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Abstract 

Background The ageing process is a multifaceted phenomenon marked by the gradual deterioration of cel-
lular and organismal functions, accompanied by an elevated susceptibility to diseases. The intricate interplay 
between genetic and environmental factors complicates research, particularly in complex mammalian models. In this 
context, simple invertebrate organisms have been pivotal, but the current models lack detectable DNA methylation 
limiting the exploration of this critical epigenetic ageing mechanism.

This study introduces Nasonia vitripennis, the jewel wasp, as an innovative invertebrate model for investigating 
the epigenetics of ageing. Leveraging its advantages as a model organism and possessing a functional DNA methyla-
tion system, Nasonia emerges as a valuable addition to ageing research.

Results Whole-genome bisulfite sequencing unveiled dynamic alterations in DNA methylation, with differentially 
methylated CpGs between distinct time points in both male and female wasps. These changes were associated 
with numerous genes, enriching for functions related to telomere maintenance, histone methylation, and mRNA cata-
bolic processes. Additionally, other CpGs were found to be variably methylated at each timepoint. Sex-specific effects 
on epigenetic entropy were observed, indicating differential patterns in the loss of epigenetic stability over time. Con-
structing an epigenetic clock containing 19 CpGs revealed a robust correlation between epigenetic age and chrono-
logical age.

Conclusions Nasonia vitripennis emerges as a promising model for investigating the epigenetics of ageing, shedding 
light on the intricate dynamics of DNA methylation and their implications for age-related processes. This research 
not only expands the repertoire of ageing models but also opens avenues for deeper exploration of epigenetic 
mechanisms in the context of ageing.
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Introduction
Ageing is a complex biological process characterized by 
a progressive decline in cellular and organismal function, 
accompanied by an increased susceptibility to diseases. 
Ageing is influenced by many environmental and genetic 
components. The effects of these components influence 
each other making them difficult to investigate, especially 
in complex mammalian models. Therefore, a large body 
of ageing research is based on simple invertebrate model 
organisms [1, 2]. Advantages include easy and cheap to 
keep in a laboratory, short life span, genetic and molecu-
lar tools available and a sequenced genome. However, 
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the current invertebrate models of ageing (Drosophila 
[3] and C. elegans [4]) do not possess detectable DNA 
methylation.

DNA methylation involves the addition of a methyl 
group to cytosine residues, predominantly occurring at 
cytosine-phosphate-guanine (CpG) dinucleotides. Stud-
ies have consistently demonstrated dynamic changes in 
DNA methylation patterns during ageing, influencing 
gene expression, cellular function, and ultimately con-
tributing to the ageing phenotype [5]. Despite not being 
found in our current two invertebrate models of ageing, 
this is not true universally in invertebrates and changes 
in DNA methylation have been associated with ageing in 
ants [6], bumblebees [7] honeybees [8] and the crusta-
cean Daphnia magna [9]. Although social insects present 
an almost unique opportunity for an invertebrate model 
of the effects of social environment on ageing [10], their 
colony structure prevent them from being easily kept 
general models of ageing. Although Daphnia magna is 
relatively easy to keep, as a crustacean we can not take 
advantage of the large amount of research on hymenop-
teran DNA methylation [11].

We propose the jewel wasp, Nasonia vitripennis as a 
general model for epigenetic ageing as it possesses both 
the advantages of a model systems mentioned above [12] 
and has a functional methylation system [13, 14]. DNA 
methylation has been shown to be vital for Nasonia 
development [15]. It has also been shown to be invovled 
in a number of Nasonia phenotypes including diapause 
[16] and sex allocation [17]. Ageing in Nasonia has been 
studied with reference to lipogenesis [18], diet [19], 
ploidy [20], diapause [21] and host species [22]. To our 
knowledge, the changes in DNA methylation as Nasonia 
ages have never been measured. Here, we establish Naso-
nia as a model to investigate the epigenetics of ageing by 
first measuring its methylome as it ages.

The omics era has seen a rapid growth in studies meas-
uring these dynamic changes in DNA methylation dur-
ing ageing. They are usually based on whole genome 
bisulphite sequencing (WGBS) [23]. Perhaps the most 
obvious way to search for patterns in this WGBS data 
are differentially methylated positions (DMPs). These are 
characterised by changes in average DNA methylation 
levels across individuals or tissues at single base positions 
(CpGs). These CpGS either become more methylated as 
an organism ages (hypermethylation) or less methylated 
(hypomethylation). These DMPs represent single base 
pair changes in DNA methylation as the organism ages.

Epigenetic drift is the increased variability in the epi-
genome found through the course of an individual’s life 
caused by the accumulation of mistakes in preserving 
epigenetic patterns. Epigenetic drift leads to a decrease 
in the body’s ability to maintain homeostasis [24]. This 

can be measured in at least two ways. Variably methyl-
ated positions (VMPs) rather than comparing the average 
methylation at a CpG over time, measures how variable 
the methylation at a site is as organisms age. An alter-
native measure of epigenetic drift is Shannon’s entropy, 
i.e. the loss of information in the whole epigenome over 
time [25]. An increase in entropy means the epigenome 
is becoming less predictable, that is more variable over 
time.

An epigenetic clock is an emergent property of the 
DNA methylation status of a large number of genes, 
calculated using supervised machine learning methods 
[25–27]. There is evidence epigenetic age mirrors true 
biological age and its associated morbidity and mortal-
ity better than chronological age [5]. However, their util-
ity as measures of changes in biological age for clinical 
interventions is limited as their mechanistic basis is not 
understood [28].

In this paper, we measure chronological ageing and 
changes in the methylome using whole genome bisulfite 
sequencing (WGBS) (Fig. 1) in order to discover if Naso-
nia vitripennis, unlike the other two invertebrate models 
of ageing possesses an ageing methylome.

Methods
Life span
Nasonia were of the Nasonia vitripennis species from the 
Leicester strain which has been kept for over eight years 
and originated from the AsymC strain. Wild-type wasps 
were maintained at 25◦ C, 40% humidity in a 12-h dark/
light cycle. Adults, within 24 hours of eclosion, were placed 
in tubes of ten single-sex individuals. They were fed 20% 
sucrose ad libitum, refreshed daily. These were checked 
every day for survival. 70 females and 67 males were used. 

Fig. 1 Schematic overview of experimental design with study 
organism, Nasonia vitripennis. Image credit: M.E. Clark public domain
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A mixed effect Cox model treating tube as a random effect 
was implemented using the survival package (v.3.4) [29] 
and coxme package (v.2.2) [30] in R 4.2.2 [31].

DNA extraction
Wasps were collected within twenty four hours of eclo-
sion. Some females may have been mated as they were 
allowed to mix with males for upto the first fifteen hours 
after eclosion. Wasps were then collected under light  CO2 
anesthesia and placed into single-sex vials containing ten 
individuals. They were then provided with filter paper 
soaked in 20% sucrose which was changed daily. Day zero 
wasps were collected at the end of the first twenty four 
hours after eclosion then samples on the eighth and six-
teenth day. Thirty wasps of each sex were used for each 
time-point. Ten wasps from the same sex were pooled 
for each replicate, creating three replicates for each sex 
at each time point. Therefore we had three replicates for 
males and three replicates for females at each of day zero, 
eight and sixteen after eclosion. Wasps were immedi-
ately frozen in liquid nitrogen and stored at minus 80◦ C 
freezer for sequencing. DNA was extracted using Qia-
gen’s DNAeasy Blood and Tissue kit. DNA quality was 
assessed by NanoDrop 2000 spectrophotometer (Thermo 
Scientific), 1% agarose gel and Qubit (dsDNA BR Assay, 
ThermoFisher).

Whole genome bisulfite sequencing
WGBS sequencing was carried out by BGI Tech Solution 
Co., Ltd.(Hong Kong). A 1% unmethylated lambda spike 
was included in each sample in order to assess bisulfite 
conversion rates. For WGBS samples, library quality 
was checked with FastQC (v.0.11.5; [32]). One day eight 
male library appeared to be mislabelled by the sequenc-
ing company. This was not included in further analy-
sis to prevent any uncertainty. Therefore for the BS-seq 
analysis we had three replicates for males and three rep-
licates for females at each of day zero and sixteen after 
eclosion but three replicates for males and two replicates 
for females at day eight. Paired-end reads were aligned to 
the Nasonia vitripennis reference genome (Nvit_PSR1.1, 
Refseq accession no. GCA_009193385.1, [33]) using the 
Bowtie 2 aligner (v.2.2.9; [34]) within the Bismark soft-
ware (v.0.18.1; [35]) under standard parameters. Sam-
ples sequenced across multiple files were merged using 
samtools (v.1.9; [36]). Files were deduplicated using Bis-
mark, and methylation counts were extracted in different 
contexts using the bismark_methylation_extractor com-
mand (v.0.18.1; [35]). Destranding was carried out using 
the coverage2cytosine script from Bismark using the 
merge_CpG command to increase coverage by pooling 
the top and bottom strand into a single CpG [35]. Reads 

were also aligned to the unmethylated lambda reference 
genome to calculate the error rate of the C-T conversion 
(Refseq accession no. GCF 000840245.1).

Differential methylation analysis
Output from the coverage2cytosine script was then 
inputted into the R package methylKit (v.3.14; [37]) 
where files were filtered and normalised based on cov-
erage, removing sites with abnormally high coverage 
(greater than 99% percentile) or with a coverage less than 
ten in each sample.

A binomial test was then applied to the filtered CpG 
sites where the lambda conversion rate was used as the 
probability of successes and a false discovery rate (FDR) 
of p < 0.05 [38]. As the majority of sites in the Nasonia 
genome show zero methylation, only CpGs which were 
methylated in at least one sample were retained. On 
these methylated CpGs, differential methylation analysis 
was performed using the calculateDiffMeth command in 
methylKit, which implements a logistic regression model. 
Differentially methylated CpG sites were classed as hav-
ing a minimum difference of > 15% methylation and a 
q-value < 0.05. Differential methylation analyses were 
performed across age in each sex.

Genes were classed as differentially methylated if they 
contained at least two differentially methylated CpG 
and a minimum weighted methylation difference of 15% 
across the entire feature [39]. Weighted methylation level 
is classed as the total number of methylated cytosines (C) 
within a region (i), divided by the total coverage of that 
region [39]. A mixed effect model examined the effect of 
sex and age on this weighted methylation with CpG as a 
random effect.

Variable methylation analysis
Variable methylation analysis was carried out on the 
methylated cytosines. A beta regression model was 
applied, with methylation proportion as the response 
variable, and chronological age and sex as predictor vari-
ables for each cytosine. The beta regression was imple-
mented using the betareg function from the R package 
betareg (version 3.1.4) [40].

To identify Variable Methylated Positions (VMPs), the 
Breusch-Pagan test for Heteroscedasticity was performed 
using the bptest function in the R package lmtest (version 
0.9.40) [41]. Multiple testing corrections were applied 
using the Holm-Bonferroni method. CpG sites demon-
strating significant heteroscedasticity were classified as 
age-related VMPs.

Epigenetic drift
Entropy is calculated as;
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with MFi the fraction of methylation on a given CpG and 
N the total number of CpGs measured (5290 significantly 
differentially methylated CpGs).

The effects of chronological age and sex on entropy 
were analysed using a beta regression using the betareg 
package in R [42]. Post-hoc tests were carried out using 
the emmeans package in R [43].

Elastic net regression
Chronological age was regressed against the 5290 age sig-
nificant CpGs’ beta values using an elastic net regression 
with a 3-fold cross validation implemented in the glm-
net R package [44]. The reported accuracy of the epige-
netic clock is expected to be overly optimistic since the 
regression model used cytosines that relate to age in the 
entire data set. The elastic net regression identified 19 
CpGs that predict age. The epigenetic age of each repli-
cate is predicted based on these CpGs methylation state. 
This epigenetic age was correlated with chronological age 
using a spearman’s rank correlation. Age acceleration was 
calculated as the residual from regressing chronological 
age against epigenetic age [27].

Gene ontology enrichment
Gene ontology (GO) terms for N. vitripennis were taken 
from the ensembl metazoa database [45]. GO enrich-
ment analysis was carried out using the hypergeomet-
ric test with Benjamini-Hochberg [46] multiple-testing 
correction, q <0.05. GO terms from variably methylated 
genes and epigenetic clock genes were tested against a 
GO term database made from the GO terms associ-
ated with all methylated genes. Genes were determined 
as methylated if they had a mean weighted methyla-
tion level taken across all replicates greater than the 
lambda spike weighted methylation level of 0.05 in any 
of the samples within each comparison. Genes which 
were consistently hyper or hypo methylated in males 
or females were tested against all differentially methyl-
ated genes in any comparison. REVIGO [47] was used 
to generate treemaps.

Results
Survivourship analysis
Males and females showed different patterns of life expec-
tancy (Cox mixed-effects model: Hazard ratio for females 
= 2.48 (standard error of coefficient = 0.233), z = 3.89, p = 
9.8× 10−5 ), with females’ mean life expectancy being 29 
days and males’ being 17 days, see Fig. 2a. This was greater 

(1)Entropy =
1

N ∗ log 1
2 i

[MFi ∗ logMFi + (1−MFi) ∗ (1− logMFi)]

than the 16.6 days for females and 10.7 days for males pre-
viously found for sucrose-fed individuals [48].

Differential methylation analysis
Five thousand two hundred ninety CpGs were found 
to be significantly differentially methylated between at 
least two time points in males or females. Of these 48% 
were hypomethylated and 52% hypermethylated. Over-
all, DNA methylation increases in Nasonia as it ages 
with males having higher levels (mixed effect model: χ2 
= 933.64, d.f. =1, p < 2.2× 10−16 ) (Fig. 2b). These CpGs 
were found in 2295 annotated genes (Supplemental 
Table S1). As males aged, 280 CpGs were hypermeth-
ylated consistently, corresponding to 114 annotated 
genes (Supplemental Table S2). 218 CpGs were con-
sistently hypomethylated as males age (83 genes - Sup-
plemental Table S3). For females, 58 CpGs (26 genes 
- Supplemental Table S4) were consistently hypermeth-
ylated and 34 CpGs (14 genes - Supplemental Table S5) 
hypomethylated. There was no overlap between these 
groups of CpGs.

In order to explore the function of these genes, we carried 
out a GO enrichment analysis of the four groups of consist-
ently methylated genes compared to all significantly dif-
ferentially methylated genes. Genes which are consistently 
hypermethylated as males age are enriched for telomere 
function including “regulation of telomere maintenance” 
(GO:0032204), “telomere organization” (GO:0032200) 
and “meiotic attachment of telomere to nuclear envelope” 
(GO:0070197) (Supplemental Fig. S1). Genes which are 
consistently hypomethylated as males age are enriched 
for GO terms associated with histone methylation includ-
ing “regulation of histone methylation” (GO:0031060) and 
“histone H3-K4 trimethylation” (GO:0080182). “response 
to ecdysone” (GO:0035075) was also enrich in hypomethyl-
ated genes in ageing males (Supplemental Fig. S2). Genes 
which are consistently hypermethylated as females age are 
enriched for “nuclear-transcribed mRNA catabolic process” 
(GO:0000956), see Supplemental Fig. S3. Genes which are 
consistently hypomethylated as females age are enriched for 
“negative regulation of JUN kinase activity” (GO:0043508) 
and “protein localization to kinetochore” (GO:0034501), see 
Supplemental Fig. S4.

Variably methylated positions
Twenty-nine thousand twelve age-related VMPs were 
found amongst the 375,403 methylated CpGs. The 
identified VMPs were located at 2,451 different genes 



Page 5 of 9Brink et al. BMC Genomics          (2024) 25:305  

(Supplemental Table S6). Supplemental Fig. S5 shows 
a treemap of GO terms associated with these genes, 
these include cell surface receptor signalling path-
way (GO:0007166), cellular component morpho-
genesis (GO:0032989), cellular macromolecule 
localization (GO:0070727) and protein phosphorylation 
(GO:0006468).

Epigenetic entropy
There was a significant interaction of chronological age 
and sex on their effects on epigenetic entropy (Beta 
regression: χ2 = 5.4654, d.f. = 1, p = 0.0019) , see Fig. 2c. 
Females display the increasing pattern found in other 
species (F= 7.491, df = 1, p = 0.0062), but males display 
no relationship between entropy and chronological age 
(F= 0.304, df = 1, p = 0.5816).

Epigenetic clock
The epigenetic clock was constructed by regressing 
chronological age against the 5290 significantly differ-
entially methylated CpGs. This identified 19 CpGs that 
best predict age. Eight of these decrease in methylation as 
Nasonia age and eleven increase in methylation. The full 
list of these CpGs and the genes where they are located 
can be found in Supplemental Table S7. GO terms asso-
ciated with these genes can be seen in Supplementary 

Fig.  S6. These include glyoxylate cycle (GO:0006097), 
response to oxidative stress (GO:0006979), induction of 
programmed cell death (GO:0012502), and regulation of 
cell growth (GO:0001558).

The epigenetic age of each replicate is the weighted aver-
age of these CpGs’ methylation state. This correlates with 
chronological age (Spearman’s ρ = 0.94, p = 1.4 × 10−8 , 
see Fig. 2d), with a Root Mean Square Error of 0.39 days 
between chronological age and epigenetic age. Male and 
females show no difference in age acceleration (Wilcoxon 
test:W = 35, p = 0.9626), see Supplementary Fig. S7.

Discussion
We have found evidence of dynamic DNA methylation 
changes associated with ageing in the model insect 
Nasonia vitripennis. This includes differentially meth-
ylated CpGs, variably methylated CpGs, an increase in 
epigenetic entropy in females and an epigenetic clock 
that accurately predicts age in Nasonia. Our methyla-
tion data is based on whole body samples. Individual 
cell or tissue types are known to have larger differ-
ences in methylation than are found throughout age-
ing [49]. Our finding of age-related epigenetic changes 
despite using whole body samples fits with the use of 
pan-tissue epigenetic clocks in humans, although see 
Porter et al. [49].

Fig. 2 a Kaplan-Meier survival curves for female (n = 70) and male (n = 67) Nasonia vitripennis adults. Shaded areas represent the 95% confidence 
intervals. b Estimated marginal means of methylation proportion per methylated CpG against chronological age. Shaded bars are 95% confidence 
intervals c Scatterplots of epigenetic entropy based on the 5290 age-related differentially methylated CpGs over time for male and female Nasonia. 
Each point is a single WGBS library made up of ten individuals. Lines represent the beta regression predictions d Scatterplot of epigenetic age 
versus chronological age of male (n=8) and female (n = 9) Nasonia samples. Each sample is made up of the whole bodies of ten individuals
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A limitation of this study is the short time span over 
which the methylation samples were collected. We based 
our BS-seq sampling on an earlier study that found that 
males had an average adult life expectancy of 10.7 days 
and females 16.6 days [48]. Our wasps lived 67% longer, 
meaning our methylation analysis captured a reduced 
amount of the ageing process. Despite this, our results 
still display clear ageing patterns in methylation. This fits 
with epigenetic clocks in other animals where there is a 
linear change in methylation over the course of the adult 
lifespan [27].

In our survivial experiment, females live longer than 
males. The survival curves also appear different. Females 
have the classic type 1 curve, but males appear almost as a 
type 3 curve with high mortality rates at a younger age, but 
the rate of death seems to slow down once males go past 
median lifespan. The increased lifespan of females reflects 
the pattern found in humans, most mammals and Dros-
ophila [50]. In humans, this sex difference in lifespan is 
universal but in other species, it depends strongly on geno-
type and environment. Therefore, any general conclusions 
about sex difference in Nasonia ageing will need further 
experiments using different genotypes and environments.

Overall, DNA methylation increases in Nasonia as 
it ages. This is mirrored in the pattern of differentially 
methylated genes, with the majority being consistently 
hypermethylated as Nasonia age. This contrasts with 
the general hypomethylation found in mammalian age-
ing [51], although this is highly tissue specific with many 
tissues and cell types showing no relationship between 
global DNA methylation and ageing [5]. With the pro-
viso that our data comes from whole body analysis, 
this hypermethylation pattern in ageing Nasonia might 
reflect the different roles of DNA methylation in inverte-
brates compared to mammals [52].

Females consistently exhibit lower levels of methylation 
compared to males as they age. Additionally, there is a 
much lower number of genes showing consistent hyper-
methylation or hypomethylation in aging females com-
pared to aging males. This trend is reminiscent of a recent 
finding in the mealybug Planococcus citri [53], where 
males exhibit higher methylation levels distributed across 
the genome, while females have lower overall methyla-
tion but concentrated in specific regions. The authors 
hypothesize that this pattern is related to the mealybug’s 
paternal genome elimination process, wherein paternal 
chromosomes in males are highly condensed and elimi-
nated from sperm. This sex-specific distribution of meth-
ylation may also be observed in Nasonia. Wang et al. [54] 
discovered that in Nasonia, only a few genes with male-
biased expression are methylated, while a considerable 
number of genes with female-biased expression exhibit 
methylation.

Epigenetic drift, measured as either variably meth-
ylated positions or entropy increases as Nasonia ages. 
Nearly 8% of methylated CpGs were classified as vari-
ably methylated positions. Amongst them are a number 
of sirtuins (see Supplementary Table S6), which have 
been proposed as central to epigenetic ageing [55]. 
VMPs have been proposed to measure secondary age-
ing [5]. Primary ageing are changes in all tissues over 
time, secondary ageing are deleterious changes aggra-
vated by the environment and disease [5]. This idea 
suggests that VMPs are the part of the methylome that 
responds to ageing interventions. That is the methy-
lome becomes more youthful by returning to its less 
noisy original state.

Epigenetic entropy, at least in females, seems to fol-
low the mammalian pattern, with the methylome 
becoming less predictable as female Nasonia age. A 
recent study showed that epigenetic entropy in a spe-
cies predicts that species’ maximum lifespan [56]. 
Males, however show no relationship between chron-
ological age and entropy. We offer two possible expla-
nations of this. Firstly, the male pattern seems to be 
reflected in the survivourship curve (Fig.  2a), where 
our day 16 samples almost correspond to mean male 
lifespan (17 days). After this point, the rate of death 
seems to slow down. This slower rate of death might be 
associated with this decreased entropy in sixteen day 
old males, akin to the late life cessation of age-related 
deterioration found in many species [57]. Secondly, the 
lifespan of males appears more variable than females. 
This is most clearly seen in the age acceleration of the 
two sexes, see Supplementary Fig.  S7. This increased 
variation in male lifespan could mean, with our small 
sample size, it is more difficult to find the relationship 
with entropy in males.

The tight correlation between chronological age and 
epigenetic age as calculated by the epigenetic clock is to 
be expected. There is very little variation in our test sub-
jects. They all come from a single strain and are kept in 
exactly the same environment. That is, there is nothing 
to induce variation in biological ageing. We also found 
no age acceleration between males and females. This 
epigenetic clock is similar to results in many vertebrates 
[58] and even recently in the crustacean, the water flea 
Daphnia magna [9]. However, this is the first time an 
epigenetic clock has been discovered in a tractable insect 
model.

Unsurprisingly, there is no direct correspondence 
between the thirteen genes found in multiple human 
epigenetic clocks [59] and the genes associated with our 
nineteen clock CpGs. Although, the CpG having the 
most effect on epigenetic age in Nasonia is located in 
the gene for a leucine-rich repeat kinase (lrrk). LRRK2 
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mutations are a common cause of age related autosomal-
dominant Parkinson’s disease [60]. Genes associated with 
neurodegenerative diseases are common in mammalian 
epigenetic clocks. There is some overlap in the GO terms 
associated with a pan-mammalian epigenetic clock [61] 
and those we found in Nasonia (Supplementary Fig. S6). 
These include nucleic acid binding and RNA metabolic 
processes.

We predict two main areas where our establish-
ment of an epigenetic clock in a model insect species 
will be useful; firstly, the biology underpinning epige-
netic clocks and secondly, how influenced epigenetic 
clocks are by ageing interventions. Variation in the 
rate of an individual’s epigenetic clock is affected by a 
large number of traits including inflammation, cell divi-
sion, metabolic effects, cellular heterogeneity, diet, and 
numerous other lifestyle factors [26]. Nasonia, with its 
simplified insect systems, is perfect to experimentally 
separate the different processes involved in the biology 
of the clock into its constitutive parts [12]. Being short-
lived (3-4 weeks as opposed to 26-30 months for mice), 
Nasonia are ideal to measure the effects of ageing inter-
ventions on both life span and epigenetic ageing. This 
will answer the question does a short-term decrease in 
someone’s epigenetic clock score lower their chance of 
developing age-related ill health, that is if epigenetic 
clocks can be used as endpoints for clinical trials of 
various anti-ageing interventions [28].

Starting with Medawar, genetic mutations were seen 
as the driver of ageing [62]. Recent theories on the 
causes of ageing focus rather on the loss of epigenetic 
information as the main driver of ageing [55]. These 
epigenetic factors due to their known plasticity, are 
tempting targets for anti-ageing interventions [63]. We 
propose Nasonia vitripennis, with its fully functional 
DNA methylation system and its now established age-
ing methylome as a model for this epigenetic era of 
ageing research.
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