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Abstract
Background  Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. 
Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland 
development and lactation in mammals.

Method  The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows 
with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression 
network analysis (WGCNA).

Results  A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP 
groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = − 0.85, P = 0.007). 
Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such 
as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from 
the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among 
them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed 
in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the 
mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, 
GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their 
ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed 
that these genes are crucial and most probable ceRNA regulators in milk fat metabolism.

Conclusions  Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new 
research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.
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Introduction
Milk fat an important nutrient and key evaluation indica-
tor for milk. Conjugated linoleic acid—which is abundant 
in milk fat—is essential for cholesterol downregulation 
[1] and low-density lipoprotein levels [2] in humans 
and for the defense against atherosclerosis [3]. Milk fat 
contains essential minerals and fat-soluble vitamins for 
humans [4–6]. Cheese—a further processed milk prod-
uct—holds a significant position in the global premium 
market for dairy products. However, milk fat has an 
important influence on cheese flavor, not only because 
the fatty acids used to synthesize cheese are flavor sub-
stances in their own right [7], but also as precursors to 
flavor substances, such as methyl ketones, secondary 
alcohols, lactones, and esters, in cheese [8]. Therefore, 
the safe and effective increase of milk fat content in milk 
is one of the necessary tools to strengthen the dairy 
industry’s core competitiveness in the global market.

The advancement of sequencing technology and bio-
informatics algorithms has enabled the identification 
of a class of potentially functional circular RNAs (cir-
cRNAs) [9]. These circRNAs are linked together through 
the 5’ and 3’ ends of the parent gene to form a circular 
structure [10]. Studies have demonstrated that cir-
cRNAs have important molecular functions for mam-
mary gland development and lactation in mammals. 
circRNA-006258 is closely related to mammary epithe-
lial cell (MEC) growth and milk synthesis in goats [11]. 
circ_015343 reduces milk production and milk fat syn-
thesis and inhibits MEC growth in sheep [12]. circ01592 
and circ09863 increase the levels of triglycerides, cho-
lesterol and unsaturated fatty acids content in MECs of 
dairy cows [13–14]. circRNA8220 promotes the prolif-
eration and synthesis of β-casein and triglycerides in the 
MECs of goat [15]. Considering the importance of cir-
cRNAs to MECs, we discovered more circRNAs affecting 
MEC growth and lactation using differential expression 
analysis and weighted gene co-expression network analy-
sis (WGCNA). WGCNA is an effective systems biology 
method for analyzing RNA-seq data, including mRNA 
[16–17], miRNA [18–19], lncRNA [20–21], and circRNA 
[22–23]. WGCNA canlocate core genes faster using 
gene connectivity information. Weak effector genes can 
also be mined, elucidating the biological mechanisms 
underlying traits. The differential expression analysis and 
WGCNA methods complement each other and help in 
the rapid and comprehensive identification of the DE-
circRNAs that regulate MFP.

Given the potential of circRNAs to indirectly regulate 
gene expression in MECs, it is necessary to identify and 
characterize circRNAs in MECs of cows with different 
milk fat percentage (MFP), since this circRNAs may be 
involved in epigenetic and genetic regulation of mam-
mary function. In this study, RNA-seq was used to obtain 

the expression levels of circRNA in MECs of lactating 
cows with significantly differential MFP. DE-circRNAs 
mediating milk lipid metabolism were mined by using 
differential expression analysis and WGCNA, and we 
explore the effects of circRNA-mediated regulatory net-
works on mammary gland development and lactation in 
dairy cows. This study provides a new research idea and 
a theoretical basis for future studies on the mechanism 
of circRNA-regulated milk fat metabolism in dairy cows.

Results
Combined differential expression analysis and WGCNA 
screening for candidate DE-circRNAs
We constructed a circRNA library of MECs from the 
high- and low-MFP groups, then sequenced and identi-
fied circRNAs. A total of 309 DE-circRNAs were found 
at a significantly higher level in the high-MFP group than 
in the low-MFP group (Fig. 1A; Table S1). Subsequently, 
WGCNA was constructed using transcriptome sequenc-
ing data. A total of 18 co-expression modules were 
obtained after merging modules with a similarity more 
significant than 75% (Fig. 1B). The number of circRNAs 
contained in each module ranged from 20 (grey) to 198 
(turquoise), among which there were eight modules with 
over 100 circRNAs, including the turquoise, blue, brown, 
and yellow modules (Fig.  1C). Module-trait correlation 
analysis demonstrated that multiple modules were asso-
ciated with MFP (Fig. 1D), among which the pink mod-
ule was significantly negatively correlated with MFP 
(r = − 0.85, P = 0.007) (Fig.  1D-E). The pink module con-
tained 101 circRNAs (Table S2). Functional annotation of 
101 circRNAs revealed that the significantly enriched GO 
terms included regulation of the triglyceride metabolic 
process, regulation of the fatty acid metabolic process, 
positive regulation of MEC proliferation, and the rela-
tion of insulin and phosphatidylinositol. The significantly 
enriched Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways included focal adhesion, ECM-recep-
tor interaction, and adherens junction. These findings 
suggests that the pink module might contain critical 
circRNAs that regulate lipid metabolism (Fig.  1F). Sub-
sequently, the gene significance (GS) and module mem-
bership (MM) values were calculated to screen the key 
circRNAs (Fig.  1G), resulting in 11 key circRNAs (|GS| 
≥ 0.90 and|MM| ≥ 0.60). Among them, circ_0010571, 
circ_0007797, circ_0002746, circ_0003052, circ_0004319, 
and circ_ 0012840 belonged to DE-circRNAs (Table 
S3); therefore, these circRNAs were further validated as 
candidates.

Validation of the circular structure of candidate circRNAs
To demonstrate the circular structure of the six candi-
date circRNAs, we used divergent primers and conver-
gent primers to detect the resistance of circRNAs and 
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linear RNAs to linear RNase R. The results showed that 
circ_0002746, circ_0004319, and circ_ 0012840 resisted 
linear RNase R digestion (Fig. 2A-D), but circ_0010571, 
circ_0007797 could not resist linear RNase R diges-
tion (Fig. S1). Subsequently, the head-to-tail splice sites 
of circ_0002746, circ_0003052, circ_0004319, and 
circ_ 0012840 were also confirmed by through Sanger 
sequencing (Fig. 2E-H).

Tissue expression and subcellular localization of candidate 
DE-circRNAs
To investigate the potential functions of circ_0002746, 
circ_0003052, circ_0004319 and circ_0012840 in the 
mammary glands of dairy cows, we used RT-qPCR to 
examine the expression levels of these circRNAs in vari-
ous tissues of dairy cows. The results demonstrated that 
circ_0002746, circ_0003052, and circ_0004319 were 
highly expressed in mammary tissues compared with 
other tissues (Fig. 3A-C). In mammary tissue, the expres-
sion abundance of circ_ 0012840 was second only to that 

of the small intestine (Fig.  3D). To identify the specific 
locations where these circRNAs functioned, we isolated 
and examined the nucleus and cytoplasm of MECs using 
RT-qPCR. circ_0002746, circ_0003052, circ_0004319, 
and circ_0012840 were expressed at significantly higher 
levels in the cytoplasm than in the nucleus (Fig. 3E), sug-
gesting that these four circRNAs may have potential reg-
ulatory functions on mammary gland development and 
lactation in dairy cows through the ceRNA network.

Construction and screening of ceRNA networks for 
candidate circRNAs
We used the Targetscan (v7.2) [24] and miRanda (v3.3a) 
[25] software to predict circRNA/miRNA and miRNA/
mRNA interactions and to screen the top 5 miRNAs 
that bind to each candidate circRNA (Table S4). We 
screened 372 target genes of the top 5 miRNAs bound 
by circRNAs according to the context+ ≤ − 0.20 and free 
energy ≤ − 20 of the miRNA/mRNA interaction relation-
ship (Table S5). Although many target genes existed in 

Fig. 1  Differential expression analysis and WGCNA of circRNAs in MECs of cows with different MFP. (A) DE-circRNAs in the HMF and LMF groups. (B) 
Clustered tree diagram of circRNAs in MECs of dairy cows, each color represents a module. (C) The number of circRNAs clustered in different modules. (D) 
Heatmap of correlation between modules and MFP (each module contains correlation coefficient and corresponding P-value). (E) Module significance 
values ​​for co-expression modules associated with MFP (module significance values ​​represent a summary of circRNA significance for all circRNAs in each 
module, with different column colors representing different modules). (F) Functional annotation of circRNAs in the pink module. (G) A scatterplot of GS 
for MFP vs. MM in the pink module respectively (a dot represents a circRNA in the pink module)
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Fig. 3  (A-D) The relative expression levels of circ_0002746, circ_0003052, circ_0004319 and circ_0012840 in different tissues of dairy cows, respectively. 
(E) The expression abundances of circ_0002746, circ_0003052, circ_0004319 and circ_0012840 in the cytoplasm and nucleus, with U6 and GAPDH as 
internal controls for nuclear and cytoplasm, respectively

 

Fig. 2  Circular structure identification of circRNAs. (A-D) We identified by RT-qPCR using divergent and convergent primers and found that circ_0002746, 
circ_0003052, circ_0004319 and circ_0012840, but not linear_0002746, linear_0003052, linear_0004319, and linear_0012840, were resistant to RNase R 
digestion. (E-H) Backsplice sites of circ_0002746, circ_0003052, circ_0004319 and circ_0012840 were confirmed by Sanger sequencing
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the ceRNA network, we further screened the hub tar-
get genes. Hub genes are vital in biological processes, 
and their regulation often influences other genes within 
related pathways. We first identified four crucial sub-
networks from the PPI network of target genes using 
the MCODE plugin in Cytoscape (Fig. 4A, C, E, H), and 
then, we performed gene ontologies (GO) and KEGG 
analysis to clarify the role of target genes in these sub-
networks. Subnetwork 1’s main functions were focused 
on metabolic processes such as V-type ATPase for pro-
ton transport and ATP hydrolysis and synthesis, and the 
enriched pathways was mainly oxidative phosphoryla-
tion (Fig.  4B). Subnetwork 2 was enriched in G-protein 
coupled receptor signaling pathway, lipid catabolic pro-
cess, phosphatidylinositol phospholipase C activity, and 
other GO terms. KEGG analysis was involved in lipid 
metabolism-related signaling pathways, such as calcium 
signaling pathway, insulin secretion, oxytocin signal-
ing pathway, and phosphatidylinositol signaling system 
(Fig. 4D). Subnetwork 3’s functions were focused mainly 
on the glycosylphosphatidylinositol (GPI)-anchor biosyn-
thetic process of biological process (BP). In cellular com-
ponent (CC) and molecular function (MF), Subnetwork 3 

was mainly involved in the synthesis of phosphatidylino-
sitol-related proteins. The main enriched KEGG pathway 
was GPI-anchor biosynthesis (Fig. 4F). The target genes 
in subnetwork 4 performed their functions in the mito-
chondrial respiratory chain complex IV, and the main 
enriched pathway was also oxidative phosphorylation 
(Fig. 4G). We obtained seven hub genes from these four 
sub-networks: GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, 
NDUFS4, and PIGH (Fig. 4A, C, E, H). These seven hub 
target genes compose key ceRNA network for exploring 
the mechanism of milk fat regulation in cows (Fig. 5).

Discussion
WGCNA can combine gene expression with phenotypic 
data, making it more suitable for analyzing complex data. 
There are several applications for diverse omics data 
(e.g. transcriptomics, proteomics, and metabolomics) 
and various organisms (animal, plant, and microbial) 
[26–27]. WGCNA provides a solution to the multiple 
testing problems by reducing the size of large networks 
into a small number of hub nodes, allowing comparison 
of external traits with a limited number of variables. And 
can cluster genes with the same function or pathway to 

Fig. 4  The crucial sub-networks and hub genes obtained by the cytoHubba and MCODE algorithms in Cytoscape. (A) (C) (E) (H) Four crucial sub-
networks of the target gene screened from the PPI network. (B) (D) (F) (G) Enrichment analysis results of sub-networks (A), (C), (E), and (H) respectively
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form functional modules [28]. Recognizing the core 
modules helps to annotate the results of systems biol-
ogy scale experiments, thus adding valuable biological 
information. Therefore, we used WGCNA to construct a 
co-expression network of circRNAs from high- and low-
MFP Holstein cows and found that the pink module was 
significantly and negatively correlated with MFP. Focal 
adhesion was the most significantly enriched pathway for 
circRNAs in this module, which connects downstream 
to the mitogen-activated protein kinase (MAPK) sig-
naling pathway, thereby affecting lipid metabolism [29]. 
Among other pathways, the extracellular matrix (ECM) 
can regulate the proliferation, apoptosis, and polarity 
of MECs [30–32]. The AMPK signaling pathway acts as 
an energy sensor that regulates metabolism in the body 
and cells, including lipid metabolism [33]. In epithe-
lial cells, tight junctions are essential for cell adhesion 
and prevent the lateral diffusion of lipids and proteins. 
Cholesterol and long-chain fatty acids are abundant in 
its plasma membrane. The adherens junction increases 
cholesterol levels in the plasma membrane to facilitate 
tight junction formation [34–35]. The enriched path-
ways suggest these circRNAs may have potential regu-
latory mechanisms for mammary gland development 
and milk fat metabolism. Finally, six candidate DE-
circRNAs (circ_0010571, circ_0007797, circ_0002746, 
circ_0003052, circ_0004319, and circ_0012840) were 
screened from the pink module by combining differential 
expression analysis and WGCNA. The circular validation 
revealed that circ_0002746, circ_0003052, circ_0004319, 

and circ_0012840 belonged to circRNAs, which were the 
primary focus of this study.

Subcellular localization and tissue expression revealed 
that circ_0002746, circ_0003052, circ_0004319, and 
circ_0012840 were predominantly present in the cyto-
plasm and highly expressed in mammary tissue. These 
results provide strong evidence that the four DE-cir-
cRNAs to regulate mammary gland development and 
lactation by competitively binding miRNAs. In circRNA/
miRNA and miRNA/mRNA interactions regulation, the 
target genes of circ_0002746, PPARD, ELOVL2, LSS, 
ACAA2 and PPARGC1A, were associated with the regula-
tion of lipid metabolism [36–37]. circ_0003052 as sponge 
of miR-2454-3p to regulate SLC27A6 with high expres-
sion in adipose tissue, and inhibiting SLC27A6 expres-
sion may significantly affect lipid metabolism pathways, 
including lipid biosynthesis, transport, and β-oxidation 
in mammary cells [38–39]. Among the miRNAs that 
interacted with circ_0004319, miR-11,999 exhibited the 
highest number of target genes, among which ELOVL7, 
ACADS, and APC were lipid metabolism-related can-
didate genes [40–41]. circ_0012840 and circ_0003052 
interact with miR-7864 to regulate the expression of 
PLA2G2E, which promotes lipid accumulation in adipose 
tissue and liver [42]. circ_0012840 interacts with miR-214 
and miR-761 to regulate VPS4A, an important regulator 
of endosomal cholesterol transport [43].

We conducted a PPI network analysis of target genes 
in the ceRNA regulatory network of four candidates DE-
circRNAs and screened seven hub target genes from the 
PPI network. GNB1 (guanine nucleotide-binding protein 

Fig. 5  The candidate key ceRNA network regulating milk fat metabolism
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(G protein), beta polypeptide 1) encodes the Gβ sub-
unit of a heterotrimeric G protein complex that includes 
Gα and Gγ subunits. This complex function can trans-
duce multiple intracellular signaling cascades [44]. This 
gene promotes lipolysis in adipose tissue and, when 
expressed, increases blood glycerol levels [45]. GNG2 (G 
protein subunit gamma 2) expression is positively corre-
lated with adipocyte size [46], and its upregulation can 
directly activate PI3K IB, thereby activating the PI3K-
Akt pathway [47]. This pathway is also regulated by the 
Gβγ subunits of the trimer G protein complex formed by 
GNB1 and GNG2 [48–49]. Gβ1γ2 produces phosphoino-
sitol by stimulating phospholipase Cβ, activating MAPK 
and Akt [50]. This evidence suggests that GNB1 and 
GNG2 are involved in lipid metabolic pathways. PLCB1 
and PLCG1 belong to the phospholipase C (PLC) gene. 
PLC protein—a key enzyme for metabolizing inositol 
lipids—plays a key role in multiple transmembrane sig-
nal transduction pathways that regulate various cellular 
processes, including cell proliferation and mobility [51]. 
PLCB1 (phospholipase Cβ1) is involved in adipocyte dif-
ferentiation [52]. PLCG1 (phospholipase Cγ1) has two 
major lobes: one contains the active site that modifies 
lipids, and the other sits on top of the active site to pre-
vent lipids from reaching it [53]. PLCB1 and PLCG1 are 
important candidate genes for fat deposition [54–55]. 
ATP6V0C and the genes in Subnetwork 2 are part of the 
vacuolar ATPase (V-ATPase), which is crucial in stimu-
lating mitochondrial gluconeogenesis and insulin secre-
tion in the body [56]. The tight binding between the 
lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) 
and the membrane of V-ATPase can activate V-ATPase 
activity and proton pump [57–58]. Cholesterol deple-
tion significantly affects V-ATPase activity and the ini-
tial transfer [59]. ATP6V0C affects glucose metabolism 
through phosphorylation during glycolysis [60]. NDUFS4 
is an auxiliary subunit of the mitochondrial membrane 
respiratory chain NADH dehydrogenase (complex I), and 
NDUFS4 functions in the later stages of complex I assem-
bly [61–62]. The NADH shuttle substantially maintains 
mitochondrial energy metabolism and glucose-induced 
insulin secretion [63]. The PIGH gene encodes an endo-
plasmic reticulum-associated protein involved in GPI 
anchor biosynthesis, which are glycolipids found in many 
blood cells that anchor proteins to the cell surface. The 
protein encoded by the PIGH gene is a subunit of GPI–
N-acetylglucosamine transferase (GPI–GlcNAc transfer-
ase) that transfers GlcNAc to phosphatidylinositol (PI) 
lipids in endoplasmic reticulum cells [64]. In short, these 
hub target genes may be involved in energy metabolism, 
lipid metabolism, and mitochondrial function through 
ceRNA networks. The ceRNA network comprising the 
seven hub target genes as a key ceRNA network for 
exploring the mechanism of milk fat regulation in cows.

Conclusion
We screened four DE-circRNAs using differential expres-
sion analysis, WGCNA, and circular validation. Tissue 
expression and subcellular localization suggested that 
these DE-circRNAs may have potential regulatory func-
tions on mammary gland development and lactation 
in dairy cows through ceRNA networks. Thus, we con-
structed the ceRNA regulatory network of candidate 
DE-circRNAs and screened out the key ceRNA networks 
regulating milk fat metabolism, which helped us further 
explore the regulatory mechanism of milk fat metabo-
lism. This study also provides new clues for molecular 
breeding of dairy cows.

Methods
Selection of experimental animals and sample preparation
Based on year-round dairy herd improvement (DHI) 
measurements at Nongkeng Helanshan Maosheng dairy 
farm, we screened 245 mid–late lactation Holstein cows 
with similar average daily milk yield (35.21–37.21 kg) and 
consistent feeding and management backgrounds (Table 
S6). We then screened 4 long-term high-MFP and 4 long-
term low-MFP cows from 245 cows and aseptically col-
lected fresh milk samples from each cow. One portion 
of each sample was sent to the testing center for DHI 
determination, whereas the other portion was placed in 
sterile water at 37  °C and returned to the laboratory for 
MEC isolation. The isolation, culture, and identification 
of MECs were completed during the early stage of our 
research group [65]. Cow milk MECs had the characteris-
tic “pebble” morphology of epithelial cells (Fig. S2A), and 
S-shaped growth curve, which was consistent with cell 
growth (Fig. S2B), and the expression of epithelial cell-
specific keratin 18 was positive (Figs. S2C, D). Besides, 
there was a significant difference in the triglyceride con-
tent of cow milk MECs of the high- and low-MFP groups 
(Fig. S2E), and the expression levels of the lipogenic 
genes SCD, PPARγ, and FASN were higher in the high-
MFP group than in the low-MFP group (Fig. S3). The 
aforementioned sample preparation details are described 
in a recent paper [66].

RNA-Seq library construction and sequencing
The sequencing in the present study belongs to the same 
batch as that in a recent study [66] and is, therefore, 
methodologically identical. Total RNA was extracted 
from cow milk MECs using the TRIzol method. RNA 
degradation and contamination were monitored on 1% 
agarose gels. RNA purity was checked using the Nano-
Photometer® spectrophotometer (IMPLEN, CA, USA). 
RNA integrity was assessed using the RNA Nano 6000 
Assay Kit of the Bioanalyzer 2100 System (Agilent Tech-
nologies, CA, USA). The 260/280 ratio of all samples 
ranged from 1.70 to 1.90, and the RNA Integrity Index 
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(RIN) was ≥ 8.00. Sample RNA for circRNA sequencing 
was stripped of ribosomal RNA (Epicenter Ribozero™ 
rRNA Removal Kit, Epicentre, USA), and linear RNA 
was digested with RNase R (Epicentre, USA). Sequencing 
libraries were prepared according to the manufacturer’s 
instructions for the NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina® (NEB, USA). After pass-
ing the library inspection, Illumina PE150 sequencing 
was performed. After filtering the raw data, the obtained 
clean reads were aligned with the downloaded reference 
genome (https://bovinegenome.elsiklab.missouri.edu/
downloads/ARS-UCD1.2) using the Bowtie2 software 
(v2.2.8).

Identification and differential expression analysis of 
circRNAs
Identification of circRNAs and differential expression 
analysis were performed according to our previously 
described methods [66]. The circRNA was detected and 
identified using find_circ [67] and CIRI2 [68]. Transcripts 
per million (TPM) were used to normalize known and 
novel circRNAs in each sample [69]; normalized expres-
sion levels = (readCount × 1,000,000)/libsize (libsize is 
the sum of circRNA read counts). Differential expres-
sion analysis of transcript count matrices of high and low 
MFP in cow milk MECs was performed using the R pack-
age “DESeq2” [70]. The resulting P-value was adjusted 
using Benjamini and Hochberg’s approach for controlling 
the false discovery rate. Genes identified using DESeq2 
with an adjusted P-value < 0.05 were designated as differ-
entially expressed.

Weighted gene co-expression network analysis (WGCNA)
WGCNA was used for network construction and iden-
tification of consensus modules. Weighted gene net-
work construction requires the optimal selection of soft 
threshold power β to improve co-expression similar-
ity and calculate the degree of adjacency. Therefore, the 
function “pickSoftThreshold” (based on the criterion 
of approximate scale-free topology) from the R package 
“WGCNA” [71] was used to pick out the optimal soft 
threshold power β. The function “blockwiseConsensus-
Modules” was employ used to calculate the consensus 
topology overlap and produce consensus modules. Based 
on the WGCNA analysis parameters of Yang et al. [72], 
we set the following: power = soft threshold power β 
(when r = 0.80); modules containing 20 genes as a mini-
mum number (minModuleSize = 20); the module detec-
tion sensitivity of 2 (deepSplit = 2); module merged cut 
height of 0.25 (mergeCutHeight = 0.25, i.e., merged into 
one module if the correlation coefficient of eigengenes 
within the module was greater than 0.75). To avoid rear-
rangement of eigengene within modules according to 
intramodular connectivity (KME), we set the following 

parameters: minKMEtoStay = 0, maxBlockSize = 10,000, 
and the remaining parameters followed the default val-
ues of the function. Subsequently, the co-expression net-
work was built using the function “blockwiseModules”, 
with the following parameters: power = soft threshold 
power β; TOMType = “notations”; minModuleSize = 20; 
mergeCutHeigh t = 0.25; maxBlockSize = 20,000; pamRe-
spectsDendro = FALSE; verbose = 3; the other parameters 
were set to default. This process produces co-expres-
sion modules that are significantly correlated with MFP. 
Finally, the GS and MM of the eigengenes in the con-
sensus module were calculated using the function “cor-
AndPvalue”, and the selection criteria for circRNAs 
were|MM| ≥ 0.90,|GS| ≥0.60.

Circular structure verification
To verify the circular structure of circRNA, we designed 
divergent primers and convergent primers for each cir-
cRNA. First, circRNAs and linear RNAs were tested for 
resistance to RNase R. We performed RNase R treatment 
on the total RNA. A portion of the total RNAs was added 
with 5U/µg RNase R and 2 µl of 10× RNase R Reaction 
Buffer, whereas the other portion was added with an 
equal amount of RNase-free water and 2 µl of 10× RNase 
R Reaction Buffer. After incubating at 37  °C for 30 min. 
the RNase R-treated RNA was purified using the RNeasy 
MinElute Cleanup Kit (QIAGEN, Germany). The RNA 
was then reverse transcribed to cDNA, and the expres-
sion levels of circRNA and linear RNA were detected 
using PCR and reverse transcription-quantitative poly-
merase chain reaction (RT-qPCR). Subsequently, the 
head-to-tail splice sites of the circRNAs were identified 
through Sanger sequencing. The circular structure was 
verified using our previous verification method [66]. 
Table S7 lists the primer sequences used in the present 
study.

Tissue expression and subcellular localization
The experimental methodology in this section is also 
consistent with our previous research methodology [66]. 
TRIzol reagent was used to extract the total RNA from 
tissues of the heart, liver, kidney, uterus, ovaries, small 
intestine, and mammary gland. RNA was isolated from 
the cell cytoplasm and nucleus using the Cytoplasmic 
and Nuclear RNA Purification kit (Norgen Biotek), and 
GAPDH and U6 were used as cytoplasmic and nuclear 
fractionation indicators, respectively. The first-strand 
cDNA was synthesized using the PrimeScript RT Reagent 
Kit with gDNA Eraser (Takara, Dalian, China). RT-qPCR 
was used to detect the expression of circRNAs in various 
tissues, the cytoplasm, and the nucleus.

https://bovinegenome.elsiklab.missouri.edu/downloads/ARS-UCD1.2
https://bovinegenome.elsiklab.missouri.edu/downloads/ARS-UCD1.2


Page 9 of 11Feng et al. BMC Genomics          (2024) 25:323 

Target relationship prediction
CircRNA/miRNA and miRNA/mRNA interaction pairs 
were predicted using miRanda (v3.3a) [24] and Tar-
getScan (v7.2) [25] software. circRNA/miRNA and 
miRNA/mRNA interactions were analyzed based on Tar-
getScan’s Context + and miRanda’s Free Energy criterion.

Analysis of hub genes in PPI networks
A PPI network analysis was performed following the 
methodology previously described by Yang et al. [72]. 
Protein network interactions were obtained using the 
Strings website (https://string-db.org/, v11.0), where a 
minimum interaction score of 0.90 deemed sufficient to 
obtain high-confidence protein network interactions. The 
MCODE plugin in Cytoscape was applied to identify crit-
ical subnetworks and seeds of nodes (or hub genes). The 
CytoHubba plugin in Cytoscape detects hub genes by 
four centrality methods—Degree, Edge Percolation Com-
ponent (EPC), Maximum Cliff Centrality (MCC), and 
Maximum Neighborhood Component (MNC)—which 
are practical methods for identifying hub genes from 
PPI networks [73]. Subsequently, functional enrichment 
analysis was performed on the genes of key subnetworks. 
The function “enrichGO” was applied to the annota-
tion of GO, including BP, MF, and CC. The function 
“enrichKEGG” was applied for the KEGG annotations 
to uncover relevant signaling pathways. All enrichment 
analysis results were visualized using the R package 
“ggplot2”.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-024-10252-y.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Supplementary Material 9

Supplementary Material 10

Acknowledgements
We thank all laboratory members for their comments and suggestions. We 
are grateful to Dr. Mingjie Chen from NewCore Biotech Co., Ltd. Shanghai, for 
helping us conduct bioinformatics analysis. We thank Helanshan Maosheng 
Dairy Farm for providing us with experimental animals and dairy herd 
improvement (DHI) measurements data.

Author contributions
X.F. Data analysis and manuscript writing; L.T. Experimental verification; R.M. 
and L.M. Article grammar modification; J.Z. and Y.G. Revised the manuscript 
and provided reagents; T.M. and C.W. Isolation and culture of mammary 
epithelial cells; B.Y. and J.L. Conceptual analysis and article modification.

Funding
This project is supported by the Key Research Project of the Ningxia Hui 
Autonomous Region (Grant No: 2022BBF02017) and the special breeding 
project of high-quality and high-yield dairy cows in the Ningxia Autonomous 
Region (Grant No: 2019NYYZ05).

Data availability
All data generated or analyzed in this study are included in this article (and its 
Supplementary Information file), and the datasets have been submitted to the 
SRA database with the accession number PRJNA730595. Data can be accessed 
at: https://www.ncbi.nlm.nih.gov/sra/PRJNA730595.

Declarations

Ethics approval and consent to participate
All animal experiments involved in this study were carried out under the 
approval of the Laboratory Animal Welfare and Ethics Review Committee of 
Ningxia University, ethical approval number NXU-2023-068. All experimental 
procedures were conducted following the guidelines of the Laboratory 
Animal Welfare and Ethical Review Committee of Ningxia University. Consent 
was obtained from the dairy farmers for the use of animals in the study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 31 August 2023 / Accepted: 26 March 2024

References
1.	 Jun X, Mingyue Z, Lingjie LI, Hou X, Zeng W. Conjugated linoleic acid 

improves glucose and lipid metabolism in diabetic mice. J South Med Univ. 
2019;39:740–6.

2.	 Kritchevsky D, Tepper SA, Wright S, Czarnecki SK. Influence of graded levels 
of conjugated linoleic acid (CLA) on experimental atherosclerosis in rabbits. 
Nutr Res. 2002;22:1275–9.

3.	 McCarthy C, Lieggi NT, Barry D, Mooney D, de Gaetano M, James WG, McClel-
land S, Barry MC, Escoubet-Lozach L, Li AC, Glass CK, Fitzgerald DJ, Belton O. 
Macrophage PPAR gamma co-activator-1 alpha participates in repressing 
foam cell formation and atherosclerosis in response to conjugated linoleic 
acid. EMBO Mol Med. 2013;5:1443–57.

4.	 Bach AC, Ingenbleek Y, Frey A. The usefulness of dietary medium-
chain triglycerides in body weight control: fact or fancy? J Lipid Res. 
1996;37(4):708–26.

5.	 Kasai M, Maki H, Nosaka N, Aoyama T, Ooyama K, Uto H, Okazaki M, Igarashi 
O, Kondo K. Effect of medium-chain triglycerides on the postprandial 
triglyceride concentration in healthy men. Biosci Biotechnol Biochem. 
2003;67(1):46–53.

6.	 Haenlein G. Goat milk in human nutrition. Small Ruminant Res. 
2004;51:155–63.

7.	 Seth K, Bajwa U. Effect of acidulants on the recovery of milk constitu-
ents and quality of Mozzarella processed cheese. J Food Sci Technol. 
2015;52(3):1561–9.

8.	 Pagthinathan M, Nafees MSM. Biochemistry of cheese ripening. AGRIEAST J 
Agricultural Sci. 2017;10:16.

9.	 Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. 
The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 
2019;20(11):675–91.

10.	 Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features 
of circular RNA expression. PLoS Genet. 2013;9(9):e1003777.

https://string-db.org/
https://doi.org/10.1186/s12864-024-10252-y
https://doi.org/10.1186/s12864-024-10252-y
https://www.ncbi.nlm.nih.gov/sra/PRJNA730595


Page 10 of 11Feng et al. BMC Genomics          (2024) 25:323 

11.	 Zhang M, Ma L, Liu Y, He Y, Li G, An X, Cao B. CircRNA-006258 sponge-adsorbs 
mir-574-5p to regulate cell growth and milk synthesis via EVI5L in goat mam-
mary epithelial cells. Genes (Basel). 2020;11(7):718.

12.	 Wu X, Zhen H, Liu Y, Li L, Luo Y, Liu X, Li S, Hao Z, Li M, Hu L, Qiao L, Wang J. 
Tissue-specific expression of circ_015343 and its inhibitory effect on mam-
mary epithelial cells in sheep. Front Vet Sci. 2022;9:919162.

13.	 Chen Z, Cao X, Lu Q, Zhou J, Wang Y, Wu Y, Mao Y, Xu H, Yang Z. circ01592 
regulates unsaturated fatty acid metabolism through adsorbing miR-218 in 
bovine mammary epithelial cells. Food Funct. 2021;12(23):12047–58.

14.	 Chen Z, Zhou J, Wang M, Liu J, Zhang L, Loor JJ, Liang Y, Wu H, Yang 
Z. Circ09863 regulates unsaturated fatty acid metabolism by adsorb-
ing miR-27a-3p in bovine mammary epithelial cells. J Agric Food Chem. 
2020;68(32):8589–601.

15.	 Zhu C, Jiang Y, Zhu J, He Y, Yin H, Duan Q, Zhang L, Cao B, An X. CircRNA8220 
sponges miR-8516 to regulate cell viability and milk synthesis via Ras/MEK/
ERK and PI3K/AKT/mTOR pathways in goat mammary epithelial cells. Anim 
(Basel). 2020;10(8):1347.

16.	 Sabino M, Carmelo VAO, Mazzoni G, Cappelli K, Capomaccio S, Ajmone-
Marsan P, Verini-Supplizi A, Trabalza-Marinucci M, Kadarmideen HN. Gene 
co-expression networks in liver and muscle transcriptome reveal sex-specific 
gene expression in lambs fed with a mix of essential oils. BMC Genomics. 
2018;19(1):236.

17.	 Wang J, Sui J, Mao C, Li X, Chen X, Liang C, Wang X, Wang SH, Jia C. Identifica-
tion of key pathways and genes related to the development of hair follicle 
cycle in cashmere goats. Genes (Basel). 2021;12(2):180.

18.	 de Oliveira PSN, Coutinho LL, Cesar ASM, Diniz W J D S, de Souza MM, 
Andrade BG, Koltes JE, Mourão GB, Zerlotini A, Reecy JM. Regitano L C A. co-
expression networks reveal potential regulatory roles of mirnas in fatty acid 
composition of nelore cattle. Front Genet. 2019;10:651.

19.	 Do DN, Dudemaine PL, Fomenky BE, Ibeagha-Awemu EM. Integration 
of miRNA weighted gene co-expression network and miRNA-mRNA co-
expression analyses reveals potential regulatory functions of miRNAs in calf 
rumen development. Genomics. 2019;111(4):849–59.

20.	 Ling Y, Zheng Q, Sui M, Zhu L, Xu L, Zhang Y, Liu Y, Fang F, Chu M, Ma Y, Zhang 
X. Comprehensive analysis of LncRNA reveals the temporal-specific module 
of goat skeletal muscle development. Int J Mol Sci. 2019;20(16):3950.

21.	 Wang J, Chai Z, Deng L, Wang J, Wang H, Tang Y, Zhong J, Ji Q. Detection and 
integrated analysis of lncRNA and mRNA relevant to plateau adaptation of 
Yak. Reprod Domest Anim. 2020;55(11):1461–9.

22.	 Shen M, Li T, Chen F, Wu P, Wang Y, Chen L, Xie K, Wang J, Zhang G. Tran-
scriptomic analysis of circRNAs and mRNAs reveals a complex regulatory 
network that participate in follicular development in chickens. Front Genet. 
2020;11:503.

23.	 Deng R, Cui X, Dong Y, Tang Y, Tao X, Wang S, Wang J, Chen L. Construc-
tion of circRNA-Based ceRNA network to reveal the role of circRNAs in 
the progression and prognosis of hepatocellular carcinoma. Front Genet. 
2021;12:626764.

24.	 Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. 
A pattern-based method for the identification of MicroRNA binding sites and 
their corresponding heteroduplexes. Cell. 2006;126(6):1203–17.

25.	 Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution 
of Caenorhabditis elegans 3’UTRs. Nature. 2011;469(7328):97–101.

26.	 Pei G, Chen L, Zhang W. WGCNA application to proteomic and metabolomic 
data analysis. Methods Enzymol. 2017;585:135–58.

27.	 Zhu M, Xie H, Wei X, Dossa K, Yu Y, Hui S, Tang G, Zeng X, Yu Y, Hu P, Wang J. 
WGCNA analysis of salt-responsive core transcriptome identifies novel hub 
genes in rice. Genes. 2019;10(9):719.

28.	 Galán-Vásquez E, Perez-Rueda E. Identification of modules with similar gene 
regulation and metabolic functions based on co-expression data. Front Mol 
Biosci, 6:139.

29.	 Yu X, Fang X, Gao M, Mi J, Zhang X, Xia L, Zhao Z, Albrecht E, Maak S, Yang R. 
Isolation and identification of bovine preadipocytes and screening of micror-
nas associated with adipogenesis. Animals. 2020;10(5):818.

30.	 Streuli CH, Bailey N, Bissell MJ. Control of mammary epithelial differentia-
tion: basement membrane induces tissue-specific gene expression in 
the absence of cell-cell interaction and morphological polarity. J Cell Biol. 
1991;115(5):1383–95.

31.	 Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue 
remodelling during mouse mammary gland involution. Development. 
1992;115(1):49–58.

32.	 Pullan S, Wilson J, Metcalfe A, Edwards GM, Goberdhan N, Tilly J, Hick-
man JA, Dive C, Streuli CH. Requirement of basement membrane for the 

suppression of programmed cell death in mammary epithelium. J Cell Sci. 
1996;109(3):631–42.

33.	 Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada 
R, Harada N, Enjoji M, Takayanagi R, Nakamuta M. SREBP-1c, regulated by the 
insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver 
disease. Int J Mol Med. 2008;21(4):507–11.

34.	 van Meer G, Simons K. The function of tight junctions in maintaining dif-
ferences in lipid composition between the apical and the basolateral cell 
surface domains of MDCK cells. EMBO J. 1986;5(7):1455–64.

35.	 Shigetomi K, Ono Y, Inai T, Ikenouchi J. Adherens junctions influence tight 
junction formation via changes in membrane lipid composition. J Cell Biol. 
2018;217(7):2373–81.

36.	 Cohain AT, Barrington WT, Jordan DM, Beckmann ND, Argmann CA, Houten 
SM, Charney AW, Ermel R, Sukhavasi K, Franzen O, Koplev S, Whatling C, 
Belbin GM, Yang J, Hao K, Kenny EE, Tu Z, Zhu J, Gan LM, Do R, Giannarelli C, 
Kovacic JC, Ruusalepp A, Lusis AJ, Bjorkegren JLM, Schadt EE. An integrative 
multiomic network model links lipid metabolism to glucose regulation in 
coronary artery disease. Nat Commun. 2021;12(1):547.

37.	 Voillet V, San Cristobal M, Père MC, Billon Y, Canario L, Liaubet L, Lefaucheur L. 
Integrated Analysis of Proteomic and Transcriptomic Data highlights late fetal 
muscle maturation process. Mol Cell Proteom. 2018;17(4):672–93.

38.	 Ruan D, Zhuang Z, Ding R, Qiu Y, Zhou S, Wu J, Xu C, Hong L, Huang S, Zheng 
E, Cai G, Wu Z, Yang J. Weighted single-step GWAS identified candidate 
genes Associated with Growth traits in a Duroc Pig Population. Genes (Basel). 
2021;12(1):117.

39.	 Yen MC, Chou SK, Kan JY, Kuo PL, Hou MF, Hsu YL. New insight on Solute Car-
rier Family 27 Member 6 (SLC27A6) in Tumoral and non-tumoral breast cells. 
Int J Med Sci. 2019;16(3):366–75.

40.	 Suto JI, Kojima M. Identification of quantitative trait loci that determine 
plasma total-cholesterol and triglyceride concentrations in DDD/Sgn and 
C57BL/6J inbred mice. Cholesterol. 2017;2017:3178204.

41.	 Zhang P, He Q, Wang Y, Zhou G, Chen Y, Tang L, Zhang Y, Hong X, Mao Y, He Q, 
Yang X, Liu N, Ma J. Protein C receptor maintains cancer stem cell properties 
via activating lipid synthesis in nasopharyngeal carcinoma. Signal Transduct 
Target Ther. 2022;7(1):46.

42.	 Sato H, Taketomi Y, Ushida A, Isogai Y, Kojima T, Hirabayashi T, Miki Y, Yama-
moto K, Nishito Y, Kobayashi T, Ikeda K, Taguchi R, Hara S, Ida S, Miyamoto Y, 
Watanabe M, Baba H, Miyata K, Oike Y, Gelb MH, Murakami M. The adipocyte-
inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles 
in obesity. Cell Metab. 2014;20(1):119–32.

43.	 Du X, Kazim AS, Dawes IW, Brown AJ, Yang H. The AAA ATPase VPS4/SKD1 
regulates endosomal cholesterol trafficking independently of ESCRT-III. Traf-
fic. 2013;14(1):107–19.

44.	 Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR, Rosal R, Weng G, 
Yang CS, Iyengar R, Miller RJ, Jan LY, Lefkowitz RJ, Hamm HE. Molecular basis 
for interactions of G protein betagamma subunits with effectors. Science. 
1998;280(5367):1271–4.

45.	 Hua C, Geng Y, Niu L, Chen Q, Cai L, Tao S, Ni Y, Zhao R. Stimulating lipolysis in 
subcutaneous adipose tissues by chronic dexamethasone administration in 
goats. Livest ence. 2018;214:62–7.

46.	 Heinonen S, Saarinen L, Naukkarinen J, Rodríguez A, Frühbeck G, Hakkarainen 
A, Lundbom J, Lundbom N, Vuolteenaho K, Moilanen E, Arner P, Hautaniemi 
S, Suomalainen A, Kaprio J, Rissanen A, Pietiläinen KH. Adipocyte morphology 
and implications for metabolic derangements in acquired obesity. Int J Obes 
(Lond). 2014;38(11):1423–31.

47.	 Dong Z, Ba H, Zhang W, Coates D, Li C. iTRAQ-based quantitative proteomic 
analysis of the potentiated and dormant antler stem cells. Int J Mol Sci. 
2016;17(11):1778.

48.	 Foust DJ, Godin AG, Ustione A, Wiseman PW, Piston DW. Two-color spatial 
cumulant analysis detects heteromeric interactions between membrane 
proteins. Biophys J. 2019;117(9):1764–77.

49.	 Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell 
J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT. The G beta 
gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor. 
Cell. 1997;89(1):105–14.

50.	 Shi CS, Lee SB, Sinnarajah S, Dessauer CW, Rhee SG, Kehrl JH. Regulator of 
G-protein signaling 3 (RGS3) inhibits Gbeta1gamma 2-induced inositol 
phosphate production, mitogen-activated protein kinase activation, and akt 
activation. J Biol Chem. 2001;276(26):24293–300.

51.	 Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C 
isozymes. J Biol Chem. 1997;272(24):15045–8.



Page 11 of 11Feng et al. BMC Genomics          (2024) 25:323 

52.	 Faenza I, Bavelloni A, Fiume R, Santi P, Martelli AM, Maria Billi A, Lo Vasco VR, 
Manzoli L, Cocco L. Expression of phospholipase C beta family isoen-
zymes in C2C12 myoblasts during terminal differentiation. J Cell Physiol. 
2004;200(2):291–6.

53.	 Hajicek N, Keith NC, Siraliev-Perez E, Temple BR, Huang W, Zhang Q, Harden 
TK, Sondek J. Structural basis for the activation of PLC-γ isozymes by phos-
phorylation and cancer-associated mutations. Elife. 2019;8:e51700.

54.	 Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, 
Cantão ME, Ledur MC, Ibelli AMG, Peixoto JO, Moura A S A M T, Garrick D, 
Coutinho LL. A genome-wide association study reveals novel genomic 
regions and positional candidate genes for fat deposition in broiler chickens. 
BMC Genomics. 2018;19(1):374.

55.	 Srivastava S, Srikanth K, Won S, Son JH, Park JE, Park W, Chai HH, Lim D. Haplo-
type-based genome-wide association study and identification of candidate 
genes associated with carcass traits in hanwoo cattle. Genes. 2020;11(5):551.

56.	 Hirao J, Tojo A, Hatakeyama S, Satonaka H, Ishimitsu T. V-ATPase blockade 
reduces renal gluconeogenesis and improves insulin secretion in type 2 
diabetic rats. Hypertens Res. 2020;43(10):1079–88.

57.	 Li SC, Diakov TT, Xu T, Tarsio M, Zhu W, Couoh-Cardel S, Weisman LS, Kane PM. 
The signaling lipid PI(3,5)P2 stabilizes V1-V(o) sector interactions and activates 
the V-ATPase. Mol Biol Cell. 2014;25(8):1251–62.

58.	 Banerjee S, Clapp K, Tarsio M, Kane PM. Interaction of the late endo-lysosomal 
lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity 
and cellular stress tolerance. J Biol Chem. 2019;294(23):9161–71.

59.	 Costa GA, de Souza SB, da Silva Teixeira LR, Okorokov LA, Arnholdt ACV, 
Okorokova-Façanha AL. Façanha A R. Tumor cell cholesterol depletion and 
V-ATPase inhibition as an inhibitory mechanism to prevent cell migra-
tion and invasiveness in melanoma. Biochim Biophys Acta Gen Subj. 
2018;1862(3):684–91.

60.	 Son SW, Chau GC, Kim ST, Um SH. Vacuolar H+-ATPase subunit V0C regulates 
aerobic glycolysis of esophageal cancer cells via PKM2 signaling. Cells. 
2019;8(10):1137.

61.	 Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, Panelli D, van den 
Heuvel LP, Smeitink JA, Papa S. Pathological mutations of the human NDUFS4 
gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of 
the protein and the assembly and function of the complex. J Biol Chem. 
2003;278(45):44161–7.

62.	 Pereira B, Videira A, Duarte M. Novel insights into the role of Neurospora 
Crassa NDUFAF2, an evolutionarily conserved mitochondrial complex I 
assembly factor. Mol Cell Biol. 2013;33(13):2623–34.

63.	 Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, 
Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai 
H, Yazaki Y, Kadowaki T. Role of NADH shuttle system in glucose-induced 
activation of mitochondrial metabolism and insulin secretion. Science. 
1999;283(5404):981–5.

64.	 Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T. 
The first step of glycosylphosphatidylinositol biosynthesis is mediated by a 
complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 1998;17(4):877–85.

65.	 Mu T, Hu H, Feng X, Ma Y, Wang Y, Liu J, Yu B, Wen W, Zhang J, Gu Y. Screening 
and conjoint analysis of key lncRNAs for milk fat metabolism in dairy cows. 
Front Genet. 2022;13:772115.

66.	 Feng X, Cai Z, Gu Y, Mu T, Yu B, Ma R, Liu J, Wang C, Zhang J. Excavation and 
characterization of key circRNAs for milk fat percentage in Holstein cattle. J 
Anim Sci. 2023;101:skad157.

67.	 Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mack-
owiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, 
Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs 
with regulatory potency. Nature. 2013;495(7441):333–8.

68.	 Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed 
matching. Brief Bioinform. 2018;19(5):803–10.

69.	 Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi 
M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, Ye J, 
Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X. Integrated profiling of microR-
NAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal 
cell carcinoma. PLoS ONE. 2010;5(12):e15224.

70.	 Love MI, Huber W, Anders S. Moderated estimation of Fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

71.	 Zhang B, Horvath S. A general framework for weighted gene co-expression 
network analysis. Stat Appl Genet Mol Biol. 2005;4:17.

72.	 Yang C, Ding Y, Dan X, Shi Y, Kang X. Multi-transcriptomics reveals RLMF axis-
mediated signaling molecules associated with bovine feed efficiency. Front 
Vet Sci. 2023;10:1090517.

73.	 Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying 
hub objects and sub-networks from complex interactome. BMC Syst Biol. 
2014;4(4):S11.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿Mining key circRNA-associated-ceRNA networks for milk fat metabolism in cows with varying milk fat percentages
	﻿Abstract
	﻿Introduction
	﻿Results
	﻿Combined differential expression analysis and WGCNA screening for candidate DE-circRNAs
	﻿Validation of the circular structure of candidate circRNAs
	﻿Tissue expression and subcellular localization of candidate DE-circRNAs
	﻿Construction and screening of ceRNA networks for candidate circRNAs

	﻿Discussion
	﻿Conclusion
	﻿Methods
	﻿Selection of experimental animals and sample preparation
	﻿RNA-Seq library construction and sequencing
	﻿Identification and differential expression analysis of circRNAs
	﻿Weighted gene co-expression network analysis (WGCNA)
	﻿Circular structure verification
	﻿Tissue expression and subcellular localization
	﻿Target relationship prediction
	﻿Analysis of hub genes in ﻿PPI﻿ networks

	﻿References


