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Abstract 

Background Single‑cell sequencing techniques are revolutionizing every field of biology by providing the abil‑
ity to measure the abundance of biological molecules at a single‑cell resolution. Although single‑cell sequencing 
approaches have been developed for several molecular modalities, single‑cell transcriptome sequencing is the most 
prevalent and widely applied technique. SPLiT‑seq (split‑pool ligation‑based transcriptome sequencing) is one 
of these single‑cell transcriptome techniques that applies a unique combinatorial‑barcoding approach by split‑
ting and pooling cells into multi‑well plates containing barcodes. This unique approach required the development 
of dedicated computational tools to preprocess the data and extract the count matrices. Here we compare eight 
bioinformatic pipelines (alevin‑fry splitp, LR‑splitpipe, SCSit, splitpipe, splitpipeline, SPLiTseq‑demultiplex, STARsolo 
and zUMI) that have been developed to process SPLiT‑seq data. We provide an overview of the tools, their computa‑
tional performance, functionality and impact on downstream processing of the single‑cell data, which vary greatly 
depending on the tool used.

Results We show that STARsolo, splitpipe and alevin‑fry splitp can all handle large amount of data within reason‑
able time. In contrast, the other five pipelines are slow when handling large datasets. When using smaller dataset, 
cell barcode results are similar with the exception of SPLiTseq‑demultiplex and splitpipeline. LR‑splitpipe that is origi‑
nally designed for processing long‑read sequencing data is the slowest of all pipelines. Alevin‑fry produced differ‑
ent down‑stream results that are difficult to interpret. STARsolo functions nearly identical to splitpipe and produce 
results that are highly similar to each other. However, STARsolo lacks the function to collapse random hexamer reads 
for which some additional coding is required.

Conclusion Our comprehensive comparative analysis aids users in selecting the most suitable analysis tool for effi‑
cient SPLiT‑seq data processing, while also detailing the specific prerequisites for each of these pipelines. From 
the available pipelines, we recommend splitpipe or STARSolo for SPLiT‑seq data analysis.
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Background
The ability to analyze the transcriptome at single-cell res-
olution has become an increasingly important technique 
to uncover cellular heterogeneity within tissues, observe 
specific cell states, unravel gene regulatory networks and 
understand dynamic processes in much more detail.

Since its development nearly a decade ago, the single-
cell sequencing field has seen a rapid growth, expanding 
the repertoire of improved techniques and approaches 
[1]. In the past years, several such technologies have been 
developed that allow the sequencing of the genome, epi-
genome, and transcriptome [2–7]. Single-cell sequencing 
platforms continually improve by increasing the number 
of cells that can be sequenced and the number of reads 
per cell that can be captured and importantly decreas-
ing the cost of the experiments [6, 8, 9]. As it was the 
first single cell sequencing modality to arise, single-cell 
transcriptome sequencing has seen the most significant 
improvements and applications [1, 10–12]. Single-cell 
transcriptome sequencing techniques can be catego-
rized into four groups: i) Droplet based approaches (e.g. 
10 × genomics, Drop-seq) [13, 14], in which cells are 
captured in micro droplets where they are barcoded and 
lysed; ii) Plate based methods (e.g. SMART-seq) [15], 
where single cells are sorted into microwells and subse-
quently lysed and sequenced; iii) emulsification/gelifica-
tion based techniques [16, 17] that utilize the physical 
separation of cells and beads within an oil or gel solution; 
iv) Split barcoding techniques (e.g. SPLiT-seq, sci-RNA-
seq) [18, 19], in which cells are continually redistrib-
uted and new barcodes are introduced in several rounds 
to ensure a unique barcode combination for each cell 
(Fig. 1A).

Split barcoding  (combinatorial barcoding) holds great 
potential, as it tackles two important bottlenecks in the 
single-cell sequencing field: cell throughput and experi-
mental costs [18]. Albeit, split barcoding has some 
technical downsides and caveats: (I) An increased pos-
sibility of cell doublets due to cell clumping. (II) Not all 
cell types or samples can be mixed due to unequal rep-
resentation of RNA molecules between samples or cell 
types. (III) Moreover, sample quality has to be similar to 
prevent sample bias, as dying cells or free-floating RNA 
molecules will increase background signal and mask true 
reads. The power of split barcoding lies in its simplicity. 
After fixation and permeabilization the cells go through a 
series of pooling and splitting. After each splitting of the 
cells a unique barcode is introduced which is ligated to 
the mRNA products (Fig. 1A). With sufficient rounds of 
barcoding the probability that of any two cell barcodes 
are the same approaches zero. The maximum avail-
able amount of unique cell barcodes can be expressed 
as Number of barcodes per roundRounds of split−pooling. This 

concept has no theoretical limits, but has a few practi-
cal ones. With increasing rounds there is an increas-
ing chance of cell loss as well as aberrant ligation errors. 
Finally, the read length would increase with each added 
barcode, resulting in increased costs as well as increase 
sequencing error within the cell barcode. However, 
Split barcoding does not require any custom or specific 
machines nor high expertise making it accessible to every 
wet-lab. Split barcoding reduces the cost of single-cell 
sequencing experiments especially when used on a large 
scale [18]. Recently, SPLiT-seq has been commercialized 
(https:// www. parse biosc iences. com) making the tech-
nique easily accessible to everyone.

Despite these advantages, the subsequent analysis of 
SPLiT-seq data is more complicated. Each transcript of a 
cell is identified through a Cell Barcode (CB), which con-
sists of the cumulative combination of ligated barcodes 
and a Unique Molecular Identifier (UMI). Droplet or 
other micro-fluidics sequencing methods often use one 
barcode which is synthesized directly onto the Unique 
Molecular Identifier (UMI) [20, 21], while SMART-
seq physically separates the cells and attaches unique 
sequencing adapters [20–23]. These approaches make 
sample deconvolution and other downstream analysis 
relatively easier when compared to SPLiT-seq, which 
uses three independent barcodes, separated by link-
ers (Fig.  1A), which are ligated to each other in series. 
Several algorithms have been generated to deconvolute 
the CBs and although all of them follow similar steps 
(Fig. 1B), they have unique approaches in how they pro-
cess the reads (Fig S1). The post-sequencing algorithms 
can be categorized into three categories based on how 
they extract CBs from the read (Fig.  1C). These are: (I) 
Fixed position; The algorithm relies on the known theo-
retical BC positions relative to the start of the read. By 
using these positions, the algorithm extracts the CB and 
UMI (Table  1) [24–26] (STARsolo, splitpipe, splitpipe-
line, zUMI, alevin-fry splitp). (II). Linker-based posi-
tion; this strategy first aligns the known linker sequences 
to the read, using the best alignment as a reference for 
the position of the barcodes and UMI (Table 1) [27, 28] 
(SCSit, LR-splitpipe). (III). BC Alignment; All possible 
expected sequences of the barcode are used to align to 
the read [29]. Because BCs are sampled from the same set 
of sequences, part of the sequence of the adjoining linker 
is used to anchor the barcode position (Table  1) [29] 
(Splitseq-demultiplex).

Two other features of SPLiT-seq protocols are its use of 
different linker chemistries and random hexamers. Since 
its first publication [18] SPLiT-seq has been in continued 
development which has resulted in two different linker 
chemistries (v1,v2). As a feature the SPLiT-seq allows to 
capture as many RNA reads by using random hexamer 

https://www.parsebiosciences.com
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Fig. 1 A Graphical description of the SPLiT‑seq protocol. 1) cell fixation and ligation and permeabilization, 2) reverse transcription and addition 
of BarCode 1 (BC1), 3) pooling, splitting and ligation of BC2, 4) pooling, splitting and ligation of BC3 and UMI, 5) cell lysis and 6) cDNA purification, 
7) second strand synthesis, 8) cDNA amplification B. Graphic description of the common processing steps applied by SPLiT‑seq preprocessing 
pipelines. Depending on the pipeline steps are performed in different order or not at all (Fig S1). C. Depiction of the three types of computational 
algorithms. I) fixed position, II) linker‑based position, III) BC alignment

Table 1 Characteristics of the pipelines

Pipeline Compressed 
input

Linker chemistry Bc sets Adjustable 
alignment

Ranhex 
conversion

Algorithm Programming language

alevin-fry splitp [24, 
30–32]

Yes v1,v2 Input Yes Yes Position based Rust

LR-splitpipe [25, 28] No v2 Fixed Yes No Linker based position Python

SCSit [26, 33] No v1 Fixed Yes No Linker based position C

splitseq-demultiplex 
[27]

No Any Input Yes Yes Alignment/Position 
based

Python,shell

splitpipe [34] Yes v1,v2 Fixed No Yes Position based Python,shell

splitpipeline [16, 24] Yes v1,v2 Input No Yes Position based Python,shell

STARsolo [22, 29, 35] Both Any Input Yes No Position based C,C +  + 

zUMI [23, 36] Yes Any Input Yes Yes Position based Perl,R,shell,Python
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primers in addition to Poly Adenylated (PolyA) primers. 
In the first barcoding round these primers are combined 
in the same well. Instead of using 96 barcodes only 48 are 
used, with the second 48 as random hexamer primers 
this causes that a set of barcodes originate from random 
hexamer primers and another from PolyA primers which 
are coupled through their BC sequence and well position.

In this study we compared the ease of use, performance 
and quality of the results generated by eight bioinfor-
matic pipelines (alevin-fry splitp, LR-splitpipe, SCSit, 
splitpipe, splitpipeline, SPLiTseq-demultiplex, STARsolo 
and zUMI) that have been developed to process SPLiT-
seq data. We provide details on their processing steps 
the pros and cons of these tools. Our analysis shows the 
importance of the chosen algorithm for the processing 
step, which significantly affects the downstream results 
and further analysis. Our findings will help others that 
are performing or planning to analyzing SPLIT-seq data.

Results
Functional comparison of data-processing pipelines
Several SPLiT-seq analysis pipelines have been devel-
oped. However, these tools have, to the best of our 
knowledge, not been compared and benchmarked yet in 
the context of SPLiT-seq. A comparison aids researchers 
in making an informed decision before analyzing SPLiT-
seq data.

A total of 8 pipelines were found that could analyze 
SPLiT-seq data: alevin-fry splitp, LR-splitpipe, SCSit, 
splitpipe, splitpipeline, Splitseq-demultiplex, STARsolo 
and zUMI (Table 1). To test these pipelines, we used two 
published datasets: i) a small dataset [18] which contains 
approximately 100 mouse brain cells with 80 million 
reads using v1 chemistry, and ii) a larger dataset originat-
ing from PBMCs [35], containing about 15,000 cells and 2 
billion reads using v2 chemistry.

We started our comparison by examining each pipe-
line’s compatibility with input data type, algorithm uti-
lization, the programming language, linker chemistry 
version, barcode sets and random hexamer conversion 
ability employed for each pipeline (Table 1). With regard 
to Input data type, out of the 8 pipelines compared, 5 
can handle compressed data, optimizing disk space uti-
lization. When comparing barcode extraction methods 
per algorithm, we found that the majority of pipelines 
employ a position-based algorithm (split-pipeline, STAR-
solo, zUMI, split-pipe, and alevin-fry splitp), while oth-
ers like LR-splitpipe and SCSit utilize a linker-based 
positioning approach, and splitseq-demultiplex opts for 
an alignment-based positioning algorithm. These pipe-
lines are primarily developed in Python or a combination 
of Python with shell scripting (used by zUMI, LR-split-
pipe, split-pipeline, splitseq-demultiplex, and split-pipe). 

STARsolo utilizes C and C +  + , while SCSit is imple-
mented in the C programming language and alevin-fry 
splitp is developed using Rust.

When we assessed the linker chemistry compatibility, 
except for the SCSit and LR-splitpipe pipelines, all pipe-
lines were found capable to handle data generated using 
both the v1 and v2 chemistry SPLiT-seq protocols. The 
LR-splitpipe is originally designed to process long read 
sequencing data with v2 chemistry from the Oxford 
nanopore. Due to the technique reads are sequenced in 
both orientations which is considered in the LR-split-
pipe algorithm. However, LR-splitpipe is relatively easily 
modifiable for other purposes. The barcode sequences 
that are used can differ in SPLiT-seq experiments. SCSit, 
splitpipeline and splitpipe have fixed barcode sequences 
within their algorithm whereas other pipelines require 
the sequences per position as user input. Splitpipe, how-
ever, contains all the latest barcodes published by Parse 
Biosciences within the program and suggests the most 
likely barcode set upon running the pipeline. Depend-
ing on the experiment the alignment that has to be 
performed might have to be altered. Splitpipe and split-
pipeline currently do not contain any option to alter the 
alignment, in contrast to all other pipelines where the 
alignment is adjustable. Another important feature con-
sidered by certain pipelines is random hexamer collaps-
ing, which sums reads from random hexamer and polyA 
capture to the correct CB; however, only 5 out of the 8 
pipelines incorporate this collapsing step (split-pipeline, 
zUMI, split-pipe, alevin-fry splitp, splitseq-demulti-
plex). If a SPLiT-seq experiment is performed according 
to standard protocol algorithms such as splitpipe and 
splitpipeline are easy to use and everything required is 
already present within the program. When alterations are 
required for the analysis due to specific experimental or 
preprocessing needs other programs provide more free-
dom in options.

Performance comparison
Next, we compared the performance of these pipelines 
by first using the aforementioned small dataset contain-
ing 100 mouse brain cells. We recorded the analysis time 
and the memory resources needed (RAM) to process the 
data. The alevin-fry splitp, STARsolo and splitpipeline 
are the fastest pipelines when analyzing the small dataset. 
STARsolo completes the whole pipeline in just over 6 min 
(Fig.  2A). LR-splitpipe however, takes more than 5  h to 
complete (Fig.  2A). Besides python not being as fast as 
the coding language C or C +  + [34, 36] LR-splitpipe per-
forms several steps with ‘for’ loops that parse over all the 
data, which are known to be slow in python [30]. RAM 
usage is similar for most of the compared pipelines when 
applied on the small dataset and range between 30 and 
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40  Gb (Fig.  2B). zUMI consumes a considerable higher 
amount of memory, while Alevin-fry only requires 10 Gb 
of RAM making it the most memory efficient pipeline. 
The SCSit pipeline was tested, but did not function prop-
erly. The pipeline crashes with an unknown error, which 
could not be resolved. Thus, it was not used for the rest 
of the study and the authors were notified. The splitpipe 
algorithm, published by Parse Biosciences, did not con-
tain the right predetermined settings to run the small 
dataset and could not therefore not be applied. This was 
primarily because, the small dataset was generated using 
an older protocol of SPLiT-seq, which uses outdated bar-
coding sequences.

When testing all 8 pipelines on the larger PBMC 
(peripheral blood mononuclear cells) dataset zUMI, LR-
splitpipe and splitseq-demultiplex required more than 
5 days to finish. Therefore, those pipelines were excluded 
from further comparison since we deemed the long run-
ning times prohibitive for routine analysis.

When applied on the large PBMC dataset both alevin-
fry and STARsolo were very fast, finishing in approxi-
mately 8 and 5  h respectively (Fig.  2C). Split-pipe took 

24 h to complete. Split-pipeline, the predecessor of split-
pipe, performed much better with an average run time of 
7 h (Fig. 2C). When looking at memory usage alevin-fry 
requires minimal resources using a maximum 12  Gb of 
RAM (Fig.  2D). In contrast STARsolo requires 293  Gb 
when running the large dataset (Fig. 2D), which currently 
exceeds the specifications of many commercially availa-
ble standard servers. Split-pipe and split-pipeline require 
55 and 35 Gb of RAM respectively making it easier to run 
on smaller machines (Fig. 2D).

Pipeline comparison using small mouse brain dataset
In order to compare the pipelines in a more quantitative 
measure we performed further downstream analysis on 
the outputs of these pipelines. We first investigated the 
small dataset that is reported to have 100 cells that are 
deeply sequenced to 80 million reads [18]. Following 
quality control (Fig S2), the LR-splitpipe and STARsolo 
generated exactly 100 cells, as initially reported, while 
split-pipeline generated a comparable number of cells 
(108), which falls well within the expected range of cell 
counts (Table  2). zUMI’s and alevin-fry produced 140 

Fig. 2 A Time elapsed and B. maximum RAM usage for each pipeline with the small dataset of 80 million reads. C Time elapsed and D. maximum 
RAM usage for each pipeline with the large dataset 2 billion reads. Each pipeline was run five times to obtain averages
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and 178 cells respectively (Table 2). Splitseq-demultiplex 
finds a total of 255 cells, reaching the highest number of 
cells from all the compared pipelines (Table  2). When 
comparing the cell barcodes generated between the dif-
ferent pipelines 87 cells intersect between five out of 
the six pipelines. Surprisingly, none of those 87 cells are 
detected by split-pipeline (Fig. 3A). Whereas another 48 
and 26 intersect between zUMI, alevin-fry and splitseq-
demultiplex and alevin-fry and splitseq-demultiplex 
respectively, arising from their increased total cell bar-
codes generated (Fig. 3A). Only split-pipeline stands out 
having 102 unique cell barcodes that do not intersect 
with any cell barcodes from other pipelines. We investi-
gated whether this was due to any technical errors such 
as wrong annotation of BC order e.g. BC1-BC2-BC3 vs 
BC3-BC2-BC1. We were unable to find the source of this 
phenomenon.

When comparing gene and UMI per cell content 
STARsolo and LRsplitpipe perform very similar having 
the lowest content per cell (Table 2). Although zUMI and 
alevin-fry have an increased number of cells generated, 
they also have a higher gene and UMI content per cell, 
which shows differences in their counting and/or align-
ment compared to LR-splitpipe and STARsolo. Split-
pipeline obtains the highest number of genes per cell 
whereas splitseq-demultiplex obtains the least number of 
genes per cell, despite of having the highest UMI per cell 
content.

To further understand and evaluate the output of 
these pipelines, we plotted the cells generated from each 
pipeline using UMAP (Uniform Manifold Approxima-
tion and Projection). This indicated that, despite their 
differences in quantity of content or BC tag, these cells 
exhibited overlapping characteristics (Fig.  3B), implying 
the presence of similar expression profiles. A portion of 
the cells produced by the alevin-fry splitp and splitseq-
demultiplex pipeline tend to aggregate more closely 
together than cells produced by other pipelines (Fig. 3B). 
The aggregation of splitseq-demultiplex can be explained 
by the fact that it generates approximately 100 more CB 
than others, therefore splitseq-demultiplex is more rep-
resented within the UMAP compared to other pipelines. 

Alevin-fry splitp in contrast to all other pipelines uses 
pseudo-alignment which might result in the different 
expression patterns and therefore aggregation of the cells 
within the UMAP.

Pipeline comparison on large PBMC dataset
Next, we investigated the output of the pipelines using 
the large dataset of ~ 15,000 cells. The split-pipeline algo-
rithm completed the analysis, however only 10 cells 
passed the QC thresholds and it was therefore not used 
in further analyses. After QC, the STARsolo, splitpipe 
and alevin-fry pipelines obtained just over 15,000 cells 
barcode of which 14,343 cell barcodes were identical 
between the pipelines (Fig. 4A). Additionally, when look-
ing at gene and UMI content per cell, all pipelines per-
form similarly (Table 3, Fig S3A, B) especially STARsolo 
and splitpipe which give nearly identical results (Fig. 4B). 
Alevin-fry has a higher mean and median for both gene 
and UMI per cell content (Table 3), as well as more vari-
ance across the dataset (Fig S 3A, B, D). In order to fur-
ther test the identity of the cells that are generated by 
these pipelines, we mapped the cells to a reference data-
set using the R package Azimuth [31] and visualized the 
cells  on a UMAP (Figs.  4C and  5A-C)  showing distinct 
differences per pipeline. As the data consists of four 
donor samples, the data was split and integrated together 
on the donor level to remove as much bias by donor (Fig 
S3C). Subsequently, the cell type data generated by each 
pipeline was mapped using Azimuth [31] and visual-
ized on an UMAP (Fig. 5A-C, Fig S3C). Across the three 
pipelines a total of 18 different cell types are predicted. 
Splitpipe has a total of 16 predicted cell types (Fig. 5B, D), 
STARsolo has a total of 15 predicted cell types(Fig.  5C, 
D), 14 of which overlap with those detected by splitpipe 
(Fig. 5D). Only the CD8 naïve and Plasmablast cell-types 
are missing from the STARsolo annotation (Fig.  5B, 
C, E). Conversely STARsolo has the proliferating NK 
cell-type annotated which is not annotated in the split-
pipe data (Fig. 5B, C, E). Moreover, when looking at the 
number of cells per predicted cell type STARsolo and 
splitpipe are nearly identical sharing similar numbers 
cell counts for almost every predicted cell type (Fig. 5E). 

Table 2 Quantitative measurements per pipeline for the small dataset

Pipeline Mean gene per cell Median gene per cell Mean umi per cell Median umi per cell N cells

alevin‑fry 2249.9 1659 8645.5 4031.9 178

LR‑splitpipe 1772.5 1179.5 4177.9 1849.5 100

split‑pipeline 3602.7 2815.5 16159.1 8307.5 108

splitseq‑demultiplex 1730.8 647 97746.3 9387 255

STARsolo 1755.8 1171 4045.3 1778 100

zUMI 2723.1 2233 8741.6 5137 140
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Alevin-fry splip however, shares only three predicted cell 
types (Fig. 5A, D). Moreover, most cell are predicted to 
be erythroid (Eryth) whilst this predicted cell type is not 
called in either splitpipe nor STARsolo datasets. The Azi-
muth algorithm provides cell type prediction scores and 
mapping scores, where cell type prediction score repre-
sents how well a cell maps to the closest cell in the refer-
ence data. The mapping score represent how well a cell 
is represented in  the reference data a low score mean-
ing that there are few cells that are identical within the 

reference map. When plotting the mapping and predic-
tion scores (Fig S4) the alevin-fry data is performing 
poorly compared to the other pipelines, which made us 
conclude that alevin-fry splitp leads to low quality cell 
type assignment.

To compare similarity, the data of alevin-fry, STARSolo 
and splitpipe pipelines were merged without integration 
and visualized (Fig. 4B). The result generated by alevin-
fry splitp are completely separated by pipeline indicat-
ing that these results are very different. STARsolo and 

Fig. 3 A An Upset plot of the cell barcodes (CB) that were generated by each pipeline after QC. Set size equals the total amount of BC generated 
by the pipeline. Intersection size representing the total amount of barcodes that overlap between the intersected set of pipelines. The bottom right 
panel shows which pipelines are being intersected. B A UMAP of the merged data generated by each pipeline comparing cell expression content. 
Cells are color‑coded according to the pipeline color used in Fig. 3 A
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splitpipe followed the same pattern but still separate 
based by pipeline for most several cell types (Fig. 4B). The 
naïve B, and intermediate clusters of STARsolo and split-
pipe mix well indicating highly similar results (Fig.  4B, 
C). This also occurs in the plasmacytoid Dendritic Cell 
(pDC) and Hematopoietic Stem and Progenitor Cell 

(HSPC) clusters and partially in the T regulatory (Treg), 
CD4 T Central Memory (TCM) and Mucosal-Associated 
Invarian T cell (MAIT) clusters (Fig.  4B, C). However, 
other clusters separate based on pipeline (Fig. 4B, C). To 
highlight the difference between the pipelines we per-
formed a Pearson correlation of the expression data on 
the pseudo-bulk level (Fig S5). STARsolo and splitpipe 
correlate highly to each other, whereas alevin-fry differs 
greatly (Fig S5A). However, when we further performed 
a cell type cluster comparison between STARsolo and 
splitpipe; differences created by the pipelines were vis-
ible (Fig S5B). Additionally, differential expression was 
performed between the CD14 Monocytes and Natural 
Killer (NK) annotated cell types to investigate the differ-
ences. When analyzing the markers we noticed that sev-
eral of the marker genes were either present in one but 
not in the other pipeline (Table S1, 2). By calculating the 

Fig. 4 A An Upset plot of the cell barcodes that were generated by each pipeline after QC. Set size equals the total amount of BC generated 
by the pipeline. Intersection size representing the total amount of barcodes that overlap between the intersected set of pipelines. The bottom right 
panel shows which pipelines are being intersected. B UMAP after merging the data from the different pipelines together. Comparing cell expression 
content. Cells are color‑coded according to the pipeline color used in Fig. 4A. C UMAP after merging the data from the different pipelines together. 
Cells are color coded by cell‑type (also indicated at the right of Fig. 4C) after using the Azimuth cell annotation algorithm

Table 3 Quantitative measurements per pipeline for the large 
dataset

Pipeline Mean 
gene per 
cell

Median 
gene per 
cell

Mean umi 
per cell

Median 
umi per 
cell

N cells

alevin‑fry 2785.3 2923 7297.8 6991.9 15620

splitpipe 2290.6 2283 6142.6 5493 15748

STARsolo 2176.1 2152 5689.2 5051 15875
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percent difference, we can see the magnitude of differ-
ence between two genes within the annotated cell types 
(Fig S6, Table S1, 2). Subsequently we compared the dif-
ference of total annotated features between pipelines 
(Table S3) showing that each pipeline aligns or counts the 
genes differently.

Barcode extraction from synthetic data differs 
between algorithms
Two major steps are performed by the SPLiT-seq pro-
cessing algorithms; alignment of transcriptomic reads 
and extraction of cell barcodes. For the purpose of com-
paring the ability of each algorithm to extract cell bar-
codes we created a synthetic dataset. This synthetic data 

contains a fixed number of cells (500) where each cell 
contains a specific number of cell barcode reads (10.000) 
ranging from perfect (harbouring no errors) to faulty 
(harbouring many errors). The CB correction distance is 
set in all pipelines to two or less bases. On the basis of 
this correction distance, reads are divided in two main 
categories; i) correctable reads, that contain two or less 
errors per barcode element, and ii) uncorrectable reads 
which contain three or more errors per barcode element. 
In this analysis, from the position-based algorithms 
STARsolo performs best and is able to capture more than 
half of the correctable linkers (Fig S7A). Splitpipeline and 
splitpipe perform worse and capture less than half of the 
correctable reads. zUMI’s and alevin-fry splitp performed 

Fig. 5 UMAP of data generated by each pipeline colored by predicted cell‑type after using the Azimuth cell annotation algorithm. A Cell‑type 
annotation for cells generated by alevin‑fry B Cell‑type annotation for cells generated by splitpipe C. Cell‑type annotation for cells generated 
by STARsolo. Cells are color coded (also indicated at the right of Fig. 5C) by cell‑type after using the Azimuth cell annotation algorithm. D 
An Upset plot of the predicted cell‑types from the PBMC data generated by each pipeline. Set size equals the total amount of predicted cell‑types 
per pipeline. Intersection size representing the total amount of predicted cell‑types that overlap between the intersected set of pipelines. The 
bottom right panel shows which pipelines are being intersected. E A barplot comparing the number of cells that are predicted to be a specific 
cell‑type per pipeline
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worst with respect to barcode correction (Fig S7A). The 
linker based position and alignment algorithms LR-
splitpipe and splitseq-demultiplex performed very well 
and enabled the capture of more than eighty percent of 
all correctable reads and the around twenty percent of 
the uncorrectable reads (Fig S7A). When comparing the 
sequence of the barcodes extracted LRsplitpipe, splitpipe, 
splitseqdemultipex and STARsolo find all the synthetic 
barcodes (Fig S7B). Interestingly splitpipe finds three 
additional CB and one different one. Alevin-fry performs 
badly only finding 249 barcodes. Splitpipeline finds 485 
barcodes and similar to previous behavior all barcodes 
differ from other algorithms (Fig S7B).

Discussion
SPLiT-seq is a relatively novel single cell sequenc-
ing technique, compared to droplet based single-cell 
sequencing, yet several pipelines have already been 
developed to process the data. Therefore, independent 
benchmarking and evaluation of these tools is of impor-
tance. In this study we compared a number of com-
putational pipelines for the processing of SPLiT-seq 
data (Table  1) and graded them on several qualitative 

factors (Fig.  6). We do note however, that several fac-
tors of grading might be subject to experience bias and 
if repeated results might differ.

Due to the scalability of SPLiT-seq, the datasets that 
will be generated by this technique are expected to 
become larger and larger [1, 18, 35]. Therefore, runtime 
and memory performance should be evaluated. When 
speed of analysis is important STARsolo and alevin-fry 
perform best. However, as dataset size increases STAR-
solo’s RAM usage increases significantly, whereas alevin-
fry can be used on very small amounts of RAM.

SPLiT-seq has the option of using different barcod-
ing chemistries. When modifications to the protocol are 
performed STARsolo and zUMI provide complete free-
dom and customization (Table  1). The other pipelines 
have fixed settings for v1 or v2 chemistries. Another 
important feature is the option of collapsing of random 
hexamer reads to obtain correct cell barcode assign-
ment. However, this feature is not built in every pipeline 
(Table 1), and a separate programming script is needed to 
perform this step, and is not a non-trivial task to imple-
ment. Depending on the programming language this can 
increase total runtime.

Fig. 6 A qualitative comparison of functional features and results between pipelines. Graded from one to five. One representing worst and five 
best. CB extraction: A degree to which CB produced are similar to that produced by others. Dependencies: How many dependencies each pipeline 
has on other programs or packages that have the be installed before proper functioning. Memory Usage: Amount of RAM the program uses. 
Option Flexibility: The freedom users have to change settings of each run. Speed: How fast the pipeline finishes its analysis
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Several barcode extraction methods are used in 
the different pipelines and the results show that they 
all work similarly efficient except for the alignment 
method of splitseq-demultiplex [29], which generates 
much more barcodes than other pipelines (Table  2, 
Fig. 3A). Fixed position algorithms will always be com-
putationally faster than alignment or linker-based posi-
tion, as there is no additional alignment step that has to 
be performed. 

We found that in both the small mouse brain data as 
well as the PBMC data the amount of CB extracted 
between most pipelines are similar (Figs.  3A and 4A). 
However, differences in content of the cells was observed 
when visualizing data on a UMAP (Figs. 3B and 4B, C). 
Therefore, we suspect that the largest differences between 
pipelines are not produced by the barcode extraction 
methods but with the alignment and counting of the 
algorithms. Except for the alevin-fry splitp pipeline, all 
pipelines compared here use STAR software to align 
reads. STAR uses a Maximal Mappable Prefix approach 
[24], whereas alevin-fry uses k-mer based pseudo align-
ment [32]. This can cause significance downstream differ-
ences (Fig. 4B, C). Moreover, every pipeline uses different 
feature counting methods which might also contribute 
to differences output from the same data. Recently, more 
detailed comparisons have been made on efficiency of 
different aligners and feature counting tools with respect 
to single-cell data [33, 37–39], which is reflected in the 
outcome of the pipelines we compared here. Splitpipe 
and STARsolo have similar results in terms of cell type 
calling and differences that do occur are most likely 
due their different counting algorithms (Fig.  5, S5, 6). 
Whereas alevin-fry splitp, differing on both alignment 
and counting shows large differences and results in faulty 
cell type prediction (Fig. 5, S5, 6).

In addition to the mouse brain and human PBMC data-
sets, we compared these pipelines using a synthetic data-
set which contains increasingly erroneous cell barcodes. 
We found that LR-splitpipe and splitseq-demultiplex 
performed best in correcting the CBs (Fig S7). However, 
when applied on larger datasets such as the mouse brain 
and human PBMC SPLIT-seq datasets, the LR-splitpipe 
and splitseq-demultiplex are found to be computation-
ally intensive and cannot compete with STARsolo and 
splitpipe that are more efficient. Future implementation 
of these position based and alignment-based pipelines 
should focus on improving their speed and computa-
tional resource demand. Furthermore, we suggest a more 
thorough investigation on the possible types of errors, in 
addition to the ones we simulated in the synthetic data-
set, that occur within CBs of real SPLiT-seq data. This 
will be instrumental in improving the existing pipelines, 
as well as the development of new ones.

At this point splitseq-demultiplex and splitpipeline are 
not well maintained and have to be updated to be able to 
handle newer barcode chemistries, thus we discourage 
the use of those pipelines [26, 29]. zUMI [25, 40] is more 
frequently maintained, however it has many depend-
encies on other packages that have been updated since 
the initial release of zUMI. Although zUMI [25, 40] pro-
vides a functional conda environment in which it runs, 
the packages and functionalities might be outdated.

When using the commercialized SPLiT-seq, we rec-
ommend using splitpipe as it is specifically designed 
to analyze SPLiT-seq data. Splitpipe contains several 
advantages over the other pipelines in terms of user 
friendliness. Several steps exist to confirm whether the 
correct options have been used reducing complexity 
for the user. In addition, several QC graphs can be pro-
duced on the user’s discretion. Whereas other pipelines 
offer more freedom with increased complexity. How-
ever, the splitpipe pipeline algorithm  is only available 
after a purchase at Parse Biosciences. If unavailable we 
recommend using STARsolo [38] as it performs simi-
larly to splitpipe, although random hexamer collaps-
ing has to be performed separately. The difference most 
likely arises due to feature counting; however, STAR is a 
well-established alignment method and commonly used. 
Additionally, both STARsolo and splitpipe are compu-
tationally efficient in comparison with other pipelines 
and are therefore more scalable with the larger datasets 
SPLiT-seq experiments generate. If the SPLiT-seq library 
is sequenced using long read sequencing, we suggest 
using LR-splitpipe [27, 41], as it is specifically designed to 
handle long reads and copies several functions from the 
splitpipe pipeline.

SPLiT-seq offers an alternative to the droplet and plate 
based single-cell sequencing methods. It is also rela-
tively easier, scalable and cheaper for large-scale experi-
ments [35]. Despite these advantages, the development 
of analysis tools is still lagging behind and the existing 
tools are not benchmarked. Our comparative analysis of 
the current computational tools for SPLiT-seq data aids 
researchers to choose the most appropriate tool for data 
analysis.

Methods
Data retrieval
The small mouse brain dataset was retrieved from NCBI 
[GSM3017260] [18] containing one sub-library with 
77,621,181 reads. The large PBMC dataset was published 
[35] and sequencing data available on request from parse 
biosciences. The large PBMC consists of two sub-libraries 
of which only the second one, containing 1,704,418,175 
reads, was used. The quality of both datasets was first 
analyzed with fastQC and did not require any trimming.
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Pipeline comparison
All pipelines except zUMI, were run on the Snellius SURF 
Dutch research cluster. SLURM was used to run batch 
jobs, limit memory usage and measure computational 
performance. Memory limits were set to 64 Gb and 256 
Gb for the small and large dataset respectively with one 
exception for STARsolo, which was allowed up to 1TB of 
RAM to allow completion. Each pipeline was run a total 
of 5 times to obtain performance averages.

All pipelines were set to perform as similarly as possi-
ble; cell barcode correction distance was set to two and 
only kept cells barcodes that have more than 100 reads 
assigned to them.

As each pipeline performs the analysis steps in a cer-
tain order a short description is given about each pipeline 
is provided below and a graphical depiction is displayed 
in Figure S1. To simplify the steps names are reduced to 
core function of the steps.

STARsolo
STARsolo (2.7.10a) [24, 38, 42] was run using the CB_
UMI_Complex option, which allows for position-based 
input of the CB and UMI. Index position for the BC 3 and 
2 were 10 to 17 and 48 to 55 respectively. For v1 chem-
istry BC 1 position was 86 to 93 and for v2 chemistry 78 
to 85. UMI position was set to index 0 to 9. CBs were 
corrected to a position-based whitelist with the CB cor-
rection option of Edit_dist_2 which sets the correction 
distance to two base pairs.

STARsolo runs its analysis steps in the following order: 
Alignment of reads to genome, CB extraction and correc-
tion, Counting UMIs, counting features, create single cell 
matrices (Fig S1).

Splitpipeline
All the splitpipeline (0.0.1) [18, 26] base options were 
used except for the chemistry used, which was set to the 
respective chemistry of the input data with the –chem-
istry option. Cell barcode edit distance is hard coded to 
two base pairs.

Splitpipeline runs its analysis steps in the following 
order; CB extraction and correction, Collapsing of CB, 
Counting UMIs, Alignment of reads to genome, counting 
features, create single cell matrices (Fig S1).

Splitpipe
Splitpipe (v1.0.3p) [35] performs an internal check of the 
chemistry and kit used by taking a subsample of the data-
set, which provided the same information that was given 
upon data request (kit WT, chemistry v2). Splitpipe auto-
matically tries to use an Anaconda virtual environment, 

which was turned off using the –start_timeout 0 option. 
Otherwise, no additional options were used. Cell barcode 
edit distance is hard coded to two base pairs.

Splitpipe runs its analysis steps in the following order; 
CB extraction and correction, Collapsing of CB, Count-
ing UMIs, Alignment of reads to genome, counting fea-
tures, create single cell matrices (Fig S1).

zUMI
A zUMI (2.9.7d) [25, 40] yaml file was generated using 
the Rshiny app provided on their github. CB position 
was set to read 2 with indices 11–18, 49–56 for BC3 and 
BC2, respectively. For BC1 with the indices 79–86 and 
87–94 were used for v2 and v1 chemistries respectively. 
UMI positions indices were set to 1–10. Cell barcode edit 
distance was set to two and were corrected to a provided 
cell barcode whitelist. We were unable to make zUMI 
working on the Snellius cluster due to dependency con-
flicts, therefore we utilized a smaller local server where 
we could use the internally provided Anaconda virtual 
environment (Fig S1).

zUMI runs its analysis steps in the following order; CB 
extraction and correction, Counting UMIs, Collapsing 
of CB, Alignment of reads to genome, counting features, 
create single cell matrices.

SCSit
SCSit [28, 43] test runs were made using the steps pro-
vided on their github with both their test data and other 
data. All runs crashed with a segmentation fault error. 
Troubleshooting was performed but no obvious cause 
was found to be the source, after which authors were 
notified Fig S1).

Splitseq-demultiplex
The run type (-v) of Splitseq-demultiplex (0.2.1) [29] was 
set to merged which performs the BC Alignment type CB 
extraction. Random hexamer collapsing (-c) was set to 
true and CB edit distance(-e) to two base pairs. Depend-
ing on the chemistry used barcode sequences were 
changed by providing premade input files (-1, -2,-3).

SPLiTseq-demultiplex runs its analysis steps in the fol-
lowing order; CB extraction and correction, Collapsing 
of CB, Counting UMIs, Alignment of reads to genome, 
counting features, create single cell matrices (Fig S1).

Alevin-fry splitp
First random hexamer collapsing was performed using 
splitp (0.1.0), for v1 chemistry positions 78 to 94 and for 
v2 chemistry positions 79 to 86 were used. Subsequently 
alignment and CB correction were performed with 
salmon (1.9.0) and alevin-fry according to the alevin-
fry SPLiT-seq tutorial. Alignment was set to –sketch 
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with the –tgMap to map to gene features. Subsequently 
Alevin-fry (0.8.1) generate-permit-list was used to find 
all barcodes within a given whitelist. Alevin-fry collate 
to count UMIs and subsequently Alevin-fry quant to 
count features and generate a matrix [44] (https:// github. 
com/ COMBI NE- lab/ splitp, https:// github. com/ COMBI 
NE- lab/ alevin- fry,https:// github. com/ COMBI NE- lab/ 
salmon).

Alevin-fry splitp runs its analysis steps in the following 
order; Collapsing of CB, Alignment of reads to genome 
and extraction of CB, CB correction, counting features, 
create single cell matrix (Fig S1).

LR-splitpipe
The LR-splitpipe [27, 41] pipeline was slightly modified to 
turn of negative strand alignment. In addition, v1 chem-
istry options were added. Otherwise, all base options 
were used with a hard coded CB edit distance of two. 
Output of LR-splitpipe is a fastq file with the corrected 
CB sequence which was subsequently used for alignment 
with STARsolo to generate a single cell matrix.

LR-splitpipe runs its analysis steps in the follow-
ing order. Extraction of CB and UMI, correction of CB, 
generate corrected fastq. After which it follows order of 
STARsolo (Fig S1).

Random hexamer collapsing
Not all pipelines perform random hexamer collapsing. 
To address random hexamer collapsing for pipelines that 
did not perform this step, a custom R script was written 
[https:// doi. org/ 10. 5281/ zenodo. 83628 59]. In the first 
round a total of 96 barcodes are used. The first 48 are 
assigned to polyA capturing oligos whereas the last 48 are 
assigned to random hexamer capturing oligos. The 1st, 
index 1, polyA barcode is linked to the 1st, index 49, ran-
dom hexamer barcode, and repeated for each following 
barcode combination. The Rscript numerates the barcode 
sequences to simplify and speed up computation. Col-
lapsing occurs by subtracting 48 from each number that 
is larger than 48, after which the numerated BC1, 2 and 
3 numbers were pasted together. Subsequently the list of 
barcode sequences was collapsed by looking for duplicate 
barcodes and performing row sums of the respective data 
matrix indices and stored into a new matrix with col-
lapsed cells.

Quality control
Seurat [31] was used to analyze each dataset. For the 
small dataset a minimum of 1000 and maximum of 
10,000 features were used as a threshold for each cell. 
Additionally, a maximum of 5% mitochondrial reads 
was allowed. For the large dataset a minimum of 600 
and maximum of 5000 features was used as a threshold 

of each cell. Subsequently data was merged or kept sepa-
rately and treated as thus; Data was normalized using 
log Normalization and a scale factor of 10,000. A total of 
2000 variable features were found using variance stabiliz-
ing transformation (vst) after which data was scaled. PCA 
was performed and subsequently nearest neighbours and 
UMAP were calculated with the first 10 and 40 PCAs 
in the small and large dataset respectively. For the large 
dataset batch correction was performed per donor sam-
ple using reciprocal PCA [31] and cell types were called 
using the Azimuth [31] package. Subsequently Leiden 
clustering was used to find the most frequent cell type 
annotation in each cluster, if the most frequent assign-
ment within that cluster was not more than 25% of the 
total cluster the cell type annotation was removed. Visu-
alization was performed using UpSet and ggplot2.

Gene–gene correlation
Pseudobulk data per pipeline or cell-type group was gen-
erated using the AggregateExpression function in the 
Seurat R (v5.0) package. Expression was subsequently 
tested against each other using the base correlation func-
tion (cor) in R using the Pearson method. Result was vis-
ualized using a heatmap.

Synthetic data generation
To generate the synthetic SPLiT-seq data we concat-
enated the six specific elements that are present in the 
SPLiT-seq cell barcode sequence. These are in follow-
ing order, UMI, BC3, LINKER2, BC2, LINKER1, BC1. 
Each cell barcode that was synthesized was given 10.000 
amount of reads. Each read was given a UMI that had a 
hamming distance greater than two for every other UMI 
within a synthetic cell. This was used to prevent UMI col-
lapsing of reads performed by some pipelines. All reads 
within a synthetic cell were divided equally into several 
categories (read type), where each category was given a 
specific 120 base sequence of a known gene so that the 
retrieval of a category could be measured in the count 
matrix on a per feature basis (Table S4). A total of eight 
categories were created; i) Perfect reads that do not con-
tain any errors. ii), iii) and iv) reads that contain correct-
able barcode elements in one, two or all three barcode 
element positions. v), vi) and vii) reads that contain 
uncorrectable barcode elements in one, two or all three 
barcode element positions and viii) a completely random 
sequence. As the Levenshtein correction distance in each 
pipeline is set to two we divided reads in two major cat-
egories; i) correctable barcodes that contain two or less 
substitution errors and should be within correction dis-
tance and ii) uncorrectable barcodes that contain three 
or more substitution errors and are uncorrectable. Errors 
were introduced by random substitutions of bases in a 

https://github.com/COMBINE-lab/splitp
https://github.com/COMBINE-lab/splitp
https://github.com/COMBINE-lab/alevin-fry
https://github.com/COMBINE-lab/alevin-fry
https://github.com/COMBINE-lab/salmon
https://github.com/COMBINE-lab/salmon
https://doi.org/10.5281/zenodo.8362859
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single or multiple barcode sequence elements. All reads 
were written to a fastq file format with all easily retaina-
ble information such as read category, or original barcode 
were stored in the read name.
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