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Abstract
Background Antimicrobial resistance (AMR) remains a significant global health threat particularly impacting low- 
and middle-income countries (LMICs). These regions often grapple with limited healthcare resources and access to 
advanced diagnostic tools. Consequently, there is a pressing need for innovative approaches that can enhance AMR 
surveillance and management. Machine learning (ML) though underutilized in these settings, presents a promising 
avenue. This study leverages ML models trained on whole-genome sequencing data from England, where such 
data is more readily available, to predict AMR in E. coli, targeting key antibiotics such as ciprofloxacin, ampicillin, and 
cefotaxime. A crucial part of our work involved the validation of these models using an independent dataset from 
Africa, specifically from Uganda, Nigeria, and Tanzania, to ascertain their applicability and effectiveness in LMICs.

Results Model performance varied across antibiotics. The Support Vector Machine excelled in predicting 
ciprofloxacin resistance (87% accuracy, F1 Score: 0.57), Light Gradient Boosting Machine for cefotaxime (92% accuracy, 
F1 Score: 0.42), and Gradient Boosting for ampicillin (58% accuracy, F1 Score: 0.66). In validation with data from Africa, 
Logistic Regression showed high accuracy for ampicillin (94%, F1 Score: 0.97), while Random Forest and Light Gradient 
Boosting Machine were effective for ciprofloxacin (50% accuracy, F1 Score: 0.56) and cefotaxime (45% accuracy, F1 
Score:0.54), respectively. Key mutations associated with AMR were identified for these antibiotics.

Conclusion As the threat of AMR continues to rise, the successful application of these models, particularly on 
genomic datasets from LMICs, signals a promising avenue for improving AMR prediction to support large AMR 
surveillance programs. This work thus not only expands our current understanding of the genetic underpinnings of 
AMR but also provides a robust methodological framework that can guide future research and applications in the 
fight against AMR.
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Background
Antimicrobial resistance (AMR) is a pressing global 
health challenge that threatens human and animal well-
being [1]. Recognized as a priority by the World Health 
Organization (WHO) and the United Nations General 
Assembly [2], AMR’s unchecked proliferation could lead 
to catastrophic consequences, with Africa alone pro-
jected to account for millions of annual deaths by 2050 
[3]. In 2019, reports showed that AMR all-age death rates 
were highest in some low- and middle-income countries 
(LMICs), making AMR not only a major health problem 
globally but a particularly serious problem for some of 
the poorest countries in the world [4].

The WHO launched the Global Antimicrobial Resis-
tance and Use Surveillance System (GLASS) to enhance 
AMR evidence base for priority pathogens including 
Escherichia coli, Klebsiella pneumoniae, Acinetobacter 
baumannii, Staphylococcus aureus, Streptococcus pneu-
moniae, Salmonella spp and others. While capacities for 
antimicrobial susceptibility testing (AST) exist across 
Africa, they are unevenly distributed and often limited in 
scope, particularly in LMICS. The COVID-19 pandemic 
has however catalyzed the broader adoption of Next-
Generation Sequencing (NGS) platforms in Africa, now 
increasingly available to support a range of disease sur-
veillance programs, including AMR. This technological 
advance offers a valuable complement to traditional AST 
methods, although the distribution and accessibility of 
NGS capabilities remain variable across the continent.

In Uganda, available data indicates concerning levels 
of drug resistance among E. coli strains (45.62%) with 
substantial resistance to key antibiotics [5]. Similarly, in 
Tanzania and Nigeria, studies have highlighted the grow-
ing challenge of AMR, reflecting patterns of resistance 
that may differ from other regions, thereby necessitating 
localized surveillance and tailored predictive models [6]. 
These countries exemplify the diverse AMR landscape 
across Africa and underscore the need for enhanced 
detection methods and strengthening diagnostic pro-
grams [7–9].

Overall, the increasing availability of whole-genome 
sequence (WGS) data in dedicated databases, exempli-
fied by tools like CARD and Resfinder, has facilitated the 
identification of antibiotic resistance determinants [10, 
11]. Existing approaches for detecting AMR from micro-
bial whole-genome sequence data, such as rule-based 
models relying on identifying causal genes in databases, 

have high accuracy for some common pathogens but are 
limited in detecting resistance caused by unknown mech-
anisms in other major pathogenic strains. Machine learn-
ing techniques, including random forest, support vector 
machines, and neural networks have shown great prom-
ise in predicting antimicrobial resistance [12]. These 
methods excel in capturing complex patterns within large 
datasets and can directly learn valuable features from 
genomic sequence data without relying on assumptions 
about the underlying mechanisms of AMR. Previous 
studies using machine learning have demonstrated suc-
cess in predicting AMR and pathogen invasiveness from 
genomic sequences [13–18]. Despite this potential, the 
application of machine learning for AMR prediction has 
not been widely explored in LMICs, often due to data 
scarcity and the underrepresentation of AMR genetic 
determinants within reference databases [19].

To bridge this gap, we adopted a cross-continental 
approach, training machine learning models on data 
from England and validating them on datasets from 
Uganda, Tanzania and Nigeria. This strategy aimed to 
evaluate the efficacy of machine learning in predicting 
AMR for E. coli and assess the models’ generalizability 
across diverse African settings and datasets. By leverag-
ing microbial genomic data and advanced machine learn-
ing techniques, this study endeavored to enhance the 
accuracy and efficiency of AMR prediction, thus contrib-
uting significantly to the global battle against AMR. This 
comprehensive analysis provides crucial insights into the 
practical implementation and scalability of AMR predic-
tion strategies, especially in LMICs where genomic data 
is limited and the burden of AMR is disproportionately 
high.

Methods
Study design
This was a cross-sectional study utilizing data collected 
in the past years to explore associations between predic-
tors and outcomes.

Sample size
In this study, two datasets, referred to as the Africa data 
and the England data of E. coli strains were used.

Data description
The study focused on three antibiotics ciprofloxacin 
(CIP), ampicillin (AMP) & cefotaxime (CTX). Each of 

Table 1 Overview of the data
Antibiotic CIP CTX AMP
Source Africa England Africa England Africa England
Resistant 82 266 92 115 166 245
Susceptible 92 1228 16 1313 9 167
Total 174 1494 108 1428 175 412
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these represented an antibiotic from a different class of 
antibiotics (penicillins, cephalosporins, and fluoroquino-
lones). They are broad-spectrum antibiotics with activ-
ity against numerous Gram-positive and Gram-negative 
bacteria, including E. coli. These drugs were selected 
based on their increasing prevalence of resistance as 
reported in the GLASS report [5]. In addition, data on 
resistance to these drugs was available in the study data-
sets, making them an ideal choice for the study. The 
study utilized data from one of the largest complete E. 
coli datasets that were already available online from the 
National Center for Biotechnology Information, elimi-
nating the need for additional data collection efforts. We 
categorised the data into two primary datasets:

England dataset Comprising of 1,496 samples for cip-
rofloxacin; 1,428 for cefotaxime; and 1,396 for ampicillin. 
The dataset was collected from England and consisted of 
WGS of 1509 E. coli strains and corresponding pheno-
typic information [20]. This data was collected in England 
by the British Society for Antimicrobial Chemotherapy 
and from the Cambridge University Hospitals NHS Foun-
dation Trust as part of a longitudinal survey of E. coli to 
contextualize the ST131 lineage within a broader E. coli 
population. This data was made publicly available by the 
Wellcome Trust Sanger Institute (Accession: PRJEB4681).

Africa dataset Comprising of data from Uganda, Tanza-
nia and Nigeria. The first Africa dataset consisted of sam-
ples collected from pastoralist communities of Western 
Uganda to study phylogenomic changes, virulence, and 
resistant genes. It contained WGS data for a total of 42 E. 
coli strains [21]. These were isolated from stool samples 
from both humans (n = 30) and cattle (n = 12) collected 
between January 2018– March 2019. WGS was carried 
out at facilities of Kenya Medical Research Institute -Well-
come Trust, Kilifi. The data is made publicly available by 
the author in a repository (DOI https://doi.org/10.17605/
OSF.IO/KPHRD). The second Africa dataset consisted of 
73 samples collected from both Uganda (n = 40) and Tan-
zania (n = 33) in a study that was unravelling virulence 
determinants in extended-spectrum beta-lactamase-
producing E. coli from East Africa using WGS [22]. The 
third dataset consisted 68 samples collected from Nigeria 
as part of a study looking at WGS data from E. coli isolates 
from South-West Nigeria hospitals [23] (Table 1).
The samples that had not been screened for AST were 
removed from the dataset.

Variant calling of whole-genome sequencing data
The raw WGS paired-end reads were first quality checked 
and filtered by fastp 0.23.4 using its default parameters: 
adapter detection and trimming, sliding window qual-
ity filtering with a threshold of Q20, end trimming for 

low quality bases and removing reads shorter than 15 bp 
post-trimming [24]. The filtered reads were aligned to the 
E. coli K-12 substr. MG1655 U00096.3 complete genome 
using Burrows-Wheeler Aligner-mem (0.7.17-r1188) 
algorithm with default seed length of 19, bandwidth of 
100, and off-diagonal X-dropoff of 100 [25]. BCFtools 
1.18 was used for calling variants with a minimum of 
depth coverage of 10x and allelic frequency of 0.9 [26]. 
SAMtools 1.18 was used to sort the aligned reads and 
BCFtools 1.18 was used to filter the raw variants applying 
default filtering thresholds, including a minimum read 
depth of 2, SNP quality of 20 [27]. The entire bioinfor-
matics workflow was subsequently executed on the Open 
Science Grid High Throughput Computing infrastructure 
[28, 29].

SNPs pre-processing and encoding
We employed a previously established methodology for 
constructing the SNP matrix from the VCF files. First, 
the reference alleles, variant alleles, and their positions 
from the VCF files were extracted and merged with the 
isolates based on the position of the reference alleles. A 
SNP matrix was built where the rows represented the 
samples, and the columns represented the variant alleles 
[15]. The SNPs were converted from characters to num-
bers through categorical encoding where the categories 
are converted to numbers. The SNPs were encoded for 
machine learning using label encoding, where the A, C, 
G, T in the SNP matrix were converted to 1,2,3,4 (Fig. 1). 
It is acknowledged that certain machine learning models 
could misconstrue these as ordinal values; however based 
on previous studies demonstrating minimal performance 
difference between label, one-hot and Frequency Chaos 
Game Representation encoding methodologies [15], label 
encoding was selected for its computational efficiency 
in handling large genomic datasets. The missing values 
encoded as N were converted to 0. The gene positions 
that had more than 90% as null were removed and the 
remaining were selected for machine learning. The anti-
biotic phenotypes were encoded as binary values: ‘S’ for 
susceptible was mapped to 0, and ‘R’ for resistant was 
mapped to 1.

Machine learning
We trained eight machine learning algorithms, each 
selected for its unique capabilities in predictive modeling. 
The training of these models was conducted individually 
for each antibiotic, focusing on one antibiotic at a time 
to ensure the specificity and accuracy of the predictions. 
Logistic Regression (LR) provided a baseline for binary 
classification, and Random Forest (RF) and Gradient 
Boosting (GB) were chosen for their effectiveness in han-
dling high-dimensional data and intricate relationships. 
Support Vector Machines (SVM) were implemented 

https://doi.org/10.17605/OSF.IO/KPHRD
https://doi.org/10.17605/OSF.IO/KPHRD
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with a sigmoid kernel, optimized through hyperparam-
eter tuning to a C parameter of 9.795846277645586 and 
gamma set to ‘auto’. Feed-Forward Neural Networks 
(FFNNs), designed using Keras 2.12.0, consisted of an 
input layer with 64 neurons, a hidden layer with 32 neu-
rons, and an output layer with one neuron, using binary 
cross-entropy loss and the Adam optimizer. The FFNN 
was trained for 20 epochs with a batch size of 32, with 
hyperparameter tuning improving its configuration. 
XGBoost (XGB) with xgboost 1.7.6, LightGBM (LGB) 
using lightgbm 4.1.0, and CatBoost using catboost 1.2.2 
were implemented with default parameters, leveraging 
their efficiencies with large-scale data.

All models were implemented using Scikit-learn ver-
sion 1.3.2, except for FFNNs which were implemented in 
Keras. Hyperparameter tuning was conducted for SVM 
and FFNNs using scikit-learn’s RandomizedSearchCV, 
which helped identify the most effective configura-
tions for these models. The training was performed on 
both originally imbalanced and balanced datasets. For 
balancing, a simple random down-sampling approach 
was employed to reduce the majority class, enabling 

us to assess the impact of class distribution on model 
performance.

This comprehensive approach, involving diverse algo-
rithms and hyperparameter tuning, allowed for an 
exhaustive evaluation of predictive models in the detec-
tion of AMR, under varied dataset conditions.

Statistical evaluation
The machine learning models were optimized using 
five times 5-fold stratified cross-validation. For the final 
evaluation of the data from Africa, the performance was 
analyzed on the raw public dataset and on a balanced set 
using a downsampling strategy. The models were evalu-
ated using the receiver operating characteristics curve 
(ROC) and the area under the curve (AUC). Precision, 
recall, f1-score, and accuracy for all models were calcu-
lated. In order to determine the statistical significance 
of the differences in AUC scores between models, we 
employed Tukey’s Honestly Significant Difference (HSD) 
test [30]. This test is appropriate for comparing all possi-
ble pairs of groups in a family of models without increas-
ing the risk of Type I errors that multiple comparisons 
may induce. The significance threshold was set at α = 0.05, 

Fig. 1 Illustration of the preprocessing and encoding process of the SNPs. Created with Biorender.com
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indicating that differences with p-values less than this 
threshold were considered statistically significant. The 
pairwise comparisons were conducted using statsmodels 
0.14.0.

Identification of genes
To identify the top 10 most important features for the 
models mentioned, the methods for calculating feature 
importance varied between models. For tree-based mod-
els like Random Forest, Gradient Boosting, XGBoost, 
LightGBM, and CatBoost, we utilized the feature_impor-
tances attribute, which quantifies the contribution of 
each feature to the model’s prediction. In Logistic Regres-
sion, feature importance was deduced from the absolute 
values of the coefficients. The SVM model employed the 
coefficients’ absolute values for linear kernels and Select-
KBest with the chi2 method for non-linear kernels. For 
the Keras Neural Network model, we averaged the abso-
lute values of the weights in the first layer, reflecting the 
relevance of each feature in the model. The correspond-
ing gene annotations were extracted from the refer-
ence genome for the identified SNPs. By examining the 
functional roles of these genes, an investigation of their 
potential contribution to antibiotic resistance mecha-
nisms in E. coli was done (Fig. 2).

Results
Performance of machine learning methods in predicting 
AMR
We assessed the performance of eight machine learn-
ing algorithms, including LR, RF, SVM, GB, XGB, LGB, 
CatBoost, and FFNN, in predicting antibiotic resistance 
in E. coli. Multiple metrics, such as accuracy, precision, 
recall, F1 score, and the area under the receiver operat-
ing characteristics (ROC) curve, were used for evaluation 
(Table 2). The models were optimized using 5-fold strati-
fied cross-validation and confidence intervals recorded 
(Supplementary Material 1). Tukey’s Honestly Significant 
Difference (HSD) test was employed for pairwise com-
parisons of AUC scores.

For CIP, we evaluated the models’ effectiveness con-
sidering the class imbalance issue. We applied a random 
down-sampling strategy but didn’t observe significant 
improvements. The FFNN emerged as the top performer 
with the highest mean AUC score (0.83), while SVM 
achieved the highest accuracy (0.87). HSD tests revealed 
significant performance differences between several pairs 
of models, specifically RF (p < 0.001) when compared to 
all the models.

For AMP, the SVM achieved the highest mean AUC 
score (0.72). GB had the highest F1 score and precision, 
and CB and SVM had the highest recall scores.

On the CTX, FFNN stood out with the highest mean 
AUC score (0.72), while SVM recorded the highest 

accuracy (0.92). The Random Forest model excelled in 
precision, and Logistic Regression had the highest F1 
score (0.42) (Fig. 3).

Evaluation of the machine learning models on the Africa 
data
We assessed the generalizability of our machine learning 
models on an external dataset from Uganda, Nigeria and 
Tanzania, consisting of up to 170 samples with a severe 
class imbalance issue. Performance metrics for each 
model on this dataset (Table 3).

In the external validation with the African dataset, the 
class imbalance presented varied challenges across dif-
ferent antibiotics. For CIP, the Logistic Regression model 
exhibited an accuracy of 0.55 and precision of 0.59, but 
a recall of only 0.16. The RF model achieved an accuracy 
of 0.50 and an AUC-ROC score of 0.53. SVM displayed 
an accuracy of 0.50, while GB showed an accuracy of 0.52 
and a recall of 0.32. XGB had an accuracy of 0.57, and 
both LGB and CatBoost had accuracies just above 0.55, 
with CB also attaining an AUC-ROC of 0.58. The FFNN 
model did not identify any true positives.

For AMP, LR achieved an accuracy of 0.94 and a near-
perfect recall. RF had a precision of 0.93 but a lower 
accuracy of 0.38. SVM’s performance was close to that 
of LR, with high accuracy and recall but a slightly lower 
AUC-ROC score of 0.57. GB, XGB, LGB, and CatBoost 
demonstrated solid accuracy and precision, albeit with 
varying AUC-ROC scores. The FFNN model’s accuracy 
was at 0.05.

Regarding CTX, LR recorded an AUC-ROC of 0.39, RF 
exhibited high precision but low recall, and SVM had a 
precision of 1. GB had the highest accuracy among the 
models at 0.22 and the highest AUC-ROC score of 0.57. 
XGB and LGB showed higher accuracy and recall rates, 
with LGB achieving the highest recall of 0.38. The FFNN 
model again showed zero capacity for true positive iden-
tification (Fig. 4).

Marker genes associated with antibiotic resistance
A crucial part of machine learning in the genomic field is 
to interpret the model’s results. In our case, the analysis 
of feature importance and interactions provided insights 
into which genetic mutations are most influential in pre-
dicting antibiotic resistance. For each model, we identi-
fied the top 10 features (SNP positions) with the highest 
importance scores, which reflect their contribution to the 
accuracy of the model’s predictions.

For instance, in the Logistic Regression model on CIP, 
the mutation at position ‘3589009’ has the highest impor-
tance score, followed by ‘4040529’, ‘1473047’, and so on. 
These positions potentially have a substantial impact 
on antibiotic resistance, as mutations in these areas of 
the gene could probably cause the bacteria to become 
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Fig. 2 Flowchart showing how genes were identified
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resistant to specific antibiotics. The exact biological 
mechanism for this can be complex, involving changes in 
the gene’s protein product that might render an antibiotic 
ineffective (Table 4).

The models used different ways to calculate these 
importance scores, which is why they differ between 
models. Still, positions that are consistently high across 
different models can be a strong indicator of their signifi-
cance in conferring antibiotic resistance.

Gene annotation
The identification of genetic SNPs associated with anti-
biotic resistance can shed light on the underlying genetic 
mechanisms that contribute to drug resistance in E. coli 
(Table  5). By analyzing the top SNPs from each predic-
tive model, key marker genes that potentially play a role 
in antibiotic resistance were identified. For CIP, SNPs 
were identified in the following genes: rlmL, yehB, rrfA, 
vciQ, and ygjK. For AMP, the implicated genes include 
rcsD, yjfI, tdcE, ugpB, ugpQ, and ggt. Lastly, for CTX, 
SNPs were found in ydbA, mltB, lomR, mppA, recD, and 
glyS. The identified SNPs in these genes underscore the 
complex and multifactorial nature of antibiotic resistance 
in E. coli. A variety of biological processes, such as mem-
brane transport, rRNA methylation, DNA repair, and 
cell wall synthesis, are potentially collectively implicated 
in the development of resistance. Further experimental 

validation of these marker genes is warranted to confirm 
their role in antibiotic resistance.

Discussion
This study embarked on an explorative journey to under-
stand the generalizability of machine learning models in 
predicting AMR in E. coli, utilizing datasets from Eng-
land and multiple African countries. While the models 
showed promise on the England dataset, the application 
to the highly imbalanced African dataset illuminated sig-
nificant challenges. The validation of machine learning 
models on the African dataset, which had a higher inci-
dence of resistant strains compared to the training data 
from England, highlighted the challenges and potential of 
such tools; discrepancies in class distribution impacted 
performance measures like recall and precision, yet the 
robustness and real-world applicability of these models 
were affirmed when they successfully predicted resis-
tance across varied datasets.

In the England dataset, models like SVM (Accuracy: 
0.87, AUC-ROC: 0.86) and Logistic Regression (AUC-
ROC: 0.77) demonstrated effectiveness. However, the 
transition to the African dataset, characterized by sig-
nificant class imbalance, presented a stark contrast. For 
example, the Random Forest model experienced a decline 
in accuracy from 0.75 for CIP in the England dataset to 
0.50 in the African dataset.

Table 2 Performance of different machine learning methods for predicting AMR on England data
Antibiotic Model Accuracy Precision Recall f1_score auc_roc
CIP Logistic Regression 0.85 0.60 0.48 0.54 0.83

Random Forest 0.84 0.58 0.35 0.44 0.74
SVM 0.87 0.68 0.50 0.57 0.86
Gradient Boosting 0.86 0.72 0.33 0.46 0.83
XGBoost 0.85 0.63 0.41 0.49 0.82
LightGBM 0.85 0.61 0.43 0.50 0.84
CatBoost 0.87 0.81 0.39 0.52 0.84
Feed-Forward NN (Keras) 0.83 0.52 0.50 0.51 0.77

AMP Logistic Regression 0.48 0.56 0.67 0.57 0.49
Random Forest 0.43 0.52 0.57 0.54 0.44
SVM 0.51 0.56 0.71 0.63 0.47
Gradient Boosting 0.58 0.63 0.69 0.66 0.52
XGBoost 0.53 0.61 0.57 0.59 0.51
LightGBM 0.53 0.60 0.61 0.61 0.52
CatBoost 0.51 0.56 0.71 0.63 0.48
Feed-Forward NN (Keras) 0.52 0.58 0.67 0.62 0.47

CTX Logistic Regression 0.91 0.47 0.38 0.42 0.77
Random Forest 0.91 0.47 0.29 0.36 0.73
SVM 0.92 1.00 0.04 0.08 0.79
Gradient Boosting 0.91 0.33 0.12 0.18 0.82
XGBoost 0.91 0.47 0.29 0.36 0.81
LightGBM 0.92 0.57 0.33 0.42 0.81
CatBoost 0.91 0.33 0.12 0.18 0.80
Feed-Forward NN (Keras) 0.91 0.42 0.21 0.28 0.80
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Fig. 3 Performance of different machine learning methods for predicting AMR on England microbial sequence data
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The performance of the models on the African data-
set, particularly in terms of recall, highlights potential 
overfitting to the England dataset and the need for more 
generalizable models. The disparity in class distribution 
between the datasets—where the England dataset had a 
higher proportion of susceptible strains and the African 
dataset had a higher proportion of resistant strains—pre-
sented both challenges and opportunities.

A notable observation in this study is the impressive 
performance of the models for predicting ampicillin 
(AMP) resistance in the African dataset, despite their 
moderate performance on the England dataset. For AMP, 
models demonstrated substantial accuracy and recall in 
the African dataset (e.g., Logistic Regression: Accuracy 
0.94, Recall 0.99, F1 0.97), highlighting their effectiveness 
in identifying true resistance cases. This success may be 
attributed to the distinct resistance mechanisms of AMP, 
which were perhaps better captured in the training data, 
leading to more accurate predictions in the validation 
dataset, or the data representation of the AMP training 
dataset which might have contained patterns that were 
more representative of the resistance seen in the African 
dataset.

Moreover, the process of down-sampling the England 
dataset for training, while fostering a balanced environ-
ment, did not uniformly enhance model performance. 
While down-sampled models showed a slight improve-
ment for AMP, indicating that down-sampling might 

enhance the model’s sensitivity to specific resistance pat-
terns associated with AMP, this effect was not as pro-
nounced for CIP and CTX.

The identification of SNPs associated with antibiotic 
resistance can illuminate the genetic mechanisms driving 
drug resistance in E. coli. By analyzing the top SNPs from 
each predictive model, we identified key marker genes 
potentially involved in antibiotic resistance. For CIP, 
SNPs were identified in the following genes: ugpC, rlmL, 
yciQ, ygjK, yehB, rrfA, ytfB, and yjjW. These genes encode 
for various bacterial functions. For instance, ugpC is 
part of the glycerol-3-phosphate (G3P) transport system 
implicated in phospholipid biosynthesis, and RlmL is an 
enzyme involved in the methylation of ribosomal RNA 
(rRNA). mdtC is a component of multidrug efflux pump 
systems that can contribute to antibiotic resistance by 
actively pumping out antibiotics from bacterial cells. It’s 
important to note that while machine learning can high-
light these genes as candidates, experimental validation is 
essential to confirm their roles in antibiotic resistance.

Implications and applications
While our research concentrated primarily on three 
specific antibiotics, the methodology we’ve developed 
is versatile and readily adaptable for investigating other 
antibiotics and can be extended to resistance-associated 
SNPs in a variety of pathogens beyond just bacteria. This 
flexibility allows for a broader scope of study, opening the 

Table 3 Performance of different machine-learning methods for predicting AMR on Africa data
Antibiotic Model Accuracy Precision Recall f1_score auc_roc
CIP Logistic Regression 0.55 0.59 0.16 0.25 0.48

Random Forest 0.50 0.48 0.68 0.56 0.53
SVM 0.50 0.31 0.05 0.08 0.38
Gradient Boosting 0.52 0.49 0.32 0.39 0.49
XGBoost 0.57 0.67 0.17 0.27 0.56
LightGBM 0.55 0.62 0.12 0.20 0.51
CatBoost 0.56 0.61 0.17 0.27 0.58
Feed-Forward NN (Keras) 0.56 0.71 0.12 0.21 0.49

AMP Logistic Regression 0.94 0.95 0.99 0.97 0.60
Random Forest 0.38 0.93 0.38 0.54 0.34
SVM 0.86 0.94 0.91 0.93 0.57
Gradient Boosting 0.59 0.96 0.59 0.73 0.68
XGBoost 0.82 0.96 0.84 0.90 0.62
LightGBM 0.34 0.89 0.35 0.50 0.38
CatBoost 0.39 0.98 0.36 0.53 0.64
Feed-Forward NN (Keras) 0.66 0.95 0.67 0.79 0.62

CTX Logistic Regression 0.39 0.96 0.29 0.45 0.70
Random Forest 0.20 0.88 0.08 0.14 0.61
SVM 0.25 1.00 0.12 0.21 0.68
Gradient Boosting 0.22 1.00 0.09 0.16 0.57
XGBoost 0.44 0.94 0.36 0.52 0.65
LightGBM 0.45 0.95 0.38 0.54 0.63
CatBoost 0.24 0.86 0.13 0.23 0.55
Feed-Forward NN (Keras) 0.15 0.00 0.00 0.00 0.63
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Fig. 4 Performance of different machine learning methods for predicting AMR on Africa microbial sequence data
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door for a comprehensive understanding of AMR mech-
anisms. In addition, the applicability of our approach 
extends beyond the realm of infectious diseases, holding 
promise for other branches of biomedical research, such 
as predicting resistance to cancer treatments by enabling 
precise targeted therapy.

Limitations
While this study has provided valuable insights into 
predicting genotypic resistance to ciprofloxacin, ampi-
cillin, and cefotaxime in E. coli strains, it is important 
to acknowledge several limitations that should be con-
sidered when interpreting the results. First, it is impor-
tant to acknowledge the inherent limitation of focusing 
exclusively on SNPs as the single specific genomic factor. 
Antimicrobial resistance is a complex phenomenon influ-
enced by various genomic drivers including resistance 
genes, insertion sequences, plasmids and AMR gene 
cassettes which collectively contribute to the intricate 
landscape of resistance mechanisms. Our study, by con-
centrating on SNPs, represents a deliberate simplification 
to ensure depth and clarity in our ML analysis, driven 
by data quality and the need for clinically interpretable 
models. However, we recognise that the exclusive empha-
sis on SNPs may not capture the entirety of the multifac-
eted interplay within resistance determinants.

Furthermore, it is worth noting that the validation of 
the models on Africa data presented some challenges. 
The availability of whole-genome sequence data from 
Africa was limited, resulting in a relatively small dataset 
for model evaluation. Additionally, the African dataset 
exhibited high-class imbalance, where certain resistance 
classes were significantly underrepresented. This imbal-
ance can introduce bias and affect the performance 
metrics of the models. Due to our study’s uniqueness, 
traditional benchmarking might not capture our nuanced 
challenges. Future studies should explore alternative 
methodologies for a comprehensive evaluation of predic-
tive models in diverse contexts.

Moreover, it is important to highlight that the perfor-
mance of the models in this study is specific to the con-
text of the datasets used, which may not fully represent 
the diversity and complexity of AMR patterns observed 
in other regions or populations. Therefore, caution 
should be exercised when generalizing the findings to 
different settings. Despite these limitations, this study 
provides a valuable foundation for future research and 
highlights areas for improvement and expansion. Incor-
porating additional variables, addressing the class imbal-
ance, and expanding the dataset to include a more diverse 
range of sequences would enhance the robustness and 
applicability of the models. Overall, while the findings of 
this study contribute to our understanding of genotypic 
resistance prediction, it is important to recognize these Ta
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limitations and consider them in the broader context of 
AMR research.

Conclusion
In conclusion, our study highlights the complex interplay 
between data composition, model training approaches, 
and predictive accuracy in the context of AMR. The 
impressive performance of models for AMP in the Afri-
can dataset despite their moderate performance in the 
England dataset underscores the potential of machine 
learning in AMR prediction, given appropriate training 
and validation strategies.

The findings from this study serve as a crucial reminder 
of the complexities involved in applying machine learn-
ing models to predict AMR across diverse settings. It 
emphasizes the importance of developing robust, adapt-
able, and generalizable machine learning tools, capable of 
handling varied data landscapes and resistance mecha-
nisms. Future research should focus on integrating larger 
and more diverse datasets while exploring innovative 
methods to maintain a balance between dataset size and 
class distribution, thus advancing the development of 
machine learning tools in the global fight against antimi-
crobial resistance.

As the threat of antimicrobial resistance continues to 
rise, the successful application of these models - particu-
larly on the African dataset, signals a promising avenue 
for improving AMR detection and treatment strategies. 
This work thus not only expands our current understand-
ing of the genetic underpinnings of antibiotic resistance 
but also provides a robust methodological framework 
that can guide future research and applications in the 
fight against antimicrobial resistance.
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