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Abstract
Background Cold hardiness is fundamental for amphibians to survive during the extremely cold winter on the 
Qinghai-Tibet plateau. Exploring the gene regulation mechanism of freezing-tolerant Rana kukunoris could help us to 
understand how the frogs survive in winter.

Results Transcriptome of liver and muscle of R. kukunoris collected in hibernation and spring were assisted by single 
molecule real-time (SMRT) sequencing technology. A total of 10,062 unigenes of R. kukunoris were obtained, and 
9,924 coding sequences (CDS) were successfully annotated. Our examination of the mRNA response to whole body 
freezing and recover in the frogs revealed key genes concerning underlying antifreeze proteins and cryoprotectants 
(glucose and urea). Functional pathway analyses revealed differential regulated pathways of ribosome, energy 
supply, and protein metabolism which displayed a freeze-induced response and damage recover. Genes related to 
energy supply in the muscle of winter frogs were up-regulated compared with the muscle of spring frogs. The liver 
of hibernating frogs maintained modest levels of protein synthesis in the winter. In contrast, the liver underwent 
intensive high levels of protein synthesis and lipid catabolism to produce substantial quantity of fresh proteins 
and energy in spring. Differences between hibernation and spring were smaller than that between tissues, yet the 
physiological traits of hibernation were nevertheless passed down to active state in spring.

Conclusions Based on our comparative transcriptomic analyses, we revealed the likely adaptive mechanisms of R. 
kukunoris. Ultimately, our study expands genetic resources for the freezing-tolerant frogs.
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Background
Understanding how amphibians, especially those living at 
high altitudes, withstand low temperatures during hiber-
nation can help us better comprehend the adaptation of 
poikilotherms to extreme conditions.

The behavior and physiological mechanisms of amphib-
ian overwintering have been studied, especially for Rana 
sylvatica (recently renamed Lithobates sylvaticus) in 
North America and Rana arvalis in Europe in recent 
years. Besides the behavioral actions, physiological tol-
erance is also important for amphibians in cold regions. 
Ectotherms tolerate subzero body temperatures mainly 
in two ways, freeze avoidance and freeze tolerance. The 
painted turtle Chrysemys picta [1], the Yarrow’s spiny liz-
ard Sceloporus jarrovi [2], the Italian wall lizard Podar-
cis sicula [3], the lizard Cnemidophorus sexlineatus [4], 
and Lacerta vivipara [5] have been identified as species 
[6] that exhibit freeze avoidance thus far. Freeze-avoiding 
ectotherms must be free of strong ice-nucleating agents 
(INAs) that can arrange water molecules into a crystal-
line structure [7]. Some of them produce antifreeze pro-
teins (AFPs) to effectively inhibit inoculation icing [8]. 
However, overwintering in a supercooled state is a dan-
gerous strategy that can result in death if certain param-
eters are not satisfied and freezing occurs.

Most freeze-tolerant ectotherms such as insects, 
intertidal invertebrates, tiny soil invertebrates, amphib-
ians, and reptiles, begin to freeze at high subzero tem-
peratures, apparently to allow gradual and controlled ice 
development and cell dehydration [9]. When wood frogs 
(R. sylvatica) freeze, it can spend up to 12  h for maxi-
mal ice content to be successful, giving ample time for 
the synthesis and distribution of glucose cryoprotectant 
and freeze-responsive proteins [10, 11]. Freeze-tolerant 
species are capable to survive at lower temperature than 
freeze-avoiding ones. Upis ceramboides, an insect from 
interior Alaska, can withstand temperatures of -60  °C 
[12]. Winter R. sylvatica can survive freezing at -16℃ 
[13]. R. arvalis from Russia tolerate freezing down to -12 
or -16 °C, whereas frogs from Denmark survived freezing 
only to -4 °C [14]. Freeze-tolerant species may withstand 
50 ∼ 65% of their body fluid as extracellular ice for weeks 
or months while still maintaining normal states after 
thawing [15]. However, some species, e.g. C. picta and 
L. vivipara, could alternate between the reciprocally sole 
strategies of freeze avoidance and freeze tolerance [16].

Both freeze-avoiding and freeze-tolerant ectotherms 
accumulate cryoprotectants before winter comes. In 
freeze-tolerant species, by colligatively depressing the 
FP of body fluids, these solutes permit the cytoplasm 
to remain super cooled whilst the extra cellular fluids 
freeze, and also limit ice formation [17]. Furthermore, 
many cryoprotectants function in antioxidation, energy 
supply, macromolecular stabilization, and counteraction 

of perturbing solutes [18]. Cryoprotectants found in 
amphibians include carbohydrates and even the meta-
bolic waste urea [18]. Urea serves as a cryoprotectant in 
Nanorana pleskei which is indigenous to the northeast-
ern Qinghai-Tibetan Plateau [19].

Despite the fact that melting and icing can be fatal, a 
variety of molecular and physiological reactions can 
minimize the harm they do to cells and tissues. Nine gly-
colytic enzymes and three urea cycle enzymes were dif-
ferentially phosphorylated in liver of R. sylvatica under 
24  h freezing, 24  h anoxia, and 40% dehydration expo-
sures [20]. R. sylvatica showed significant changes in the 
phospholipid composition and lipid ratios of hepatocyte 
membranes. Less cholesterol [21] and most notably an 
increase in phosphatidylethanolamine may help to main-
tain fluidity at low temperatures [22].

Numerous novel potential targets sensitive to freezing 
were discovered by genomic and proteomic studies [15]. 
Through analysis of the hepatic transcriptome of Dryo-
phytes chrysoscelis, various genes associated with the 
ubiquitin proteasome system, DNA repair, and the heat 
shock protein response were shown to be increased in 
cold exposed and frozen individuals [23].

Both the European Rana lessonae [24] and the Alas-
kan R. sylvatica [25] have antifreeze glycolipids (AFGL), 
which have comparable action to AFPs. AFGLs are posi-
tioned on cell membranes to prevent inoculation of the 
cytosol and recrystallization in freeze-tolerant species 
[8]. Freeze-responsive protein 10 (Fr10) found in R. syl-
vatica showed extremely dynamic expression in response 
to seasonal freezing stress and its overexpression can 
improve cellular freezing resistance [26]. The novel pro-
tein was identified to have ice recrystallization inhibition 
(IRI) activity. By using the SPLAT cooling assay, it was 
directly seen that the average grain size of ice crystals 
decreased by 40% in the presence of 30 µM of Fr10 com-
pared to the control samples [27]. Another novel freeze-
responsive gene (Li16) was discovered in the liver of R. 
sylvatica [28, 29]. The 12-kDa type IV fish AFP (LS-12) 
was discovered in longhorn sculpins (Myoxocephalus 
octodecimspinosis), which differs structurally from other 
fish AFP types and share little amino acid sequence with 
Fr10 [30].

Rana kukunoris, a close relative to R. sylvatica, is dis-
tributed in the east Qinghai-Tibet Plateau and nearby 
areas at the altitude of 2000–4400 m, and the frog plays 
an important role in the local food chain and ecosystem. 
In the northeast of Qinghai-Tibet Plateau, winter temper-
atures can drop below − 20  °C and the soil temperature 
can be as low as -7 °C at 20 cm depth.

In contrary to the intensive study on its relative R. syl-
vatica, the overwintering mechanism of R. kukunoris 
has not been studied. What tactic did the frogs employ 
to survive the winter? In this work the fluctuant gene 
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expression during and after the hibernation will be exam-
ined to reveal possible critical genes for effective over-
wintering of R. kukunoris at the transcriptome level. We 
try to figure out what cryoprotectants are used, whether 
ice-binding proteins are produced, and the roles these 
substances played in the adaptation to cold environment. 
This will aid in the advancement of animal ecophysiology 
and offer the necessary building blocks for the preser-
vation of amphibians, the Plateau ecology, and even the 
viability of transplantable human cells and organs after 
thawing.

Results
When dug out, hibernating frogs were corporeal frozen 
with rigid limbs, tightly closed eyelids, visible signs of 
dehydration, and ice particles around the body. Three of 
six partly frozen frogs recovered when exposed to room 
temperature.

Quality of transcriptome sequencing data, annotation and 
differentially expressed genes
The RNA integrity number (RIN) value was 7.8 in mixed 
twelve samples sequenced in Pacific Bioscience (PacBio) 
Sequel platform. Using Single Molecule Real-Time 
(SMRT) sequencing technology from PacBio, a full-
length transcriptome of R. kukunoris was produced. The 
sequencing results generated 51.23 GB (25,497,349 reads) 
subreads data with average subreads length of 2010  bp 

and N50 length of 2195 bp (Table S1). A total of 10,062 
unigenes were obtained, and 57,446 coding sequences 
(CDS) was found within transcripts.

By combining protein data from five different spe-
cies, we were able to create a reference dataset repre-
senting the main lineages of amphibian species which 
updated the genome assembly using the latest sequenc-
ing methods. After cut-off for identity (greater than 80% 
threshold) and E-value, 9,924 CDSs of R. kukunoris were 
successfully annotated. 9,373 annotated CDSs had an 
E-value below 1E-50.

A total of 93,431,337,600 raw base pair (bp) which 
range from 6,390,937,800 to 9,972,295,800 were gen-
erated for the twelve samples. The RIN values were all 
greater than 7.6. After filtering, 586,884,222 reads which 
range from 39,887,398 to 62,964,078 were retained. 
Percentage of each sample with base greater than Q30 
(phred quality score; Q score) were all above 91.31. Read 
mapping ratios of twelve sequence data ranged from 
64.06 to 80.05% (Table S2).

Each sample has the roughly equal level of overall RNA 
expression (Fig. 1). We evaluated the differences of gene 
expression between seasons (hibernation and spring) 
and tissues (liver and muscle) through principal com-
ponents analysis (PCA). The first component explained 
41.56% of the variance and the second explained 18.54% 
(Fig. 2). With samples of muscle and spring as reference 
group, 798 DEGs (504 down, 294 up) in HL vs. SL group, 

Fig. 1 Expression level of each sample. Expression level, shown as the fragments per kilobase million (FPKM) in y-axis, is plotted on a log10 scale. The 
number of genes at a certain expression level is represented by the breadth of the violin plot
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778 DEGs (404 down, 374 up) in HM vs. SM group, 3504 
DEGs (1631 down, 1873 up) in SL vs. SM group, and 4069 
DEGs (2078 down, 1991 up) in HL vs. HM group were 
identified respectively (Figs.  3 and 4, Table S3). Detail 
information of differentially expressed genes (DEGs) in 
four groups was showed in Table S4.

The transcript expression of antifreeze proteins
The outcomes of antifreeze protein dataset searches 
were filtered for identity (greater than 60% threshold) 
and E-value, and 18 significant DEGs of 48 isoform AFPs 
were identified to nine putative AFPs in the R. kukunoris 
(Fig. 5, Table S5). Three-dimensional homology modeling 
was performed by AlphaFold to infer the tertiary struc-
ture of the putative AFPs (Supplementary Data 1 ). Most 
protein models have alpha helices and beta sheet. The 
predicted LDDT (pLDDT) scores of these models are all 
above 74%, range from 74.3 to 96.4%, except three models 
(FR10 and two isoforms of SOX21 factor, range from 55.5 
to 61.5%). The source species of the nine putative AFPs 
are Acipenser ruthenus (sterlet sturgeon), Nicator chloris, 
Hirondellea gigas, Tetradesmus obliquus (Acutodesmus 
obliquus, green alga), Eimeria praecox, Aureobasidium 
pullulans EXF-150, Spirometra erinacei (Spirometra eri-
naceieuropaei, tapeworm), and R. sylvatica (L. sylvaticus, 
wood frog). The putative AFPs FR10 (83.3% identities), 
Li16 (83.3% identities) and uncharacterized/hypothetical 

protein (uniprot ID: A0A7M3QFV7, 100% identities) are 
noteworthy.

Notable genes with interest
Five glucose transporter (GLUT) genes were signifi-
cantly expressed in the four groups. Muscles have higher 
levels of GLUT4 expression than livers. The increased 
expressions of GLUT5, GLUT6, GLUT9 and glucose-
6-phosphate transporter (G6PT1) were observed in 
liver. A rise in GLUT8 expression was found in muscle 
and liver of spring frogs. In addition, the expression of 
glucose-6-phosphatase (G6PC), UDP-glucose 4-epimer-
ase (GALE) and UDP-glucose 6-dehydrogenase (UGDH) 
were elevated in SL group. The expression of glucose-
6-phosphate isomerase (GPI) and UTP-glucose-1-phos-
phate uridylyltransferase (UGP2) were super-elevated in 
HM group (Supplementary Fig. 1).

The expression of ornithine carbamoyltransferase 
(OTC, argF, argI), carbamoyl-phosphate synthase (CPS1) 
and arginase (rocF, arg, ARG) were relatively high in HL 
and SL groups in urea cycle (Supplementary Fig. 2). The 
expression of sn1-specific diacylglycerol lipase (DAGL), 
hepatic triacylglycerol lipase (LIPC) and 2-acylglyc-
erol O-acyltransferase 2 (MOGAT2) were high in liver. 
The expressions of certain genes were soared in liver or 
muscle, such as glycerol-3-phosphate O-acyltransfer-
ase (GPAT), glycerol kinase (GK), diacylglycerol kinase 
(DGK), sn1-specific diacylglycerol lipase (DAGL), 

Fig. 2 Principal components analysis (PCA) of gene expression of liver (circles), muscle (triangles), hibernation (red lines) and spring (cyan lines). The 
expression values, in terms of fragments per kilobase million (FPKM), were used as the input for PCA
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Fig. 4 Visualizations of DEG (differential expression gene) intersecting sets through Venn and UpSet plot. A: Venn plot of down-regulated DEGs. B: Venn 
plot of up-regulated DEGs. The color of each group matches the one that is displayed in the lower left corner

 

Fig. 3 Volcano plot depicting transcriptomic change in seasons and tissues. Horizontal dotted line represents the adjust P-value = 0.05, and vertical 
dotted lines represent the absolute value of log2(fold change) = 1. The number of differentially expressed genes in each group compared with spring or 
muscle. liver (L), muscle (M), hibernation (H) and spring (S). HL vs. SL, HM vs. SM, HL vs. HM, SL vs. SM
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diacylglycerol cholinephosphotransferase (CPT1) and 
diacylglycerol O-acyltransferase 1 (DGAT1) (Supple-
mentary Fig. 3). Additionally, the expression of glycerol-
3-phosphate dehydrogenase (glpD) was low in liver.

KEGG terms enriched of differentially expressed gene
A positive z-score value indicates the genes is upregu-
lated, while a negative z-score value indicates the genes is 
downregulated in a pathway or term.

Inter-seasonal variations
KEGG enrichment analysis showed that totally 57 KEGG 
pathways were significantly enriched (BH-adjusted p-val-
ues < 0.05) in four groups (Fig. 6, Table S6). The ribosome 
biogenesis in eukaryotes and aminoacyl-tRNA biosyn-
thesis were notably suppressed in HL vs. SL and HM vs. 
SM. The up-regulated KEGG pathways in HM vs. SM 
include “Oxidative phosphorylation”, “Cardiac muscle 
contraction”, “Carbon metabolism”, “Citrate cycle (TCA 
cycle)”, “Pyruvate metabolism”, “Glycolysis/Gluconeogen-
esis”, and “Glyoxylate and dicarboxylate metabolism”.

Differences between tissues
Comparison of HL vs. HM and SL vs. SM jointly yielded 
six pathways with negative z-score values, including 
“Calcium signaling pathway”, “Proteasome”, “Adrenergic 
signaling in cardiomyocytes”, “ECM-receptor interac-
tion”, “Cardiac muscle contraction” and “Glycolysis/Glu-
coneogenesis”. Also with negative z-score values, seven 

pathways chiefly related to carbohydrate, energy and 
amino acid metabolism were displayed in HL vs. HM; 
four pathways related to signal transduction, signaling 
molecules and interaction, cellular community and circu-
latory system were discovered in SL vs. SM.

Sixteen pathways with positive z-score values yielded 
by HL vs. HM and SL vs. SM are “Cytokine-cytokine 
receptor interaction”, “Various types of N-glycan biosyn-
thesis”, “Peroxisome”, “N-Glycan biosynthesis”, “Biosyn-
thesis of unsaturated fatty acids”, “Histidine metabolism”, 
“One carbon pool by folate”, “Lysosome”, “Glycine, serine 
and threonine metabolism”, “Sphingolipid metabolism”, 
“Folate biosynthesis”, “Protein processing in endoplasmic 
reticulum”, “Steroid biosynthesis”, “Biosynthesis of amino 
acids”, “Biosynthesis of cofactors” and “Pentose phos-
phate pathway”. These mainly related to “Carbohydrate 
metabolism”, “Lipid metabolism”, “Amino acid metabo-
lism”, “Glycan biosynthesis and metabolism”, “Metabo-
lism of cofactors and vitamins”, “Folding, sorting and 
degradation”, “Signaling molecules and interaction” and 
“Transport and catabolism”. The 23 significant findings 
of SL vs. SM are predominantly related to “Carbohydrate 
metabolism”, “Lipid metabolism”, “Amino acid metabo-
lism”, “Metabolism of other amino acids”, “Metabolism 
of cofactors and vitamins”, “Xenobiotics biodegradation 
and metabolism”, “Folding, sorting and degradation”, “Cell 
growth and death” and “Endocrine system”; No specific 
outcomes of HL vs. HM emerged from the KEGG path-
way enriched analysis.

Fig. 5 Expression histogram of AFP expression genes in tissue and season of Rana kukunoris. Text on the top side of subgraph is composed of the protein 
name and the transcript ID in sequence file. liver (L), muscle (M), hibernation (H) and spring (S)
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Gene ontology terms enriched of differentially expressed 
gene
Inter-seasonal variations
Gene set enrichment analysis was performed based on 
the GO molecular function, biological process, and cel-
lular component classifications. In total, 37 GO terms 
are significantly enriched (BH-adjusted p-value < 0.05) 
(Fig.  7, Table S7). One significantly up-regulated term 
was RNA splicing in HL vs. SL. Six significantly up-reg-
ulated terms in HM vs. SM are “tricarboxylic acid cycle”, 
“lipid droplet” and “4 iron, 4 sulfur cluster binding”, other 
three terms centered around mitochondrion, including 
“mitochondrion”, “mitochondrial inner membrane”, and 
“mitochondrial matrix”. No term was remained in down-
regulated DEGs of HL vs SL or HM vs SM after filtering 
by BH-adjusted p-value < 0.05.

Differences between tissues
The five pathways of up-regulated DEGs in HL vs. HM 
and SL vs. SM are “retrograde vesicle-mediated trans-
port, Golgi to endoplasmic reticulum”, “integral compo-
nent of membrane”, “endoplasmic reticulum membrane”, 
“extracellular space” and “endoplasmic reticulum”; the 
three significantly up-regulated GO terms of SL vs. SM 
specific results are “Golgi apparatus”, “integral compo-
nent of endoplasmic reticulum membrane” and “cyto-
plasmic vesicle”. It should be noted that membrane and 
protein synthesis functions were enriched. Only one 

cellular component term (ruffle) emerged from HL vs. 
HM specific outcomes.

The eleven pathways of down-regulated DEGs in HL 
vs. HM and SL vs. SM are “muscle contraction”, “car-
diac muscle contraction”, “muscle organ development”, 
“proteasome accessory complex”, “myosin II complex”, 
“Z disc”, “myofibril”, “proteasome complex”, “calcium ion 
binding”, “actin filament binding” and “calmodulin bind-
ing”. These mutual GO terms showed a high skew toward 
terms regarding to muscle function. The six significantly 
down-regulated GO terms of SL vs. SM specific results 
are “sensory perception of sound”, “MAPK cascade”, 
“cytoskeleton”, “extracellular region”, “cilium” and “actin 
cytoskeleton”. Eight GO terms which contain “tricarbox-
ylic acid cycle”, “ubiquitin-dependent protein catabolic 
process”, “glycolytic process”, “mitochondrion”, “mito-
chondrial inner membrane”, “mitochondrial matrix”, 
“proteasome core complex” and “identical protein bind-
ing”, emerged from HL vs. HM specific outcomes.

Discussion
In present study we used next-generation sequencing 
(NGS) and single molecule real-time (SMRT) sequencing 
to look at gene expression in liver and muscle tissue of 
the hibernation and spring frogs. Our examination of the 
mRNA responding to whole body freezing and recover 
revealed the key genes and pathways associated with 
freeze-induced responses in R. kukunoris. Functional 

Fig. 6 Overview bubble plots of KEGG (Kyoto Encyclopedia of Genes and Genomes) enriched terms. The z-score is assigned to the x-axis and the nega-
tive logarithm of the adjusted p-value to the y-axis. The area of the displayed circles is proportional to the number of genes assigned to the term and the 
color corresponds to the down-regulated terms (blue) or up-regulated terms (red). liver (L), muscle (M), hibernation (H) and spring (S)
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pathway analyses point toward differential regulation of 
transcript expression with regard to antifreeze protein, 
cryoprotectant, ribosome, energy supply and protein 
metabolism.

General overview of transcript expression results
The full-length transcriptome data can offer more infor-
mation for further exploration and improving genomic 
data of R. kukunoris. Principal components analysis 
(PCA) demonstrated distinct intergroup differences and 
excellent intragroup biological replication. More DEGs 
and more enriched pathways were found in comparison 
between tissues than between seasons. This indicates 
that the liver and muscles may take substantially varied 
response to the seasonal change of environment and cer-
tain physiological processes active in winter may reserve 
in spring.

The mRNA expression of AFPs varies according to the 
species and tissue
High predicted LDDT (pLDDT) scores of three-dimen-
sional structural models of AFPs indicate high confidence 
residues in the proteins. The identity of deduced AFPs to 
reference AFP was greater than 60% threshold suggest-
ing the AFP is conservative. The same transcript contains 
multiple identical AFP-encoding sequences and different 
transcripts encode the same AFP. This can maintain the 

organism’s AFP level and ensures its ability to withstand 
freezing.

Two of the three transcripts of UBC (ubiquitin-con-
jugating domain core domain-containing) gene contain 
significant variations of expression in both tissue com-
parisons. There were continuous expressions of all AFPs 
in both winter and spring. This indicated the spring frogs 
retain their wintertime resistance to freezing in order to 
deal with the unpredictable springtime temperatures on 
the Qinghai-Tibet plateau. Monthly minimum air tem-
perature was − 2.5±0.7 °C in April in Maqu County from 
2005 to 2019 according to China meteorological data ser-
vice center (National meteorological information center).

Exceptionally high expressions of FR10 [27, 31, 32] and 
Li16 [28] genes were found in the liver of hibernation and 
spring R. kukunoris, however, there was scarce expression 
in muscle. Nevertheless, another well-known freeze tol-
erance-associated gene FR47 which was highly expressed 
in the livers of R. sylvatica [33] was not discovered in R. 
kukunoris in this study. Genes of ubiquitin-like domain-
containing protein and uncharacterized/hypothetical 
protein were high expressed only in muscle of R. kuku-
noris. These denote that the expression of AFP genes was 
tissue-specific and depend on species.

Fig. 7 Overview bubble plots of GO (Gene Ontology) enriched terms. The z-score is assigned to the x-axis and the negative logarithm of the adjusted p-
value to the y-axis. The area of the displayed circles is proportional to the number of genes assigned to the term and the color corresponds to the category 
(biological process, cellular component, molecular function). liver (L), muscle (M), hibernation (H) and spring (S)
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Production-related genes for urea and glucose were 
actively deployed
Our previous studies have shown that large quantities of 
glycogen and glucose were determined in the muscles of 
the summer and fall R. kukunoris from Maqu after cold 
acclimation. In addition, for R. kukunoris obtained in the 
fall, the amount of glucose in the liver increased 31-fold 
after freezing, and urea content in the liver also dra-
matically increased after cold acclimation [34]. G6PT1 
[35] and G6PC [36] were evidently highly expressed in 
the liver but not in the muscle of R. kukunoris. In verte-
brates, glucose 6-phosphate (G6P) was transported by 
G6PT1 to the endoplasmic reticulum, where G6PC then 
dephosphorylated it. The significantly higher expression 
of G6PT1 and G6PC may result in large quantity of glu-
cose buildup as cryoprotectant. Although glucose protect 
the body against freezing, excessive levels of glucose may 
have the deleterious consequence of glycating biomole-
cules [15]. High level expressions of specific GLUTs were 
determined in all of our four groups. Active GLUTs may 
regulate the concentration of intracellular and extracel-
lular monosaccharides and prevents the negative conse-
quences of glycation. Although glucose can be produced 
by the liver from amino acids, it may be taken into mus-
cles with the aids of GLUTs, where it was quickly con-
verted to muscle glycogen, avoiding the risk of glycation 
of biological macromolecules. GLUT4 was also found to 
be expressed in skeletal muscle of cold-hardy frog Rana 
dybowskii in winter [37]. GLUT8 mRNA levels in the 
liver of the freeze-tolerant Cope’s gray treefrog D. chrys-
oscelis reduced following freezing [23]. This implicates 
the importance of GLUTs in the cold-hardy ectotherms.

Three genes of central urea cycle, CPS1, OTC, and ARG 
(arginase, responsible for the last step to produce urea) 
were highly expressed in the liver. This may lead to high 
level of urea accumulating acting as cryoprotectant in R. 
kukunoris. It is reported that urea also contributes to the 
anti-freeze protection for R. sylvatica [38], D. chrysoscelis 
[23, 39] and N. pleskei [19].

It is documented that glycerol is the primary anti-freeze 
protectant for Dryophytes versicolor (before named Hyla 
versicolor) [40] and D. chrysoscelis [39, 41], despite not 
being the most cost-effective. However, in R. kukunoris 
glycerol may not act as cryoprotectant beside glucose 
and urea. Our results showed that the glycerol-depleting 
genes (GPAT, GK, DGK, DAGL, CPT1 and DGAT1) were 
strongly expressed in the liver or muscle indicated that 
the frog may consume glycerol to synthesize phospho-
lipids which were needed to maintain the integrity of the 
membrane, and as a substrate to produce triacylglycerol.

The hibernating frogs continued to synthesize proteins
The mRNA involved in ribosome and aminoacyl-tRNA 
biogenesis was detected in the liver of hibernating R. 

kukunoris indicating that the protein synthesis with high 
energy expenditure still maintained. Based on the meta-
bolic rate depression theory (MRD) [9, 15], the hibernat-
ing frogs should not require a lot of proteins to sustain 
normal metabolic activity. However, to guarantee the 
production of crucial proteins like AFP, many genes 
involved in protein synthesis may be also required to 
be expressed at a certain level (Supplementary Fig.  4). 
Our results showed elevated expression of genes related 
to ribosome and aminoacyl-tRNA biogenesis in spring 
frogs compared to hibernation. Large quantity of fresh, 
healthy, effectively functioning proteins is needed in the 
spring to support metabolism for activities including 
locomotion, foraging, digesting, reproduction, and car-
diopulmonary resuscitation. Liver microRNA transcrip-
tomics revealed that accelerated ribosome synthesis and 
inhibition of energy-expensive pathways occurred in D. 
versicolor collected during the spring mating season and 
artificially frozen in a laboratory [42]. Aminoacyl-tRNA 
production was also perhaps one of the most noticeably 
changed routes in overwintering frogs N. parkeri, accord-
ing to LC-MS analyses [43, 44].

Energy supply in the muscles of hibernating frogs was not 
zero
Most of the up-regulated genes were significantly 
enriched onto energy generation terms in HM vs. SM 
(Supplementary Fig.  5, Supplementary Fig.  6, Supple-
mentary Fig.  7). In R. sylvatica, reduced oxygen causes 
the genes involved in oxidation in mitochondria to be 
upregulated in response to freezing, which presumably 
serves an adaptive purpose in sustaining cellular energet-
ics throughout indefinite periods of whole-body freez-
ing [45]. Anaerobic energy generation in the liver and 
leg muscles of D. versicolor were possibly necessary for 
survival under freezing [46]. It is important to remember 
that the muscle need to maintain a low level (not zero) 
of metabolism so that it can carry out essential processes 
like glucose transport. It has been shown that the intra-
cellular water of freezing-tolerant ectotherms does not 
freeze when the body freezes [47] indicating that the 
cells are still engaged in some rate of metabolic activity. 
Long-term hypoxia improved the affinity for oxygen of 
isolated mitochondria from the skeletal muscle of hiber-
nating R. temporaria [48]. In addition, our results showed 
that amino acid was catabolized for energy in the fast-
ing HM group (Supplementary Fig. 8). It is not surpris-
ing since fasting animals usually metabolize protein to 
produce energy. The tadpoles at metamorphic climax 
may also experience the same limit of energy as hiberna-
tion. Amino acid contributed more to energy supply in R. 
omeimontis tadpoles than in pre-metamorphic ones [49]. 
Similarly, compared to control turtles, the total blood 
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amino acid pool of the freezing-exposed hatchlings of the 
painted turtle (C. picta marginata) rose 2.25 times [50].

Distinct up-regulation pathways involved in important 
physiological processes including cell motility, cell pro-
liferation, cell differentiation, cardiovascular functions, 
and interaction with signaling molecules (Supplementary 
Fig. 9) were determined in SM vs. SL of our study. This 
may hasten the recovery of the muscles.

The up-regulation of proteasome, a protein-degrading 
mechanism, in muscle can eliminate the proteins dam-
aged during hibernation in order to quickly restore activ-
ities in spring. This is similar to the finding in R. sylvatica, 
its proteasome selectively destroys oxidatively damaged 
proteins in muscle during freezing [51].

Lipid metabolism was enhanced for reproduction in spring
Lipids (glycerolipid, fatty acid, glycerophospholipid and 
ether lipid) metabolism were accelerated in SL vs. SM 
but not in HL vs. HM. Spring frogs may predominantly 
utilize fat for energy. The main reason why spring frogs 
consume a lot of fat may be that they need more energy 
for reproduction. The fat body weight of Rana pipiens 
declined to 25.1 mg/100 g in the spring, which was lower 
than that recorded in the fall and winter [52]. The larger 
pre-hibernation energy stores satisfy the springtime 

energy need for reproduction [53]. Fat bodies of R. kuku-
noris were observed to be tiny compared to autumn frogs 
in our previous anatomical observations.

Conclusions
Our results showed that R. kukunoris possess the ability 
of freeze tolerance. FR10 and Li16 were highly expressed 
as the major antifreeze proteins. The analyses of gene 
expression implicated accumulation of glucose and urea 
as cryoprotectants. Genes related to energy supply in 
muscle of winter frogs were up-regulated. Hepatic thriv-
ing metabolism fixed the harm caused by hibernation 
progressively and supported the physiological activities 
in spring.

Methods
Tissue collection
We built small puddle (1 × 1 m2) with shallow water and 
grass surrounded by wire fence (1  m high) to simulate 
the natural environment at Gannan Grassland Ecosys-
tem National Observation and Research Station (33°40′ 
N, 101°52′ E, altitude 3540 m) in the fall of 2021 in Maqu 
County, Gansu Province, China. Ten adult frogs (R. kuku-
noris) were placed in the enclosure in mid-September, 
and six plateau frogs were found huddled under 30  cm 
soil in the enclosure with ice on their bodies in Novem-
ber 28, 2021 (Fig. 8). The microenvironment temperature 
was 1.6  °C when the frogs were exposed by excavation. 
Three frogs (three males) were successfully recovered and 
three frogs (three females) died. Spring samples were col-
lected from the field near the fence in April 26, 2022. Six 
male frogs from two groups (three frogs each) of hiberna-
tion (H) and spring (S) were quickly sacrificed to collect 
liver (L) and muscle (M) which then immediately frozen 
with liquid nitrogen.

Total RNA extraction, library construction, and 
transcriptome sequencing and assembly
Liver and muscle samples in two groups of hiberna-
tion and spring were transported to Novogene (Beijing, 
China) with carbon dioxide ice. The integrity, quality and 
concentration of RNA samples were checked by Agarose 
gel electrophoresis and Nanodrop 2000. Based on the 
PacBio Sequel platform [54], all samples were mixed in 
equal amounts to obtain complete transcripts contain-
ing polyA tails directly, and one full-length transcriptome 
was measured. Twelve second-generation transcriptomes 
were obtained by Illumina NovaSeq 6000 platform and 
150 paired-end reads were generated. Clean data were 
obtained by removing reads containing adapter and ploy-
N and low quality reads from raw data. All the subse-
quent analyses were conducted using clean, high-quality 
data.Fig. 8 Frogs (Rana kukunoris) huddled in the wire fence in hibernation 

(Date of shooting: November 28, 2021)
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The subreads were acquired from polymerase reads 
using the SMRT Link (version6.0; parameter -min_length 
50) pipeline supported by PacBio’s official, and Circular 
Consensus Sequence (CCS) reads were extracted out of 
subreads’ BAM file. Through IsoSeq3, CCS reads were 
classified into full-length (FL), full-length non-chimeric 
(FLNC), non-full-length (NFL) based on cDNA prim-
ers and polyA tail signal. Subsequently, the FLNC reads 
were clustered to generate the cluster consensus iso-
forms. Finally, the NFL sequence was used to modify 
the obtained consistent sequence (polished). Above 
steps were completed according to the official workflow 
documentation (https://github.com/PacificBiosciences/
IsoSeq). Additional nucleotide errors in consensus reads 
were corrected using the Illumina RNA-seq data with the 
software LoRDEC [55]. To yield a final set of non-redun-
dant transcript sequences, CD-HIT (version4.8.1; param-
eter -c 0.95, -G 0, -aL 0.00, -aS 0.99, -AS 30) software 
was used to merge highly similar sequences and remove 
redundant sequences from high-quality transcript. The 
outputted transcript sequences were used as reference 
set for functional annotation and differential expression 
analysis, and to predict CDS. TransDecoder (version 
5.5.0, -m 10) was used to identify the candidate Coding 
Sequence (CDS) regions within transcript sequences 
(https://github.com/TransDecoder/TransDecoder). To 
further maximize sensitivity for capturing ORFs that 
may have functional significance, results of blastp search 
against Uniref90 and hmmscan searching Pfam-A were 
integrated into coding region selection.

Functional annotation of full-length transcriptome 
sequences
Due to the lack of genomic resources of R. kukunoris, 
we combined protein data from five species to create a 
reference dataset for gene annotation, which includes 
Nanorana parkeri, Rana temporaria, Leptobrachium leis-
hanense, X. tropicalis and X. laevis. The complete X. lae-
vis and X. tropicalis proteomes were downloaded from 
Uniprot database [56]. The protein data and annotation 
files of N. parkeri and L. leishanense were downloaded 
from figshare (https://figshare.com/projects/Genomic_
data_of_Nanorana_parkeri/116061; https://figshare.com/
articles/dataset/Genome_assembly_of_Leptobrachium_
leishanense/8019986 ), and protein data R. temporaria 
was downloaded from NCBI (National Center for Bio-
technology Information). In addition, antifreeze protein 
dataset was created for special annotation (https://www.
uniprot.org/keywords/KW-0047).

AlphaFold2 (version 2.0.0) [57] was used to generate 
the protein models of all putative AFPs from R. kukuno-
ris. A python script (plddt2csv.py) was applied to extract 
the predicted local distance difference test (pLDDT) 
value from results of Alphafold2 (https://github.com/

CYP152N1/plddt2csv). Open-source PyMOL (version 
2.5.0, https://github.com/schrodinger/pymol-open-
source) was operated to render models [58]. An open 
source plugin (alphafold_coloring.py) was implemented 
in PyMOL to tint AlphaFold protein structure data-
base predictive models by pLDDT confidence score 
(https://github.com/ailienamaggiolo/alphafold_color-
ing). Transcripts were annotated to the reference dataset 
by BLAST [59] similarity using blastp, using maximum 
value for identity and minimum value for E-value, and 
with the option “-subject_besthit -max_target_seqs 1 
-evalue 1e-5” enabled to keep just the best match for the 
best alignment of each query sequence.

Expression abundance calculation and visualization
All of the clean reads obtained from mRNA-seq were 
mapped to the PacBio reference transcript using Bowtie2 
[60] (-q --phred33 --sensitive --dpad 0 --gbar 99,999,999 
--mp 1,1 --np 1 --score-min L,0,-0.1 -I 1 -X 1000 --no-
mixed --no-discordant -p 40 -k 200). We calculated the 
read count and expression (FPKM, TPM) of transcript 
with RSEM [61] for each individual. A heatmap of gene 
expression was drawn using R package pheatmap based 
on Z-scores-normalized FPKM values. Differential 
expression gene (DEG) analysis was performed using R 
package edgeR version 3.36.0 [62]. Lowly expressed genes 
were discarded using the filterByExpr function with 
default arguments. Raw P-values were BH adjusted for 
multiple testing. The prcomp function of stats packages 
in R performed the PCA procedure. Pathway enrichment 
analysis were performed in the clusterProfiler package 
[63]. Visualizations of DEG intersecting sets through R 
package ggvenn and UpSetR [64]. Overview bubble plots 
of the GO (Gene Ontology) and KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) enriched terms were made 
by R package GOplot [65].
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