the pro-
tein coding genes. These AT-rich regions are gene poor, 
with an average gene density of 2.93 genes/Mb. The sec-
ond peak, at 57.1% GC indicates GC equilibrated regions 
that account for 7% of the genome and 90% (8,246/9,179) 
of protein coding genes. These GC-equilibrated regions 
are over 100-fold more gene-dense with an average of 344 
genes/Mb.

We performed an enrichment analysis using the Fish-
er’s exact test of the gene models within AT-rich genomic 
regions (Table S6), sheet 1). A number of GO terms are 
over-represented (p-value < 0.05) including beta-glu-
can/cellulase metabolism, peptidase/hydrolase activity, 
and ion transport (Table  4). Additionally, despite these 
regions encoding only 10% of protein coding genes, 30% 
(49/165) of predicted effector coding genes were found in 
these AT-rich hotspots.

A. anomala exhibits a number of unique gene families
We performed an Orthofinder analysis to identify gene 
families shared with related fungal pathogens (Table S7). 
A super-gene phylogeny was constructed using 34 single-
copy orthologous gene families and their correspond-
ing protein sequences. Gene family counts were used to 
reconstruct ancestral gene family content and gain/loss 
of homologous gene families with Wagner parsimony 
and stochastic mapping (Fig. 5).

There are 1,121 gene models that are not identi-
fied as orthologous to related fungal pathogens and are 

likely specific to A. anomala (Table S6), sheet 2). Of 
these unique genes, 83 of them are predicted to code 
for effectors, indicating that over half of the predicted 
effectors are unique to A. anomala. GO terms overrep-
resented include beta-glucan and cellulose metabolism 
(p-value < 0.05), suggesting a role in production of plant 
degrading compounds (Table S8). An additional 450 GO 
terms are underrepresented, mostly including processes 
involved in central metabolism and fungal growth and 
development.

The Orthofinder analysis and Wagner parsimony 
revealed 354 genes families gained and 721 lost in A. 
anomala since diverging from its last common ancestor 
with C. parasitica. Gene families that are expanded or 
gained in A. anomala account for an additional 32 puta-
tive effector genes- meaning that approximately 70% of 
putative effectors are in species specific gene families or 
lineages of gene families that have expanded in A. anom-
ala. GO terms overrepresented in gained/expanded gene 
families include catabolic processes and degradation of 
organic compounds (Table S9). The GO terms that are 
underrepresented include protein, organelle, and cellular 
biosynthetic processes.

Transposable elements show evidence of Repeat‑induced 
point mutation (RIP)
The A. anomala genome encodes two genes that exhibit 
sequence homology and are orthologous to rid (RIP 
defective) in Neurospora crassa. The two genes are pre-
dicted to encode a C5-DNA methyltransferase and a 
modification methylase respectively. Both genes have 
been assigned GO terms for methyltransferase activity. A. 
anomala also encodes a homolog of dim-2, an additional 
methyltransferase identified in N. crassa to be involved in 
the RIP process (Figure S3).

Dinucleotide frequencies and RIP indices were calcu-
lated for a subset of up to 100 members for all identified 
repeat families (Fig. 6a). Compared to a control of non-
repeat sequences, repeat sequences exhibit an over-abun-
dance of TpA (6.7 × more frequent) and TpT (4.1 × more 
frequent) dinucleotides and under-abundance of GpC 
(3.9 × less frequent) and CpG (2.8 × less frequent) dinu-
cleotides. RIP indices were also calculated for the same 
subsets of repeat families (Table 5). The mean TpA/ApT 
index for repetitive sequences is 1.14, while non-repeat 
sequences have an index of 0.48. The mean (CpA + TpG)/
(ApC + CpT) index is 0.087 in repetitive sequences and 
0.095 in non-repetitive sequences. There were no signifi-
cant differences in dinucleotide frequencies or RIP indi-
ces between repeat classes.

An alignment-based RIP analysis of the repeat family 
with the highest copy number shows that A. anomala 
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exhibits two dominant kinds of RIP (Fig.  6b). CpA→ 
TpA and CpT→ TpT mutations were dominant over 
other RIP-like mutations. The top 10 repeat families 
with the highest copy number were also analyzed with 
the alignment-based RIP analysis and demonstrate the 
same RIP mutational preference.

A. anomala demonstrates genetic basis for homothallism
Homologs for both MAT1-1 and MAT1-2 idiomorphs 
have been identified in the A. anomala genome within 
the same 7 kilobase cluster (Table S6, sheet 3), consist-
ent with evidence that the fungus is homothallic [20]. 
Homologs for the mat genes were identified through a 
BLASTp search of the NCBI nr database and verified by 
a pairwise sequence comparison to the corresponding 
genes in Cryphonectria parasitica [56]. Like the C. para-
sitica idiomorphs, three protein-coding genes are pre-
dicted to constitute MAT1-1 (MAT1-1–1, containing an 
alpha box motif; MAT1-1–2, a protein of unknown origin; 
and MAT1-1–3, containing an HMG motif ), and a single 
protein-coding gene is predicted for MAT1-2 (MAT1-2–
1, also containing an HMG motif ). Within the A. anomala 
MAT locus, the gene encoding MAT1-2–1 was embed-
ded between MAT1-1–1 and MAT1-1–2. Other genes 
usually associated with mating clusters in fungi, apn2 and 
sla2, were identified in close proximity to the other MAT 
protein coding genes. The entire MAT cluster is largely 
syntenic to that of Chrysoporthe cubensis, a closely related 
homothallic fungus. The MAT loci of A. anomala is more 
compact and contains no additional genes besides those 
directly involved in determining mating type (Fig.  7). 
RNAseq data indicate that all four of these MAT genes 
were expressed constitutively (Figure S4).

Discussion
The final genome assembly of A. anomala OR1 is approx-
imately 343 Mb. This assembly is thought to be relatively 
complete based on genome size estimation compared to 
flow cytometry data as well as identified BUSCOs. The 
A. anomala genome is very large by fungal standards, 

Table 3  Detailed breakdown of the repeat population in the A. 
anomala genome. Repeat elements are classified by the name 
assigned by RepeatClassifier

Number of 
Elements

Length (bp) Percent 
of 
Genome

Class I Elements
  LTRs

  Copia-like 104,635 183,550,845 53.587

  Gypsy-like 74,787 60,218,611 17.581

  Other 68,679 27,882,387 8.14

LINEs

  L3/CR1 59 19,678 0.006

  Tad1 4,623 5,848,916 1.708

  Other 89 47,022 0.014

  SINEs 136 370,136 0.108

Class II Elements
  Tc1-Mariner 47 6,543 0.002

  CMC-Enspm 549 129,709 0.038

  Helitron 3 3,705 0.001

Unclassified 51,711 28,213,842 8.237

Total Interspersed Repeats 305,318 306,291,394 89.42

Simple Repeats 19,952 937,149 0.27

Low-Complexity 1,402 77,435 0.02

Fig. 4  Distribution of GC-content across the A. anomala genome. The genome was broken up into regions using Jensen-Shannon divergence, 
for which GC-content was calculated. Proportions of the genome were assigned to GC-content in 1 percent increments
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almost 10 times the ~ 37 Mb size of the genome of the 
average ascomycete (Table  2) [32–35, 37–55, 57, 58]. 
However, large genomes are not uncommon amongst 
obligate biotrophic pathogens. Powdery mildew fungi, 
which are ascomycetes, have genomes in excess of 100 
Mb [11], and rust fungi, which are basidiomycetes often 
with complex life cycles, may have genomes approaching 
1 Gb [59]. Both of these unrelated fungi are subjected to 
the strong selective pressure imposed on biotrophic plant 
pathogens to maintain an intimate interaction with their 
host while avoiding recognition that initiates an immune 
response [60, 61]. The outcome of evolution driven by the 

pressure of a host/pathogen arms race is parallel adap-
tations resulting in remarkedly similar genomes among 
biotrophic pathogens [7, 11, 32–39].

The expansion of the A. anomala genome is driven 
by the proliferation of TEs, rather than accumulation 
of protein coding genes. The TE population is made 
primarily of LTR retrotransposons. Copia-like ele-
ments are by far the most abundant, which contrasts 
related fungi that are dominated by Gypsy-like repeats 
[48]. Despite the massive number of identified LTR 
retrotransposons, no single element has been deter-
mined to be intact with both 5’ and 3’ LTRs and the 

Table 4  GO term enrichment analysis of genes within the AT-rich regions of the A. anomala genome

GO ID GO Name P-value

GO:0051275 beta-glucan catabolic process 0.02887

GO:0051273 beta-glucan metabolic process 0.00894

GO:0032986 protein-DNA complex disassembly 0.01032

GO:0032984 protein-containing complex disassembly 0.04633

GO:0005381 iron ion transmembrane transporter activity 0.02887

GO:0031572 G2 DNA damage checkpoint 0.01032

GO:0030243 cellulose metabolic process 0.02887

GO:0030245 cellulose catabolic process 0.02887

GO:0007095 mitotic G2 DNA damage checkpoint 0.01032

GO:0016825 hydrolase activity 0.02677

GO:0004843 thiol-dependent protease activity 0.02679

GO:0034755 iron ion transmembrane transport 0.02887

GO:0006564 L-serine biosynthetic process 0.01032

GO:0008236 serine-type peptidase activity 0.02677

GO:0008233 peptidase activity 0.02319

GO:0017171 serine hydrolase activity 0.02677

GO:0031498 chromatin disassembly 0.01032

GO:0016702 oxidoreductase activity 0.03590

GO:0045727 positive regulation of translation 0.02887

GO:0072503 cellular divalent inorganic cation homeostasis 0.00894

GO:0072507 divalent inorganic cation homeostasis 0.00894

GO:0015940 pantothenate biosynthetic process 0.04633

GO:0015939 pantothenate metabolic process 0.04633

GO:0034250 positive regulation of cellular amide metabolic process 0.02887

GO:0070011 peptidase activity, acting on L-amino acid peptides 0.01257

GO:0006337 nucleosome disassembly 0.01032

GO:0006826 iron ion transport 0.02887

GO:0006874 cellular calcium ion homeostasis 0.00894

GO:0046915 transition metal ion transmembrane transporter activity 0.03967

GO:0004311 farnesyltranstransferase activity 0.01032

GO:1,902,653 secondary alcohol biosynthetic process 0.02887

GO:0018958 phenol-containing compound metabolic process 0.02887

GO:0051560 mitochondrial calcium ion homeostasis 0.01032

GO:0043022 ribosome binding 0.01349

GO:0055074 calcium ion homeostasis 0.00894
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protein domains required for autonomous transposi-
tion, namely reverse transcriptase (RT), RNAse H (RH), 
and integrase (INT) [62]. One of the looming questions 
regarding the TEs in the A. anomala genome is how the 
invasion and uncontrolled replication of repetitive ele-
ments, largely of a single type of TE, was responsible 
for such extreme genome expansion.

Effector molecules play an important role in the colo-
nization of biotrophic plant pathogens. Plants are able to 
recognize specific effector molecules through resistance 
(R) genes and activate a powerful hypersensitive response 
(HR) resulting in plant cell death which halts the spread 
of the invading pathogen [63]. If recognized, the patho-
gen is considered avirulent and the effector protein that 
triggers the HR response is characterized as an avirulence 
(avr) gene [64]. The pathogen responds by mutating or 
losing avr genes, so that they are no longer recognizable, 
or developing new effectors that avoid or suppress the 
effector-triggered immune response [65]. This relation-
ship is the basis of the coevolutionary arms race between 
host plants and pathogens [66]. Most commercially avail-
able cultivars of C. avellana are protected by the R-gene 
“Gasaway”, named after the pollinizing cultivar that car-
ried the dominant allele [67]. There is evidence that the 
Gasaway R-gene protects through an HR response [21]. 
However, Gasaway protected plants are overcome in 

regions of high pathogen pressure and diversity, suggest-
ing that effectors and avr genes play a role in the break-
down of resistant cultivars [68–70].

For many putative effectors, there is no known func-
tion. As the goal is to be unrecognizable, there is no ben-
efit to maintain conserved effector genes. However, we 
know that effectors can play multiple roles in establish-
ing and maintaining infection [71, 72]. The large arsenal 
of putative effectors encoded in the A. anomala genome 
allows for flexibility. This is also why we have observed 
effectors in repeat-rich regions of genome, where there 
are high rates of mutation and recombination [73]. The 
compartmentalization of effectors and genes involved in 
pathogenicity in repeat rich regions fits the “two-speed” 
model of evolution [74].

CAZymes play an important role in both necrotrophic 
and biotrophic phytopathogenic infection. Necrotrophic 
fungi are known for having an arsenal of plant cell wall 
busting enzymes to launch an aggressive attack on their 
host. Necrotrophic ascomycetes code for between 600–
800 CAZymes while A. anomala codes for 456 putative 
CAZymes, a typical number for biotrophic pathogens 
[75]. One of the most notable families of CAZymes 
encoded in the A. anomala genome is the glycoside 
hydrolase-18 (GH-18) family that includes all identi-
fied fungal chitinases [76]. It is predicted that both plant 

Fig. 5  Predicted pattern of gene family gain and loss in representative fungal genomes. Cladogram representation of Maximum Likelihood 
phylogeny of A. anomala and 15 related fungi based on 2,800 single copy orthologues. The total number of protein families in each species or node 
is estimated by Wagner parsimony and stochastic mapping. The numbers of the branches correspond to gene family gain (green) or loss (red) 
and inferred ancestral protein families (in oval). The numbers of gene families, unassigned genes, and total gene numbers are indicated for each 
species
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and fungal cell wall degrading enzymes are important 
for establishing biotrophic infection. Histological data of 
early infection of A. anomala on C. avellana shows a sin-
gle germ hypha penetrating the plant cell wall, followed 
by the formation of intracellular vesicles [21]. CAZymes 
are required for initial penetration of the plant cell wall 
as well as the reformation of the fungal cell wall at the 
fungal/host interface [77]. Reasonable future steps would 
include investigating the expression of CAZymes during 

early infection to elucidate what genes are required to 
establish infection.

The Wagner parsimony analysis on Orthogroups of 
related fungal pathogens revealed the loss of 876 and 
gain of 285 gene families in A. anomala since it diverged 
from C. parasitica. Gene reduction in obligate para-
sites is a common trend, usually due to the loss of spe-
cific metabolic pathways as the parasite derives required 
compounds from their host [78]. KEGG pathway 

Fig. 6  a Log(10) of average fold change in dinucleotide frequencies of all repeat families compared to non-repetitive control sequences. b 
Alignment based RIP analysis of repeat family with highest copy number (rnd-1_family-0). Each type of RIP mutation is represented by a different 
color, demonstrating the most dominant types of RIP within this repeat family
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reconstruction revealed a number of missing or incom-
plete pathways for the biosynthesis of several amino 
acids including lysine, tryptophan, and asparagine [79]. 
It should be noted that the culture medium used for A. 
anomala contains yeast extract as well as additional 
asparagine to encourage growth [27]. Genes involved in 
pathways involved in energy generation (NADH dehy-
drogenase, nitrate reduction/assimilation) are missing as 
well. A. anomala exhibits parallel evolution to unrelated 
obligate biotrophic fungal pathogens that have indepen-
dently lost similar biosynthetic and metabolic pathways 
[60, 80, 81].

The exception to the trend of gene loss is genes or 
gene families that encode effectors. Gene families that 
are unique or expanded in A. anomala contain 70% of 
predicted effectors. Biotrophs use effectors to main-
tain an intimate signaling relationship during infection 
[82, 83]. The need for a large and diverse effector arse-
nal drives the evolution of effector diversification and 
expansion [84, 85] as we observed with A. anomala. GO 
terms overrepresented in unique or expanding families 
include transmembrane transporters that are involved in 

the secretion of secondary metabolites that participate in 
pathogenesis. Amylases, peptidases, and catabolic activ-
ity GO terms are overrepresented in expanded families, 
likely aiding in adaptation to the obligate biotrophic life-
style [10].

Despite TEs accounting for 88% of the final genome 
assembly, very few of these elements contain intact pro-
tein domains required for autonomous transposition. 
Sequences from all identified repeat families show evi-
dence of RIP mutation. RIP is a defense mechanism that 
protects fungal genomes from TEs expanding unchecked 
[86, 87]. RIP functions by recognizing stretches over 
400 bp of DNA with high (> 80%) sequence identity. 
The DMNT-1 homologue RID (RIP defective) methyl-
ates cytosine residues, which then undergo spontaneous 
deamination into thymine. This induces C→ T and G→ 
A transitions in both copies of duplicated sequences, 
resulting in permanent mutational changes in the DNA 
sequence [88, 89].

Fungi that demonstrate evidence of RIP vary in the 
degree or effectiveness by which RIP acts on the genome. 
Neurospora crassa, in which RIP was first described 

Table 5  Calculated RIP-indices for the five repeat families with the largest copy number. A TpA/ApT index ≥ 0.89 and (CpT + TpG)/
(ApC + GpT) index ≤ 1.03 indicate RIP activity. The numbers presented are the mean values calculated for a subset of 100 repeat family 
members

Repeat Family Classification Copy Number Mean TpA/ApT Mean 
(CpA + TpG)/ 
(ApC + GpT)

rnd1_fam0 LTR-Copia 10,537 1.373688 0.6427065

rnd1_fam1 LTR-unknown 10,431 1.406927 0.644971

rnd1_fam2 LTR-Copia 8,315 1.658198 0.9923082

rnd1_fam3 LTR-Copia 7,814 1.306482 1.016627

rnd1_fam4 LTR-Copia 7,444 1.539685 0.944061

Fig. 7  Genomic region corresponding to mating-type locus in A. anomala. Gene models were identified as MAT homologs through BLASTp search 
of NCBI database and analyzed for synteny compared to Chrysoporthe cubensis, a homothallic fungus in the Cryphonectriaceae 
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[90], has a very efficient RIP system, to the point where 
N. crassa has almost no duplicated sequences, TEs nor 
duplicated genes [91]. In other fungi, RIP is often demon-
strable, but less effective [92]. In the related fungus C. 
parasitica, roughly 14% of the 43.9 Mb genome repre-
sented TEs, and there was some limited evidence for RIP 
[48, 92]. The A. anomala genome exhibits indications of 
RIP activity. The RIP indices calculated for repeat fami-
lies exceed the accepted threshold for RIP activity (TpA/
ApT ≥ 0.89 and (CpT + ApT)/(ApC + CpT) ≤ 1.03) [93, 94] 
and the dinucleotide frequencies demonstrate a depletion 
of pre-RIP dinucleotides and an enrichment of post-RIP 
dinucleotides in repeat regions compared to non-repeat 
regions [92]. In spite of evidence of a functional RIP path-
way, transposons have managed to overtake the A. anom-
ala genome. The massive expansion of the TE population 
in the A. anomala genome underscores the observation 
that mere presence of an apparently functional RIP sys-
tem is no guarantee that TEs will be held in check.

In addition to defending against the uncontrolled 
replication of TEs in a genome, RIP is a major driver of 
genome evolution. RIP induces mutations on duplicated 
sequences, but those mutations often bleed into neigh-
boring regions, so called “leaky RIP” [86, 95, 96]. Fur-
thermore, the G/C→ T/A mutations have a major impact 
on GC content of a genome. The GC content of the A. 
anomala genome is relatively low, at 34%, however, it is 
not equally distributed across the genome. GC-propor-
tion distribution reveals two peaks; 93% of the genome 
landscape has a GC-content of 32%. These stretches of 
GC-poor containing DNA are broken up by GC-rich 
blocks that are gene-rich and TE-poor. These data dem-
onstrate that A. anomala fits the “two-speed” genome 
model [96–98].

Analysis of the mating-type locus revealed that A. 
anomala has the genes for both MAT1-1 and MAT1-2 
idiomorphs, providing molecular evidence to support 
the previous evidence for homothallism [20]. Mating 
type systems, processes, and their associated genes are 
extraordinarily complicated in fungi, and many genes 
other than the MAT genes themselves may have differ-
ent roles in the reproductive process [99]. In addition 
to controlling sexual development, MAT genes may be 
important in growth and virulence, including regulation 
of secondary metabolites and hyphal morphology.

Homothallism, such as that in A. anomala, is thought 
to be an evolutionary destination from which there is no 
likely return to a progenitor heterothallic state, an idea 
that was supported through research with Neurospora 
shifting multiple times from heterothallic to homothal-
lic lifestyle, but never the reverse [100]. Chrysoporthe 
which is closely related to Anisogramma, has MAT locus 
features similar to Neurospora, including pronounced 

influence of retrotransposons, but there was some evi-
dence to suggest that the MAT1-2 and MAT1-1 idi-
omorphs of the heterothallic C. austroafricana evolved 
from a homothallic progenitor [101]. In both the case of 
Neurospora and Chyrosporthe, the evolutionary transi-
tion of mating type is facilitated by TEs within the mat 
locus. Like the rest of the A. anomala genome, the mat 
locus is flanked by TEs. But the core genes for each idi-
omorph are found within the same 7 kb block with no 
TEs or additional genes. The mating cluster of C. cubensis 
includes additional genes not found in A. anomala as well 
as a 200 kb insertion of DNA that contains over 60 genes 
not related to determination of mating type (Fig. 7). One 
of the roles of sex in fungi and other organisms is to bring 
genetic variation to the species. It seems that a combina-
tion of homothallic sex and rampant genome invasion 
and expansion by transposons brings sufficient variability 
to A. anomala.

Conclusions
At nearly 350 Mb, the A. anomala genome represents 
the largest ascomycete genome yet characterized. Gene 
number and putative functions are typical of fungal 
plant pathogens, but runaway amplification of repeat 
sequences has led to a massively bloated genome, despite 
hallmarks of functional genome surveillance by RIP. 
The A. anomala genome characterization will serve as 
a resource for others investigating this economically 
important plant pathogen, and for those interested in 
fungal genome evolution.

Methods
Fungal strain
A. anomala is an obligate biotroph that has not been 
grown in continuous culture, so tissue is scarce and not 
clonal. Based on knowledge of EFB epidemiology [102, 
103], the A. anomala population in Oregon is believed to 
be decedents of a single introduction event from east of 
the Rocky Mountains and belong to a single lineage. But 
mycelium from different trees in fields is not clonal, and 
DNA or RNA extracted from a collection of germinated 
ascospores is also not clonal. The closest approximation 
we have to homogeneous tissue is to harvest ascospores 
from a single canker on a single tree, with the under-
standing that it most likely represents the result of a sin-
gle infection. We collected ascospores from individual 
cankers from infected branches harvested from hazel-
nut plants growing at the Oregon State University Smith 
Horticultural Research Farm, Corvallis, OR. These plants 
had been inoculated 18 months prior in the greenhouse 
using local diseased plant material as inoculum source. 
We designate the strain presented here Oregon1, OR1.
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Ascospores were extracted following the protocol we 
used previously [28]. Briefly, the branches were cut into 
pieces 5–7 cm in length, and surface-sterilized for 3 min 
in 10% bleach (0.525% sodium hypochlorite) followed by 
1 min in 70% ethanol. After rinsing with sterile H2O, the 
stromata were hydrated in sterile H2O for 30 min and air-
dried. The top of a canker was cut off with a sterile razor 
blade to expose the necks of the perithecia, and another 
sterile razor blade was inserted under the perithecia to 
provide pressure from below and push ascospores out of 
perithecial neck. The spores from individual cankers were 
suspend in sterile H2O containing 10 ppm rifampicin and 
100 ppm streptomycin and quantified with a hemocy-
tometer. We found one canker that produced approxi-
mately 5.5 M ascospores and these spores were used in 
this study unless noted otherwise.

To generate primary mycelium, a portion of the 
ascospores was adjusted to 1 × 105 spores per ml and 
used to inoculate plates of culture medium overlaid with 
cellophane. The rest of the ascospores were stored at -80 
°C. Half a milliliter of the spore suspension was spread on 
the cellophane surface in individual 9-cm diameter petri 
dishes. The medium contained (per liter) 2.7 g modified 
Murashige and Skoog basal salt mixture; 20 g sucrose; 2 
g yeast extract; 2 g L-Asparagine; 15 g Bacto agar; 0.25 
g activated charcoal; and 10 mg Rifampicin [27]. The 
cultures were grown at 18 °C in the dark for 8 weeks, by 
which time many spores had germinated and grown into 
opaque, whitish colonies approximately 0.25–0.5 mm in 
diameter. Mycelium was harvested by rinsing the cello-
phane with sterile H2O. A subset of plates was kept for 
four more weeks. By then the small colonies were turn-
ing grey and black, and the senescent mycelium was har-
vested as described above.

Nucleic acid extraction, genome sequencing and assembly
Mycelium from 8-week-old cultures were used for DNA 
extraction using Gentra Puregene kit (Qiagen) follow-
ing the fungi protocol. One paired-end DNA library with 
insert size approximately 350 bp (excluding adapters) was 
constructed using the TruSeq DNA Sample Prep kit (Illu-
mina). Three mate-pair DNA libraries with insert sizes 
approximately 3 kb, 6 kb, and 10 kb, respectively, were 
constructed using the Nextera Mate Pair Library Prep 
kit (Illumina) following manufacturer’s instructions. All 
libraries were sequenced on the Illumina MiSeq platform.

The paired-end reads were trimmed with Trimmo-
matic v0.32 [104] in paired-end mode to remove adapter 
sequences and reads shorter than 100 bp after trimming 
were dropped. The mate-pair reads were first trimmed 
with Trimmomatic in paired-end mode to remove 
external adapters, then trimmed with Trimmomatic in 

single-end mode to remove internal adapters at ligation 
junctions. Reads shorter than 35 bp after trimming were 
dropped. The resulting reads were processed with a cus-
tom Perl script and only read pairs meeting the following 
conditions were retained for genome assembly: 1) both 
reads must have survived adapter trimming; 2) for read 
pairs in which external adapters were found, the junction 
adapter must be found in both reads; 3) for read pairs in 
which external adapters were not found, junction adapter 
must be found in at least one read. After data process-
ing, the sequence reads were assembled using AllPaths-
LG release 52,155 with default settings. [105]. Assembled 
scaffolds were subjected to a BLASTn search of the Gen-
Bank database release 258 [106]. Any scaffolds where the 
top hit was not fungal were removed as contamination.

Flow cytometry
One hundred micrograms of freshly harvested 8-week 
old mycelium were cut into fine pieces with a sterile 
razor blade in 500 μl LB01 buffer on ice to release the 
nuclei [107]. The mixture was passed through a 40 μm 
filter and washed with 200 μl LB01 buffer. Nuclei from 
50 mg young radish leaf, which has a 2C genome size of 
1.1 Gb, were released the same way and used as control. 
Nuclei solutions were treated with RNase A and stained 
with propidium Iodide at room temperature for 20 min 
in darkness and run through a Beckman Cytoflex flow 
cytometer. The experiment was repeated three times.

Repeat identification and masking
The assembled genome was soft-masked prior to gene 
prediction [108]. A comprehensive, non-redundant 
repeat library was created by integrating output from 
RepeatModeler [109, 110], TransposonPSI [111], and 
LTRharvest [112]. RepeatModeler v1.0.11 and Trans-
posonPSI were run using default parameters to gener-
ate the first two repeat libraries. The third repeat library 
was built using LTRharvest. False positives were removed 
from the LTRharvest library by running LTRdigest with 
protein HMMs from Pfam [113] and GyDB [114] data-
bases. LTR retrotransposons without domain hits were 
removed from the LTRharvest repeat library.

Each of the three repeat libraries was classified using 
RepeatClassifier, part of the RepeatModeler program 
suite, with Repbase version 23.08 [115], for consistency in 
identification and naming of repeat elements. The three 
repeat libraries were then merged and clustered with 
CD-HIT [116] at ≥ 80% identity to create a non-redun-
dant library [117]. This custom library was used to soft-
mask the A. anomala genome using RepeatMasker with 
the “xsmall” argument and default parameters [118].
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Transcriptome sequencing, gene prediction 
and annotation
Ascospores, 8-week old mycelium and 12-week old 
senescent mycelium were used for RNA extraction using 
the Plant RNeasy kit (Qiagen) following manufacturer’s 
instructions. Three mRNA libraries, one for each sam-
ple, were prepared using the TruSeq RNA Preparation 
kit (Illumina) following manufacturer’s instructions. The 
libraries were sequenced on the Illumina MiSeq platform.

Gene models were predicted using the BRAKER2 
annotation pipeline [119], incorporating GeneMark-ET 
[120, 121] and Augustus [122] for ab initio and evidence-
based gene prediction. RNA-Seq reads were mapped to 
the genome assembly using STAR [123]. The RNA-Seq 
mapping results were used as evidence for gene predic-
tion in the BRAKER2 pipeline, using the “fungus” argu-
ment for fungal gene prediction. Genome completeness 
was assessed through a BUSCO analysis of benchmark-
ing eukaryotic and fungal single-copy orthologs [124].

Blast2GO v5.2.5 [125] was used to perform a BLASTp 
search of the NCBI nr database with E-value cutoff of 
1e-3. Interproscan v5.53 [126] results were imported in 
to Blast2GO and merged with GO annotations. KEGG 
annotation terms [79, 127] were assigned using a com-
bination of BlastKOALA v2.2 [128] and the KEGG 
Automatic Annotation Server (KAAS) [129] searched 
against eukaryote and prokaryote KEGG GENES data-
bases (release v89.1), with the single-directional best hit 
method.

Secreted proteins were predicted using SignalP 5.0 
[130] to identify signal peptides sequences. Predicted 
secreted proteins were then analyzed with EffectorP 2.0 
[131, 132] to predict genes encoding for potential effec-
tors. Evidence including protein size and cysteine content 
was used for effector prediction. Potential function of 
effectors was evaluated by a BLASTp search [133] of the 
GenBank nr database (release 239) [106] with an e-value 
cutoff of 0.001. Functional domains were assigned using 
CD-Search webserver with default settings against the 
Conserved Domain Database v3.20 [134, 135]. Carbohy-
drate active enzymes were predicted using the dbCAN3 
meta server [136–138] which integrates HMMER [139], 
DIAMOND [140], and Hotpep [141] searches of the 
CAZy database [142]. Biosynthetic gene clusters were 
predicted and identified using antiSMASH v5.1.2 [143].

GC‑content distribution
Analysis of GC-content was performed by segmenting 
genomic sequences into regions of differing GC-content 
using the Jensen-Shannon divergence at each sequence 
position calculated using OcculterCut v1.1 [144]. Gene 
models associated with AT-rich genomic regions were 
used as a test set in a GO term enrichment analysis test 

using a two-tailed Fisher’s Exact Test with a filter value of 
0.05 with BLAST2GO v5.2.5 [125].

Fungal super‑gene phylogeny
We collected proteomes from 24 related ascomycete spe-
cies to identify orthologous gene families. OrthoFinder 
v2.2.6 [145] was used under default settings to build 
orthogroups. Thirty-four single-copy orthologous gene 
families and their corresponding protein sequences were 
retrieved and aligned with MUSCLE v3.8.31 [146] and 
alignments were trimmed with TrimAl v1.4 [147] using 
the automated feature to select the best method. The 
trimmed alignments were automatically concatenated 
and partitioned using IQ-TREE v1.7-beta17 [148, 149]. 
The maximum likelihood tree was reconstructed with 
IQ-TREE under the LG + I + G model as selected using 
ModelFinder [150].

Gene family counts from the Orthofinder analysis were 
used to reconstruct ancestral gene family content and 
gain/loss of homologous gene families. These traits were 
reconstructed using Wagner parsimony in the Count 
software package [151] as well as stochastic mapping 
with GLOOME [152].

RIP analysis
RIP indices of individual repeat copies were calculated in 
RStudio v1.1.414 [153] using a custom R (v4.1.2) script 
(file S1) and the Biostrings package v2.62.0 [154]. RIP-
CAL v2 [155] was used for alignment based analysis of 
repeat families and calculations of mutation frequencies. 
Large RIP affected regions (LRARs) were identified by a 
minimum of seven consecutive sliding windows (win-
dow size = 1000 bp, slide size = 500 bp) with a minimum 
RIP product value of 1.1, maximum RIP substrate value of 
0.75 and minimum composite (product – substrate) value 
of 0.01. RIP product, substrate, and composite values and 
LRAR analysis was performed using The RIPper [156].
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