
Kuijpers et al. BMC Genomics (2024) 25:361
https://doi.org/10.1186/s12864-024-10285-3

RESEARCH

Split Pool Ligation-based Single-cell
Transcriptome sequencing (SPLiT-seq) data
processing pipeline comparison
Lucas Kuijpers1*, Bastian Hornung2, Mirjam C. G. N. van den Hout ‑ van Vroonhoven2, Wilfred F. J. van IJcken2,
Frank Grosveld1 and Eskeatnaf Mulugeta1*

Abstract

Background Single‑cell sequencing techniques are revolutionizing every field of biology by providing the abil‑
ity to measure the abundance of biological molecules at a single‑cell resolution. Although single‑cell sequencing
approaches have been developed for several molecular modalities, single‑cell transcriptome sequencing is the most
prevalent and widely applied technique. SPLiT‑seq (split‑pool ligation‑based transcriptome sequencing) is one
of these single‑cell transcriptome techniques that applies a unique combinatorial‑barcoding approach by split‑
ting and pooling cells into multi‑well plates containing barcodes. This unique approach required the development
of dedicated computational tools to preprocess the data and extract the count matrices. Here we compare eight
bioinformatic pipelines (alevin‑fry splitp, LR‑splitpipe, SCSit, splitpipe, splitpipeline, SPLiTseq‑demultiplex, STARsolo
and zUMI) that have been developed to process SPLiT‑seq data. We provide an overview of the tools, their computa‑
tional performance, functionality and impact on downstream processing of the single‑cell data, which vary greatly
depending on the tool used.

Results We show that STARsolo, splitpipe and alevin‑fry splitp can all handle large amount of data within reason‑
able time. In contrast, the other five pipelines are slow when handling large datasets. When using smaller dataset,
cell barcode results are similar with the exception of SPLiTseq‑demultiplex and splitpipeline. LR‑splitpipe that is origi‑
nally designed for processing long‑read sequencing data is the slowest of all pipelines. Alevin‑fry produced differ‑
ent down‑stream results that are difficult to interpret. STARsolo functions nearly identical to splitpipe and produce
results that are highly similar to each other. However, STARsolo lacks the function to collapse random hexamer reads
for which some additional coding is required.

Conclusion Our comprehensive comparative analysis aids users in selecting the most suitable analysis tool for effi‑
cient SPLiT‑seq data processing, while also detailing the specific prerequisites for each of these pipelines. From
the available pipelines, we recommend splitpipe or STARSolo for SPLiT‑seq data analysis.

Keywords SPLiT‑seq, Split‑pool barcoding, Combinatorial barcoding, Data‑preprocessing, Single cell RNA sequencing

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

*Correspondence:
Lucas Kuijpers
l.kuijpers@erasmusmc.nl
Eskeatnaf Mulugeta
e.mulugeta@erasmusmc.nl
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-10285-3&domain=pdf

Page 2 of 15Kuijpers et al. BMC Genomics (2024) 25:361

Background
The ability to analyze the transcriptome at single-cell res-
olution has become an increasingly important technique
to uncover cellular heterogeneity within tissues, observe
specific cell states, unravel gene regulatory networks and
understand dynamic processes in much more detail.

Since its development nearly a decade ago, the single-
cell sequencing field has seen a rapid growth, expanding
the repertoire of improved techniques and approaches
[1]. In the past years, several such technologies have been
developed that allow the sequencing of the genome, epi-
genome, and transcriptome [2–7]. Single-cell sequencing
platforms continually improve by increasing the number
of cells that can be sequenced and the number of reads
per cell that can be captured and importantly decreas-
ing the cost of the experiments [6, 8, 9]. As it was the
first single cell sequencing modality to arise, single-cell
transcriptome sequencing has seen the most significant
improvements and applications [1, 10–12]. Single-cell
transcriptome sequencing techniques can be catego-
rized into four groups: i) Droplet based approaches (e.g.
10 × genomics, Drop-seq) [13, 14], in which cells are
captured in micro droplets where they are barcoded and
lysed; ii) Plate based methods (e.g. SMART-seq) [15],
where single cells are sorted into microwells and subse-
quently lysed and sequenced; iii) emulsification/gelifica-
tion based techniques [16, 17] that utilize the physical
separation of cells and beads within an oil or gel solution;
iv) Split barcoding techniques (e.g. SPLiT-seq, sci-RNA-
seq) [18, 19], in which cells are continually redistrib-
uted and new barcodes are introduced in several rounds
to ensure a unique barcode combination for each cell
(Fig. 1A).

Split barcoding (combinatorial barcoding) holds great
potential, as it tackles two important bottlenecks in the
single-cell sequencing field: cell throughput and experi-
mental costs [18]. Albeit, split barcoding has some
technical downsides and caveats: (I) An increased pos-
sibility of cell doublets due to cell clumping. (II) Not all
cell types or samples can be mixed due to unequal rep-
resentation of RNA molecules between samples or cell
types. (III) Moreover, sample quality has to be similar to
prevent sample bias, as dying cells or free-floating RNA
molecules will increase background signal and mask true
reads. The power of split barcoding lies in its simplicity.
After fixation and permeabilization the cells go through a
series of pooling and splitting. After each splitting of the
cells a unique barcode is introduced which is ligated to
the mRNA products (Fig. 1A). With sufficient rounds of
barcoding the probability that of any two cell barcodes
are the same approaches zero. The maximum avail-
able amount of unique cell barcodes can be expressed
as Number of barcodes per roundRounds of split−pooling. This

concept has no theoretical limits, but has a few practi-
cal ones. With increasing rounds there is an increas-
ing chance of cell loss as well as aberrant ligation errors.
Finally, the read length would increase with each added
barcode, resulting in increased costs as well as increase
sequencing error within the cell barcode. However,
Split barcoding does not require any custom or specific
machines nor high expertise making it accessible to every
wet-lab. Split barcoding reduces the cost of single-cell
sequencing experiments especially when used on a large
scale [18]. Recently, SPLiT-seq has been commercialized
(https:// www. parse biosc iences. com) making the tech-
nique easily accessible to everyone.

Despite these advantages, the subsequent analysis of
SPLiT-seq data is more complicated. Each transcript of a
cell is identified through a Cell Barcode (CB), which con-
sists of the cumulative combination of ligated barcodes
and a Unique Molecular Identifier (UMI). Droplet or
other micro-fluidics sequencing methods often use one
barcode which is synthesized directly onto the Unique
Molecular Identifier (UMI) [20, 21], while SMART-
seq physically separates the cells and attaches unique
sequencing adapters [20–23]. These approaches make
sample deconvolution and other downstream analysis
relatively easier when compared to SPLiT-seq, which
uses three independent barcodes, separated by link-
ers (Fig. 1A), which are ligated to each other in series.
Several algorithms have been generated to deconvolute
the CBs and although all of them follow similar steps
(Fig. 1B), they have unique approaches in how they pro-
cess the reads (Fig S1). The post-sequencing algorithms
can be categorized into three categories based on how
they extract CBs from the read (Fig. 1C). These are: (I)
Fixed position; The algorithm relies on the known theo-
retical BC positions relative to the start of the read. By
using these positions, the algorithm extracts the CB and
UMI (Table 1) [24–26] (STARsolo, splitpipe, splitpipe-
line, zUMI, alevin-fry splitp). (II). Linker-based posi-
tion; this strategy first aligns the known linker sequences
to the read, using the best alignment as a reference for
the position of the barcodes and UMI (Table 1) [27, 28]
(SCSit, LR-splitpipe). (III). BC Alignment; All possible
expected sequences of the barcode are used to align to
the read [29]. Because BCs are sampled from the same set
of sequences, part of the sequence of the adjoining linker
is used to anchor the barcode position (Table 1) [29]
(Splitseq-demultiplex).

Two other features of SPLiT-seq protocols are its use of
different linker chemistries and random hexamers. Since
its first publication [18] SPLiT-seq has been in continued
development which has resulted in two different linker
chemistries (v1,v2). As a feature the SPLiT-seq allows to
capture as many RNA reads by using random hexamer

https://www.parsebiosciences.com

Page 3 of 15Kuijpers et al. BMC Genomics (2024) 25:361

Fig. 1 A Graphical description of the SPLiT‑seq protocol. 1) cell fixation and ligation and permeabilization, 2) reverse transcription and addition
of BarCode 1 (BC1), 3) pooling, splitting and ligation of BC2, 4) pooling, splitting and ligation of BC3 and UMI, 5) cell lysis and 6) cDNA purification,
7) second strand synthesis, 8) cDNA amplification B. Graphic description of the common processing steps applied by SPLiT‑seq preprocessing
pipelines. Depending on the pipeline steps are performed in different order or not at all (Fig S1). C. Depiction of the three types of computational
algorithms. I) fixed position, II) linker‑based position, III) BC alignment

Table 1 Characteristics of the pipelines

Pipeline Compressed
input

Linker chemistry Bc sets Adjustable
alignment

Ranhex
conversion

Algorithm Programming language

alevin-fry splitp [24,
30–32]

Yes v1,v2 Input Yes Yes Position based Rust

LR-splitpipe [25, 28] No v2 Fixed Yes No Linker based position Python

SCSit [26, 33] No v1 Fixed Yes No Linker based position C

splitseq-demultiplex
[27]

No Any Input Yes Yes Alignment/Position
based

Python,shell

splitpipe [34] Yes v1,v2 Fixed No Yes Position based Python,shell

splitpipeline [16, 24] Yes v1,v2 Input No Yes Position based Python,shell

STARsolo [22, 29, 35] Both Any Input Yes No Position based C,C + +

zUMI [23, 36] Yes Any Input Yes Yes Position based Perl,R,shell,Python

Page 4 of 15Kuijpers et al. BMC Genomics (2024) 25:361

primers in addition to Poly Adenylated (PolyA) primers.
In the first barcoding round these primers are combined
in the same well. Instead of using 96 barcodes only 48 are
used, with the second 48 as random hexamer primers
this causes that a set of barcodes originate from random
hexamer primers and another from PolyA primers which
are coupled through their BC sequence and well position.

In this study we compared the ease of use, performance
and quality of the results generated by eight bioinfor-
matic pipelines (alevin-fry splitp, LR-splitpipe, SCSit,
splitpipe, splitpipeline, SPLiTseq-demultiplex, STARsolo
and zUMI) that have been developed to process SPLiT-
seq data. We provide details on their processing steps
the pros and cons of these tools. Our analysis shows the
importance of the chosen algorithm for the processing
step, which significantly affects the downstream results
and further analysis. Our findings will help others that
are performing or planning to analyzing SPLIT-seq data.

Results
Functional comparison of data-processing pipelines
Several SPLiT-seq analysis pipelines have been devel-
oped. However, these tools have, to the best of our
knowledge, not been compared and benchmarked yet in
the context of SPLiT-seq. A comparison aids researchers
in making an informed decision before analyzing SPLiT-
seq data.

A total of 8 pipelines were found that could analyze
SPLiT-seq data: alevin-fry splitp, LR-splitpipe, SCSit,
splitpipe, splitpipeline, Splitseq-demultiplex, STARsolo
and zUMI (Table 1). To test these pipelines, we used two
published datasets: i) a small dataset [18] which contains
approximately 100 mouse brain cells with 80 million
reads using v1 chemistry, and ii) a larger dataset originat-
ing from PBMCs [35], containing about 15,000 cells and 2
billion reads using v2 chemistry.

We started our comparison by examining each pipe-
line’s compatibility with input data type, algorithm uti-
lization, the programming language, linker chemistry
version, barcode sets and random hexamer conversion
ability employed for each pipeline (Table 1). With regard
to Input data type, out of the 8 pipelines compared, 5
can handle compressed data, optimizing disk space uti-
lization. When comparing barcode extraction methods
per algorithm, we found that the majority of pipelines
employ a position-based algorithm (split-pipeline, STAR-
solo, zUMI, split-pipe, and alevin-fry splitp), while oth-
ers like LR-splitpipe and SCSit utilize a linker-based
positioning approach, and splitseq-demultiplex opts for
an alignment-based positioning algorithm. These pipe-
lines are primarily developed in Python or a combination
of Python with shell scripting (used by zUMI, LR-split-
pipe, split-pipeline, splitseq-demultiplex, and split-pipe).

STARsolo utilizes C and C + + , while SCSit is imple-
mented in the C programming language and alevin-fry
splitp is developed using Rust.

When we assessed the linker chemistry compatibility,
except for the SCSit and LR-splitpipe pipelines, all pipe-
lines were found capable to handle data generated using
both the v1 and v2 chemistry SPLiT-seq protocols. The
LR-splitpipe is originally designed to process long read
sequencing data with v2 chemistry from the Oxford
nanopore. Due to the technique reads are sequenced in
both orientations which is considered in the LR-split-
pipe algorithm. However, LR-splitpipe is relatively easily
modifiable for other purposes. The barcode sequences
that are used can differ in SPLiT-seq experiments. SCSit,
splitpipeline and splitpipe have fixed barcode sequences
within their algorithm whereas other pipelines require
the sequences per position as user input. Splitpipe, how-
ever, contains all the latest barcodes published by Parse
Biosciences within the program and suggests the most
likely barcode set upon running the pipeline. Depend-
ing on the experiment the alignment that has to be
performed might have to be altered. Splitpipe and split-
pipeline currently do not contain any option to alter the
alignment, in contrast to all other pipelines where the
alignment is adjustable. Another important feature con-
sidered by certain pipelines is random hexamer collaps-
ing, which sums reads from random hexamer and polyA
capture to the correct CB; however, only 5 out of the 8
pipelines incorporate this collapsing step (split-pipeline,
zUMI, split-pipe, alevin-fry splitp, splitseq-demulti-
plex). If a SPLiT-seq experiment is performed according
to standard protocol algorithms such as splitpipe and
splitpipeline are easy to use and everything required is
already present within the program. When alterations are
required for the analysis due to specific experimental or
preprocessing needs other programs provide more free-
dom in options.

Performance comparison
Next, we compared the performance of these pipelines
by first using the aforementioned small dataset contain-
ing 100 mouse brain cells. We recorded the analysis time
and the memory resources needed (RAM) to process the
data. The alevin-fry splitp, STARsolo and splitpipeline
are the fastest pipelines when analyzing the small dataset.
STARsolo completes the whole pipeline in just over 6 min
(Fig. 2A). LR-splitpipe however, takes more than 5 h to
complete (Fig. 2A). Besides python not being as fast as
the coding language C or C + + [34, 36] LR-splitpipe per-
forms several steps with ‘for’ loops that parse over all the
data, which are known to be slow in python [30]. RAM
usage is similar for most of the compared pipelines when
applied on the small dataset and range between 30 and

Page 5 of 15Kuijpers et al. BMC Genomics (2024) 25:361

40 Gb (Fig. 2B). zUMI consumes a considerable higher
amount of memory, while Alevin-fry only requires 10 Gb
of RAM making it the most memory efficient pipeline.
The SCSit pipeline was tested, but did not function prop-
erly. The pipeline crashes with an unknown error, which
could not be resolved. Thus, it was not used for the rest
of the study and the authors were notified. The splitpipe
algorithm, published by Parse Biosciences, did not con-
tain the right predetermined settings to run the small
dataset and could not therefore not be applied. This was
primarily because, the small dataset was generated using
an older protocol of SPLiT-seq, which uses outdated bar-
coding sequences.

When testing all 8 pipelines on the larger PBMC
(peripheral blood mononuclear cells) dataset zUMI, LR-
splitpipe and splitseq-demultiplex required more than
5 days to finish. Therefore, those pipelines were excluded
from further comparison since we deemed the long run-
ning times prohibitive for routine analysis.

When applied on the large PBMC dataset both alevin-
fry and STARsolo were very fast, finishing in approxi-
mately 8 and 5 h respectively (Fig. 2C). Split-pipe took

24 h to complete. Split-pipeline, the predecessor of split-
pipe, performed much better with an average run time of
7 h (Fig. 2C). When looking at memory usage alevin-fry
requires minimal resources using a maximum 12 Gb of
RAM (Fig. 2D). In contrast STARsolo requires 293 Gb
when running the large dataset (Fig. 2D), which currently
exceeds the specifications of many commercially availa-
ble standard servers. Split-pipe and split-pipeline require
55 and 35 Gb of RAM respectively making it easier to run
on smaller machines (Fig. 2D).

Pipeline comparison using small mouse brain dataset
In order to compare the pipelines in a more quantitative
measure we performed further downstream analysis on
the outputs of these pipelines. We first investigated the
small dataset that is reported to have 100 cells that are
deeply sequenced to 80 million reads [18]. Following
quality control (Fig S2), the LR-splitpipe and STARsolo
generated exactly 100 cells, as initially reported, while
split-pipeline generated a comparable number of cells
(108), which falls well within the expected range of cell
counts (Table 2). zUMI’s and alevin-fry produced 140

Fig. 2 A Time elapsed and B. maximum RAM usage for each pipeline with the small dataset of 80 million reads. C Time elapsed and D. maximum
RAM usage for each pipeline with the large dataset 2 billion reads. Each pipeline was run five times to obtain averages

Page 6 of 15Kuijpers et al. BMC Genomics (2024) 25:361

and 178 cells respectively (Table 2). Splitseq-demultiplex
finds a total of 255 cells, reaching the highest number of
cells from all the compared pipelines (Table 2). When
comparing the cell barcodes generated between the dif-
ferent pipelines 87 cells intersect between five out of
the six pipelines. Surprisingly, none of those 87 cells are
detected by split-pipeline (Fig. 3A). Whereas another 48
and 26 intersect between zUMI, alevin-fry and splitseq-
demultiplex and alevin-fry and splitseq-demultiplex
respectively, arising from their increased total cell bar-
codes generated (Fig. 3A). Only split-pipeline stands out
having 102 unique cell barcodes that do not intersect
with any cell barcodes from other pipelines. We investi-
gated whether this was due to any technical errors such
as wrong annotation of BC order e.g. BC1-BC2-BC3 vs
BC3-BC2-BC1. We were unable to find the source of this
phenomenon.

When comparing gene and UMI per cell content
STARsolo and LRsplitpipe perform very similar having
the lowest content per cell (Table 2). Although zUMI and
alevin-fry have an increased number of cells generated,
they also have a higher gene and UMI content per cell,
which shows differences in their counting and/or align-
ment compared to LR-splitpipe and STARsolo. Split-
pipeline obtains the highest number of genes per cell
whereas splitseq-demultiplex obtains the least number of
genes per cell, despite of having the highest UMI per cell
content.

To further understand and evaluate the output of
these pipelines, we plotted the cells generated from each
pipeline using UMAP (Uniform Manifold Approxima-
tion and Projection). This indicated that, despite their
differences in quantity of content or BC tag, these cells
exhibited overlapping characteristics (Fig. 3B), implying
the presence of similar expression profiles. A portion of
the cells produced by the alevin-fry splitp and splitseq-
demultiplex pipeline tend to aggregate more closely
together than cells produced by other pipelines (Fig. 3B).
The aggregation of splitseq-demultiplex can be explained
by the fact that it generates approximately 100 more CB
than others, therefore splitseq-demultiplex is more rep-
resented within the UMAP compared to other pipelines.

Alevin-fry splitp in contrast to all other pipelines uses
pseudo-alignment which might result in the different
expression patterns and therefore aggregation of the cells
within the UMAP.

Pipeline comparison on large PBMC dataset
Next, we investigated the output of the pipelines using
the large dataset of ~ 15,000 cells. The split-pipeline algo-
rithm completed the analysis, however only 10 cells
passed the QC thresholds and it was therefore not used
in further analyses. After QC, the STARsolo, splitpipe
and alevin-fry pipelines obtained just over 15,000 cells
barcode of which 14,343 cell barcodes were identical
between the pipelines (Fig. 4A). Additionally, when look-
ing at gene and UMI content per cell, all pipelines per-
form similarly (Table 3, Fig S3A, B) especially STARsolo
and splitpipe which give nearly identical results (Fig. 4B).
Alevin-fry has a higher mean and median for both gene
and UMI per cell content (Table 3), as well as more vari-
ance across the dataset (Fig S 3A, B, D). In order to fur-
ther test the identity of the cells that are generated by
these pipelines, we mapped the cells to a reference data-
set using the R package Azimuth [31] and visualized the
cells on a UMAP (Figs. 4C and 5A-C) showing distinct
differences per pipeline. As the data consists of four
donor samples, the data was split and integrated together
on the donor level to remove as much bias by donor (Fig
S3C). Subsequently, the cell type data generated by each
pipeline was mapped using Azimuth [31] and visual-
ized on an UMAP (Fig. 5A-C, Fig S3C). Across the three
pipelines a total of 18 different cell types are predicted.
Splitpipe has a total of 16 predicted cell types (Fig. 5B, D),
STARsolo has a total of 15 predicted cell types(Fig. 5C,
D), 14 of which overlap with those detected by splitpipe
(Fig. 5D). Only the CD8 naïve and Plasmablast cell-types
are missing from the STARsolo annotation (Fig. 5B,
C, E). Conversely STARsolo has the proliferating NK
cell-type annotated which is not annotated in the split-
pipe data (Fig. 5B, C, E). Moreover, when looking at the
number of cells per predicted cell type STARsolo and
splitpipe are nearly identical sharing similar numbers
cell counts for almost every predicted cell type (Fig. 5E).

Table 2 Quantitative measurements per pipeline for the small dataset

Pipeline Mean gene per cell Median gene per cell Mean umi per cell Median umi per cell N cells

alevin‑fry 2249.9 1659 8645.5 4031.9 178

LR‑splitpipe 1772.5 1179.5 4177.9 1849.5 100

split‑pipeline 3602.7 2815.5 16159.1 8307.5 108

splitseq‑demultiplex 1730.8 647 97746.3 9387 255

STARsolo 1755.8 1171 4045.3 1778 100

zUMI 2723.1 2233 8741.6 5137 140

Page 7 of 15Kuijpers et al. BMC Genomics (2024) 25:361

Alevin-fry splip however, shares only three predicted cell
types (Fig. 5A, D). Moreover, most cell are predicted to
be erythroid (Eryth) whilst this predicted cell type is not
called in either splitpipe nor STARsolo datasets. The Azi-
muth algorithm provides cell type prediction scores and
mapping scores, where cell type prediction score repre-
sents how well a cell maps to the closest cell in the refer-
ence data. The mapping score represent how well a cell
is represented in the reference data a low score mean-
ing that there are few cells that are identical within the

reference map. When plotting the mapping and predic-
tion scores (Fig S4) the alevin-fry data is performing
poorly compared to the other pipelines, which made us
conclude that alevin-fry splitp leads to low quality cell
type assignment.

To compare similarity, the data of alevin-fry, STARSolo
and splitpipe pipelines were merged without integration
and visualized (Fig. 4B). The result generated by alevin-
fry splitp are completely separated by pipeline indicat-
ing that these results are very different. STARsolo and

Fig. 3 A An Upset plot of the cell barcodes (CB) that were generated by each pipeline after QC. Set size equals the total amount of BC generated
by the pipeline. Intersection size representing the total amount of barcodes that overlap between the intersected set of pipelines. The bottom right
panel shows which pipelines are being intersected. B A UMAP of the merged data generated by each pipeline comparing cell expression content.
Cells are color‑coded according to the pipeline color used in Fig. 3 A

Page 8 of 15Kuijpers et al. BMC Genomics (2024) 25:361

splitpipe followed the same pattern but still separate
based by pipeline for most several cell types (Fig. 4B). The
naïve B, and intermediate clusters of STARsolo and split-
pipe mix well indicating highly similar results (Fig. 4B,
C). This also occurs in the plasmacytoid Dendritic Cell
(pDC) and Hematopoietic Stem and Progenitor Cell

(HSPC) clusters and partially in the T regulatory (Treg),
CD4 T Central Memory (TCM) and Mucosal-Associated
Invarian T cell (MAIT) clusters (Fig. 4B, C). However,
other clusters separate based on pipeline (Fig. 4B, C). To
highlight the difference between the pipelines we per-
formed a Pearson correlation of the expression data on
the pseudo-bulk level (Fig S5). STARsolo and splitpipe
correlate highly to each other, whereas alevin-fry differs
greatly (Fig S5A). However, when we further performed
a cell type cluster comparison between STARsolo and
splitpipe; differences created by the pipelines were vis-
ible (Fig S5B). Additionally, differential expression was
performed between the CD14 Monocytes and Natural
Killer (NK) annotated cell types to investigate the differ-
ences. When analyzing the markers we noticed that sev-
eral of the marker genes were either present in one but
not in the other pipeline (Table S1, 2). By calculating the

Fig. 4 A An Upset plot of the cell barcodes that were generated by each pipeline after QC. Set size equals the total amount of BC generated
by the pipeline. Intersection size representing the total amount of barcodes that overlap between the intersected set of pipelines. The bottom right
panel shows which pipelines are being intersected. B UMAP after merging the data from the different pipelines together. Comparing cell expression
content. Cells are color‑coded according to the pipeline color used in Fig. 4A. C UMAP after merging the data from the different pipelines together.
Cells are color coded by cell‑type (also indicated at the right of Fig. 4C) after using the Azimuth cell annotation algorithm

Table 3 Quantitative measurements per pipeline for the large
dataset

Pipeline Mean
gene per
cell

Median
gene per
cell

Mean umi
per cell

Median
umi per
cell

N cells

alevin‑fry 2785.3 2923 7297.8 6991.9 15620

splitpipe 2290.6 2283 6142.6 5493 15748

STARsolo 2176.1 2152 5689.2 5051 15875

Page 9 of 15Kuijpers et al. BMC Genomics (2024) 25:361

percent difference, we can see the magnitude of differ-
ence between two genes within the annotated cell types
(Fig S6, Table S1, 2). Subsequently we compared the dif-
ference of total annotated features between pipelines
(Table S3) showing that each pipeline aligns or counts the
genes differently.

Barcode extraction from synthetic data differs
between algorithms
Two major steps are performed by the SPLiT-seq pro-
cessing algorithms; alignment of transcriptomic reads
and extraction of cell barcodes. For the purpose of com-
paring the ability of each algorithm to extract cell bar-
codes we created a synthetic dataset. This synthetic data

contains a fixed number of cells (500) where each cell
contains a specific number of cell barcode reads (10.000)
ranging from perfect (harbouring no errors) to faulty
(harbouring many errors). The CB correction distance is
set in all pipelines to two or less bases. On the basis of
this correction distance, reads are divided in two main
categories; i) correctable reads, that contain two or less
errors per barcode element, and ii) uncorrectable reads
which contain three or more errors per barcode element.
In this analysis, from the position-based algorithms
STARsolo performs best and is able to capture more than
half of the correctable linkers (Fig S7A). Splitpipeline and
splitpipe perform worse and capture less than half of the
correctable reads. zUMI’s and alevin-fry splitp performed

Fig. 5 UMAP of data generated by each pipeline colored by predicted cell‑type after using the Azimuth cell annotation algorithm. A Cell‑type
annotation for cells generated by alevin‑fry B Cell‑type annotation for cells generated by splitpipe C. Cell‑type annotation for cells generated
by STARsolo. Cells are color coded (also indicated at the right of Fig. 5C) by cell‑type after using the Azimuth cell annotation algorithm. D
An Upset plot of the predicted cell‑types from the PBMC data generated by each pipeline. Set size equals the total amount of predicted cell‑types
per pipeline. Intersection size representing the total amount of predicted cell‑types that overlap between the intersected set of pipelines. The
bottom right panel shows which pipelines are being intersected. E A barplot comparing the number of cells that are predicted to be a specific
cell‑type per pipeline

Page 10 of 15Kuijpers et al. BMC Genomics (2024) 25:361

worst with respect to barcode correction (Fig S7A). The
linker based position and alignment algorithms LR-
splitpipe and splitseq-demultiplex performed very well
and enabled the capture of more than eighty percent of
all correctable reads and the around twenty percent of
the uncorrectable reads (Fig S7A). When comparing the
sequence of the barcodes extracted LRsplitpipe, splitpipe,
splitseqdemultipex and STARsolo find all the synthetic
barcodes (Fig S7B). Interestingly splitpipe finds three
additional CB and one different one. Alevin-fry performs
badly only finding 249 barcodes. Splitpipeline finds 485
barcodes and similar to previous behavior all barcodes
differ from other algorithms (Fig S7B).

Discussion
SPLiT-seq is a relatively novel single cell sequenc-
ing technique, compared to droplet based single-cell
sequencing, yet several pipelines have already been
developed to process the data. Therefore, independent
benchmarking and evaluation of these tools is of impor-
tance. In this study we compared a number of com-
putational pipelines for the processing of SPLiT-seq
data (Table 1) and graded them on several qualitative

factors (Fig. 6). We do note however, that several fac-
tors of grading might be subject to experience bias and
if repeated results might differ.

Due to the scalability of SPLiT-seq, the datasets that
will be generated by this technique are expected to
become larger and larger [1, 18, 35]. Therefore, runtime
and memory performance should be evaluated. When
speed of analysis is important STARsolo and alevin-fry
perform best. However, as dataset size increases STAR-
solo’s RAM usage increases significantly, whereas alevin-
fry can be used on very small amounts of RAM.

SPLiT-seq has the option of using different barcod-
ing chemistries. When modifications to the protocol are
performed STARsolo and zUMI provide complete free-
dom and customization (Table 1). The other pipelines
have fixed settings for v1 or v2 chemistries. Another
important feature is the option of collapsing of random
hexamer reads to obtain correct cell barcode assign-
ment. However, this feature is not built in every pipeline
(Table 1), and a separate programming script is needed to
perform this step, and is not a non-trivial task to imple-
ment. Depending on the programming language this can
increase total runtime.

Fig. 6 A qualitative comparison of functional features and results between pipelines. Graded from one to five. One representing worst and five
best. CB extraction: A degree to which CB produced are similar to that produced by others. Dependencies: How many dependencies each pipeline
has on other programs or packages that have the be installed before proper functioning. Memory Usage: Amount of RAM the program uses.
Option Flexibility: The freedom users have to change settings of each run. Speed: How fast the pipeline finishes its analysis

Page 11 of 15Kuijpers et al. BMC Genomics (2024) 25:361

Several barcode extraction methods are used in
the different pipelines and the results show that they
all work similarly efficient except for the alignment
method of splitseq-demultiplex [29], which generates
much more barcodes than other pipelines (Table 2,
Fig. 3A). Fixed position algorithms will always be com-
putationally faster than alignment or linker-based posi-
tion, as there is no additional alignment step that has to
be performed.

We found that in both the small mouse brain data as
well as the PBMC data the amount of CB extracted
between most pipelines are similar (Figs. 3A and 4A).
However, differences in content of the cells was observed
when visualizing data on a UMAP (Figs. 3B and 4B, C).
Therefore, we suspect that the largest differences between
pipelines are not produced by the barcode extraction
methods but with the alignment and counting of the
algorithms. Except for the alevin-fry splitp pipeline, all
pipelines compared here use STAR software to align
reads. STAR uses a Maximal Mappable Prefix approach
[24], whereas alevin-fry uses k-mer based pseudo align-
ment [32]. This can cause significance downstream differ-
ences (Fig. 4B, C). Moreover, every pipeline uses different
feature counting methods which might also contribute
to differences output from the same data. Recently, more
detailed comparisons have been made on efficiency of
different aligners and feature counting tools with respect
to single-cell data [33, 37–39], which is reflected in the
outcome of the pipelines we compared here. Splitpipe
and STARsolo have similar results in terms of cell type
calling and differences that do occur are most likely
due their different counting algorithms (Fig. 5, S5, 6).
Whereas alevin-fry splitp, differing on both alignment
and counting shows large differences and results in faulty
cell type prediction (Fig. 5, S5, 6).

In addition to the mouse brain and human PBMC data-
sets, we compared these pipelines using a synthetic data-
set which contains increasingly erroneous cell barcodes.
We found that LR-splitpipe and splitseq-demultiplex
performed best in correcting the CBs (Fig S7). However,
when applied on larger datasets such as the mouse brain
and human PBMC SPLIT-seq datasets, the LR-splitpipe
and splitseq-demultiplex are found to be computation-
ally intensive and cannot compete with STARsolo and
splitpipe that are more efficient. Future implementation
of these position based and alignment-based pipelines
should focus on improving their speed and computa-
tional resource demand. Furthermore, we suggest a more
thorough investigation on the possible types of errors, in
addition to the ones we simulated in the synthetic data-
set, that occur within CBs of real SPLiT-seq data. This
will be instrumental in improving the existing pipelines,
as well as the development of new ones.

At this point splitseq-demultiplex and splitpipeline are
not well maintained and have to be updated to be able to
handle newer barcode chemistries, thus we discourage
the use of those pipelines [26, 29]. zUMI [25, 40] is more
frequently maintained, however it has many depend-
encies on other packages that have been updated since
the initial release of zUMI. Although zUMI [25, 40] pro-
vides a functional conda environment in which it runs,
the packages and functionalities might be outdated.

When using the commercialized SPLiT-seq, we rec-
ommend using splitpipe as it is specifically designed
to analyze SPLiT-seq data. Splitpipe contains several
advantages over the other pipelines in terms of user
friendliness. Several steps exist to confirm whether the
correct options have been used reducing complexity
for the user. In addition, several QC graphs can be pro-
duced on the user’s discretion. Whereas other pipelines
offer more freedom with increased complexity. How-
ever, the splitpipe pipeline algorithm is only available
after a purchase at Parse Biosciences. If unavailable we
recommend using STARsolo [38] as it performs simi-
larly to splitpipe, although random hexamer collaps-
ing has to be performed separately. The difference most
likely arises due to feature counting; however, STAR is a
well-established alignment method and commonly used.
Additionally, both STARsolo and splitpipe are compu-
tationally efficient in comparison with other pipelines
and are therefore more scalable with the larger datasets
SPLiT-seq experiments generate. If the SPLiT-seq library
is sequenced using long read sequencing, we suggest
using LR-splitpipe [27, 41], as it is specifically designed to
handle long reads and copies several functions from the
splitpipe pipeline.

SPLiT-seq offers an alternative to the droplet and plate
based single-cell sequencing methods. It is also rela-
tively easier, scalable and cheaper for large-scale experi-
ments [35]. Despite these advantages, the development
of analysis tools is still lagging behind and the existing
tools are not benchmarked. Our comparative analysis of
the current computational tools for SPLiT-seq data aids
researchers to choose the most appropriate tool for data
analysis.

Methods
Data retrieval
The small mouse brain dataset was retrieved from NCBI
[GSM3017260] [18] containing one sub-library with
77,621,181 reads. The large PBMC dataset was published
[35] and sequencing data available on request from parse
biosciences. The large PBMC consists of two sub-libraries
of which only the second one, containing 1,704,418,175
reads, was used. The quality of both datasets was first
analyzed with fastQC and did not require any trimming.

Page 12 of 15Kuijpers et al. BMC Genomics (2024) 25:361

Pipeline comparison
All pipelines except zUMI, were run on the Snellius SURF
Dutch research cluster. SLURM was used to run batch
jobs, limit memory usage and measure computational
performance. Memory limits were set to 64 Gb and 256
Gb for the small and large dataset respectively with one
exception for STARsolo, which was allowed up to 1TB of
RAM to allow completion. Each pipeline was run a total
of 5 times to obtain performance averages.

All pipelines were set to perform as similarly as possi-
ble; cell barcode correction distance was set to two and
only kept cells barcodes that have more than 100 reads
assigned to them.

As each pipeline performs the analysis steps in a cer-
tain order a short description is given about each pipeline
is provided below and a graphical depiction is displayed
in Figure S1. To simplify the steps names are reduced to
core function of the steps.

STARsolo
STARsolo (2.7.10a) [24, 38, 42] was run using the CB_
UMI_Complex option, which allows for position-based
input of the CB and UMI. Index position for the BC 3 and
2 were 10 to 17 and 48 to 55 respectively. For v1 chem-
istry BC 1 position was 86 to 93 and for v2 chemistry 78
to 85. UMI position was set to index 0 to 9. CBs were
corrected to a position-based whitelist with the CB cor-
rection option of Edit_dist_2 which sets the correction
distance to two base pairs.

STARsolo runs its analysis steps in the following order:
Alignment of reads to genome, CB extraction and correc-
tion, Counting UMIs, counting features, create single cell
matrices (Fig S1).

Splitpipeline
All the splitpipeline (0.0.1) [18, 26] base options were
used except for the chemistry used, which was set to the
respective chemistry of the input data with the –chem-
istry option. Cell barcode edit distance is hard coded to
two base pairs.

Splitpipeline runs its analysis steps in the following
order; CB extraction and correction, Collapsing of CB,
Counting UMIs, Alignment of reads to genome, counting
features, create single cell matrices (Fig S1).

Splitpipe
Splitpipe (v1.0.3p) [35] performs an internal check of the
chemistry and kit used by taking a subsample of the data-
set, which provided the same information that was given
upon data request (kit WT, chemistry v2). Splitpipe auto-
matically tries to use an Anaconda virtual environment,

which was turned off using the –start_timeout 0 option.
Otherwise, no additional options were used. Cell barcode
edit distance is hard coded to two base pairs.

Splitpipe runs its analysis steps in the following order;
CB extraction and correction, Collapsing of CB, Count-
ing UMIs, Alignment of reads to genome, counting fea-
tures, create single cell matrices (Fig S1).

zUMI
A zUMI (2.9.7d) [25, 40] yaml file was generated using
the Rshiny app provided on their github. CB position
was set to read 2 with indices 11–18, 49–56 for BC3 and
BC2, respectively. For BC1 with the indices 79–86 and
87–94 were used for v2 and v1 chemistries respectively.
UMI positions indices were set to 1–10. Cell barcode edit
distance was set to two and were corrected to a provided
cell barcode whitelist. We were unable to make zUMI
working on the Snellius cluster due to dependency con-
flicts, therefore we utilized a smaller local server where
we could use the internally provided Anaconda virtual
environment (Fig S1).

zUMI runs its analysis steps in the following order; CB
extraction and correction, Counting UMIs, Collapsing
of CB, Alignment of reads to genome, counting features,
create single cell matrices.

SCSit
SCSit [28, 43] test runs were made using the steps pro-
vided on their github with both their test data and other
data. All runs crashed with a segmentation fault error.
Troubleshooting was performed but no obvious cause
was found to be the source, after which authors were
notified Fig S1).

Splitseq-demultiplex
The run type (-v) of Splitseq-demultiplex (0.2.1) [29] was
set to merged which performs the BC Alignment type CB
extraction. Random hexamer collapsing (-c) was set to
true and CB edit distance(-e) to two base pairs. Depend-
ing on the chemistry used barcode sequences were
changed by providing premade input files (-1, -2,-3).

SPLiTseq-demultiplex runs its analysis steps in the fol-
lowing order; CB extraction and correction, Collapsing
of CB, Counting UMIs, Alignment of reads to genome,
counting features, create single cell matrices (Fig S1).

Alevin-fry splitp
First random hexamer collapsing was performed using
splitp (0.1.0), for v1 chemistry positions 78 to 94 and for
v2 chemistry positions 79 to 86 were used. Subsequently
alignment and CB correction were performed with
salmon (1.9.0) and alevin-fry according to the alevin-
fry SPLiT-seq tutorial. Alignment was set to –sketch

Page 13 of 15Kuijpers et al. BMC Genomics (2024) 25:361

with the –tgMap to map to gene features. Subsequently
Alevin-fry (0.8.1) generate-permit-list was used to find
all barcodes within a given whitelist. Alevin-fry collate
to count UMIs and subsequently Alevin-fry quant to
count features and generate a matrix [44] (https:// github.
com/ COMBI NE- lab/ splitp, https:// github. com/ COMBI
NE- lab/ alevin- fry,https:// github. com/ COMBI NE- lab/
salmon).

Alevin-fry splitp runs its analysis steps in the following
order; Collapsing of CB, Alignment of reads to genome
and extraction of CB, CB correction, counting features,
create single cell matrix (Fig S1).

LR-splitpipe
The LR-splitpipe [27, 41] pipeline was slightly modified to
turn of negative strand alignment. In addition, v1 chem-
istry options were added. Otherwise, all base options
were used with a hard coded CB edit distance of two.
Output of LR-splitpipe is a fastq file with the corrected
CB sequence which was subsequently used for alignment
with STARsolo to generate a single cell matrix.

LR-splitpipe runs its analysis steps in the follow-
ing order. Extraction of CB and UMI, correction of CB,
generate corrected fastq. After which it follows order of
STARsolo (Fig S1).

Random hexamer collapsing
Not all pipelines perform random hexamer collapsing.
To address random hexamer collapsing for pipelines that
did not perform this step, a custom R script was written
[https:// doi. org/ 10. 5281/ zenodo. 83628 59]. In the first
round a total of 96 barcodes are used. The first 48 are
assigned to polyA capturing oligos whereas the last 48 are
assigned to random hexamer capturing oligos. The 1st,
index 1, polyA barcode is linked to the 1st, index 49, ran-
dom hexamer barcode, and repeated for each following
barcode combination. The Rscript numerates the barcode
sequences to simplify and speed up computation. Col-
lapsing occurs by subtracting 48 from each number that
is larger than 48, after which the numerated BC1, 2 and
3 numbers were pasted together. Subsequently the list of
barcode sequences was collapsed by looking for duplicate
barcodes and performing row sums of the respective data
matrix indices and stored into a new matrix with col-
lapsed cells.

Quality control
Seurat [31] was used to analyze each dataset. For the
small dataset a minimum of 1000 and maximum of
10,000 features were used as a threshold for each cell.
Additionally, a maximum of 5% mitochondrial reads
was allowed. For the large dataset a minimum of 600
and maximum of 5000 features was used as a threshold

of each cell. Subsequently data was merged or kept sepa-
rately and treated as thus; Data was normalized using
log Normalization and a scale factor of 10,000. A total of
2000 variable features were found using variance stabiliz-
ing transformation (vst) after which data was scaled. PCA
was performed and subsequently nearest neighbours and
UMAP were calculated with the first 10 and 40 PCAs
in the small and large dataset respectively. For the large
dataset batch correction was performed per donor sam-
ple using reciprocal PCA [31] and cell types were called
using the Azimuth [31] package. Subsequently Leiden
clustering was used to find the most frequent cell type
annotation in each cluster, if the most frequent assign-
ment within that cluster was not more than 25% of the
total cluster the cell type annotation was removed. Visu-
alization was performed using UpSet and ggplot2.

Gene–gene correlation
Pseudobulk data per pipeline or cell-type group was gen-
erated using the AggregateExpression function in the
Seurat R (v5.0) package. Expression was subsequently
tested against each other using the base correlation func-
tion (cor) in R using the Pearson method. Result was vis-
ualized using a heatmap.

Synthetic data generation
To generate the synthetic SPLiT-seq data we concat-
enated the six specific elements that are present in the
SPLiT-seq cell barcode sequence. These are in follow-
ing order, UMI, BC3, LINKER2, BC2, LINKER1, BC1.
Each cell barcode that was synthesized was given 10.000
amount of reads. Each read was given a UMI that had a
hamming distance greater than two for every other UMI
within a synthetic cell. This was used to prevent UMI col-
lapsing of reads performed by some pipelines. All reads
within a synthetic cell were divided equally into several
categories (read type), where each category was given a
specific 120 base sequence of a known gene so that the
retrieval of a category could be measured in the count
matrix on a per feature basis (Table S4). A total of eight
categories were created; i) Perfect reads that do not con-
tain any errors. ii), iii) and iv) reads that contain correct-
able barcode elements in one, two or all three barcode
element positions. v), vi) and vii) reads that contain
uncorrectable barcode elements in one, two or all three
barcode element positions and viii) a completely random
sequence. As the Levenshtein correction distance in each
pipeline is set to two we divided reads in two major cat-
egories; i) correctable barcodes that contain two or less
substitution errors and should be within correction dis-
tance and ii) uncorrectable barcodes that contain three
or more substitution errors and are uncorrectable. Errors
were introduced by random substitutions of bases in a

https://github.com/COMBINE-lab/splitp
https://github.com/COMBINE-lab/splitp
https://github.com/COMBINE-lab/alevin-fry
https://github.com/COMBINE-lab/alevin-fry
https://github.com/COMBINE-lab/salmon
https://github.com/COMBINE-lab/salmon
https://doi.org/10.5281/zenodo.8362859

Page 14 of 15Kuijpers et al. BMC Genomics (2024) 25:361

single or multiple barcode sequence elements. All reads
were written to a fastq file format with all easily retaina-
ble information such as read category, or original barcode
were stored in the read name.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s12864‑ 024‑ 10285‑3.

Supplementary Material 1.

Supplementary Material 2.

Supplementary Material 3.

Supplementary Material 4.

Supplementary Material 5.

Acknowledgements
This work made use of the Dutch national e‑infrastructure with the support of
the SURF‑Cooperative using grant no. EINF‑5739.
We would like to thank Parse Biosciences for sharing the PBMC data.

Code availability
All modifications to pipelines and Code used in this paper can be found at
https:// doi. org/ 10. 5281/ zenodo. 83628 59.

Authors’ contributions
L.J. Kuijpers, W.F.J. van IJcken, E. Mulugeta and F. Grosveld conceived the study.
L.J. Kuijpers analyzed the data with the help and supervision of B. Hornung, M.
van den Hout – van Vroonhoven and E. Mulugeta. All authors approved the
manuscript.

Availability of data and materials
The small mouse brain dataset was retrieved from NCBI [GSM3017260], the
large human PBMC dataset was received upon request from Parse Biosciences.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 Department of Cell Biology, Erasmus University Medical Center Rotterdam
(Erasmus MC), Wytemaweg 80, Rotterdam 3015CN, The Netherlands. 2 Center
for Biomics, Erasmus University Medical Center Rotterdam (Erasmus MC), Rot‑
terdam, The Netherlands.

Received: 19 November 2023 Accepted: 3 April 2024

References
 1. Svensson V, Vento‑Tormo R, Teichmann SA. Exponential scaling of single‑

cell RNA‑seq in the past decade. Nat Protoc. 2018;13(4):599–604.
 2. Li X, Wang CY. From bulk, single‑cell to spatial RNA sequencing. Int J Oral

Sci. 2021;13:1.
 3. Armand EJ, Li J, Xie F, Luo C, Mukamel EA. Single‑cell sequencing of brain

cell transcriptomes and epigenomes. Neuron. 2021;109(1):11–26.
 4. Wen L, Tang F. Single cell epigenome sequencing technologies. Mol

Aspects Med. 2018;1(59):62–9.
 5. Fan X, Yang C, Li W, Bai X, Zhou X, Xie H, et al. SMOOTH‑seq: single‑cell

genome sequencing of human cells on a third‑generation sequencing
platform. Genome Biol. 2021;22(1):1–19.

 6. Gawad C, Koh W, Quake SR. Single‑cell genome sequencing: current state
of the science. Nat Rev Genet. 2016;17:3.

 7. Ahn J, Heo S, Lee J, Bang D. Introduction to Single‑Cell DNA Methylation
Profiling Methods. Biomolecules. 2021;11(7):1013.

 8. Slatko BE, Gardner AF, Ausubel FM. Overview of Next Generation
Sequencing Technologies. Curr Protoc Mol Biol. 2018;122(1):e59.

 9. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next‑generation sequencing technologies. Nat Rev Genet. 2016;17:6.

 10. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single‑cell RNA sequenc‑
ing technologies and applications: a brief overview. Clin Transl Med.
2022;12(3):e694.

 11. Hwang B, Lee JH, Bang D. Single‑cell RNA sequencing technologies and
bioinformatics pipelines. Exp Mol Med. 2018;50:8.

 12. Hedlund E, Deng Q. Single‑cell RNA sequencing: Technical advance‑
ments and biological applications. Mol Aspects Med. 2018;1(59):36–46.

 13. Zhang X, Li T, Liu F, Chen Y, Yao J, Li Z, et al. Comparative analysis of
droplet‑based ultra‑high‑throughput single‑Cell RNA‑Seq systems. Mol
Cell. 2019;73(1):130‑142.e5.

 14. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet
barcoding for single‑cell transcriptomics applied to embryonic stem cells.
Cell. 2015;161(5):1187–201.

 15. Hagemann‑Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks GJ,
Larsson AJM, et al. Single‑cell RNA counting at allele and isoform resolu‑
tion using Smart‑seq3. Nat Biotechnol. 2020;38(6):708–14.

 16. Clark IC, Fontanez KM, Meltzer RH, Xue Y, Hayford C, May‑Zhang A, et al.
Microfluidics‑free single‑cell genomics with templated emulsification.
Nat Biotechnol. 2023;41(11):1557–66.

 17. Komatsu J, Cico A, Poncin R, Le Bohec M, Morf J, Lipin S, et al. RevGel‑seq:
instrument‑free single‑cell RNA sequencing using a reversible hydrogel
for cell‑specific barcoding. Sci Rep. 2023;13(1):4866.

 18. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al.
Single‑cell profiling of the developing mouse brain and spinal cord with
split‑pool barcoding. Science. 2018;360(6385):176–82.

 19. Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Com‑
prehensive single‑cell transcriptional profiling of a multicellular organism.
Science. 2017;357(6352):661–7.

 20. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet‑Adkins A, Smets M,
et al. Comparative analysis of single‑cell RNA sequencing methods. Mol
Cell. 2017;65(4):631‑643.e4.

 21. Hwang B, Lee JH, Bang D. Single‑cell RNA sequencing technologies and
bioinformatics pipelines. Exp Mol Med. 2018;50(8):1–14.

 22. Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg
R. Full‑length RNA‑seq from single cells using Smart‑seq2. Nat Protoc.
2014;9(1):171–81.

 23. Hagemann‑Jensen M, Ziegenhain C, Sandberg R. Scalable single‑cell RNA
sequencing from full transcripts with Smart‑seq3xpress. Nat Biotechnol.
2022;40:10.

 24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA‑seq aligner. Bioinformatics. 2013;29(1):15–21.

 25. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. zUMIs ‑ A fast and
flexible pipeline to process RNA sequencing data with UMIs. Gigascience.
2018;7(6):giy059.

 26. GitHub ‑ yjzhang/split‑seq‑pipeline. https:// github. com/ yjzha ng/ split‑
seq‑ pipel ine. Accessed 12 Oct 2022.

 27. Rebboah E, Reese F, Williams K, Balderrama‑Gutierrez G, McGill C, Trout
D, et al. Mapping and modeling the genomic basis of differential RNA
isoform expression at single‑cell resolution with LR‑Split‑seq. Genome
Biol. 2021;22(1):286.

 28. Luan MW, Lin JL, Wang YF, Liu YX, Le XC, Wu R, et al. SCSit: a high‑effi‑
ciency preprocessing tool for single‑cell sequencing data from SPLiT‑seq.
Comput Struct Biotechnol J. 2021;1(19):4574–80.

 29. GitHub ‑ paulranum11/SPLiT‑Seq_demultiplexing: An unofficial demul‑
tiplexing strategy for SPLiT‑seq RNA‑Seq data. https:// github. com/ paulr
anum11/ SPLiT‑ Seq_ demul tiple xing. Accessed 12 Oct 2022.

 30. Dwivedi A, Jaiswal A. Python: The Versatile Language. Recent Trends in
Programming Languages. 2021;8(1):2021.

 31. Hao Y, Hao S, Andersen‑Nissen E, Mauck WM, Zheng S, Butler A, et al. Inte‑
grated analysis of multimodal single‑cell data. Cell. 2021;184(13):3573‑
3587.e29.

 32. Srivastava A, Malik L, Smith T, Sudbery I, Patro R. Alevin efficiently esti‑
mates accurate gene abundances from dscRNA‑seq data. Genome Biol.
2019;20(1):1–16.

https://doi.org/10.1186/s12864-024-10285-3
https://doi.org/10.1186/s12864-024-10285-3
https://doi.org/10.5281/zenodo.8362859
https://github.com/yjzhang/split-seq-pipeline
https://github.com/yjzhang/split-seq-pipeline
https://github.com/paulranum11/SPLiT-Seq_demultiplexing
https://github.com/paulranum11/SPLiT-Seq_demultiplexing

Page 15 of 15Kuijpers et al. BMC Genomics (2024) 25:361

 33. Brüning RS, Tombor L, Schulz MH, Dimmeler S, John D. Comparative
analysis of common alignment tools for single‑cell RNA sequencing.
Gigascience. 2022;12(11):1–12.

 34. Fourment M, Gillings MR. A comparison of common programming
languages used in bioinformatics. BMC Bioinformatics. 2008;9(1):1–9.

 35. Tran V, Papalexi E, Schroeder S, Kim G, Sapre A, Pangallo J, et al. High
sensitivity single cell RNA sequencing with split pool barcoding. bioRxiv.
2022;2022.08.27.505512.

 36. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JP, et al. Ranking
programming languages by energy efficiency. Sci Comput Program.
2021;1(205):102609.

 37. Du Y, Huang Q, Arisdakessian C, Garmire LX. Evaluation of
STAR and Kallisto on Single Cell RNA‑Seq Data Alignment. G3
Genes|Genomes|Genetics. 2020;10(5):1775.

 38. Kaminow B, Yunusov D, Dobin A. STARsolo: accurate, fast and versatile
mapping/quantification of single‑cell and single‑nucleus RNA‑seq data.
bioRxiv. 2021;2021.05.05.442755.

 39. Srivastava A, Malik L, Sarkar H, Zakeri M, Almodaresi F, Soneson C, et al.
Alignment and mapping methodology influence transcript abundance
estimation. Genome Biol. 2020;21(1):1–29.

 40. GitHub ‑ sdparekh/zUMIs: zUMIs: A fast and flexible pipeline to process
RNA sequencing data with UMIs. https:// github. com/ sdpar ekh/ zUMIs.
Accessed 12 Oct 2022.

 41. GitHub ‑ fairliereese/LR‑splitpipe: Demultiplexing and debarcoding tool
designed for LR‑Split‑seq data. https:// github. com/ fairl ieree se/ LR‑ split
pipe. Accessed 12 Oct 2022.

 42. GitHub ‑ alexdobin/STAR: RNA‑seq aligner. https:// github. com/ alexd obin/
STAR. Accessed 12 Oct 2022.

 43. GitHub ‑ shang‑qian/SCSit: A high‑efficiency cell types identification
tool for single‑cell sequencing data from SPLiT‑seq. https:// github. com/
shang‑ qian/ SCSit. Accessed 12 Oct 2022.

 44. He D, Zakeri M, Sarkar H, Soneson C, Srivastava A, Patro R. Alevin‑fry
unlocks rapid, accurate and memory‑frugal quantification of single‑cell
RNA‑seq data. Nat Methods. 2022;19(3):316–22.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://github.com/sdparekh/zUMIs
https://github.com/fairliereese/LR-splitpipe
https://github.com/fairliereese/LR-splitpipe
https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
https://github.com/shang-qian/SCSit
https://github.com/shang-qian/SCSit

	Split Pool Ligation-based Single-cell Transcriptome sequencing (SPLiT-seq) data processing pipeline comparison
	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Functional comparison of data-processing pipelines
	Performance comparison
	Pipeline comparison using small mouse brain dataset
	Pipeline comparison on large PBMC dataset
	Barcode extraction from synthetic data differs between algorithms

	Discussion
	Methods
	Data retrieval
	Pipeline comparison
	STARsolo
	Splitpipeline
	Splitpipe
	zUMI
	SCSit
	Splitseq-demultiplex
	Alevin-fry splitp
	LR-splitpipe
	Random hexamer collapsing
	Quality control
	Gene–gene correlation
	Synthetic data generation

	Acknowledgements
	References

